
Resources in Computation

Samson Abramsky

Department of Computer Science, UCL

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 1 / 36

Resources in Computation

EPSRC-funded fellowship 2021–26

Postdocs: Luca Reggio, Rafa l Stefański

Project partners:
▶ Anuj Dawar (Cambridge)
▶ Jouko Väänänen (Helsinki)
▶ Thomas Ehrhard, Christine Tasson and Paul-André Melliès (IRIF, Paris)
▶ David Pym (UCL)
▶ Rui Soares Barbosa and Ernesto Galvão (IINL Braga)
▶ Miko laj Bojańczyk (Warsaw) and Bartek Klin (Oxford)

Building on joint project with Anuj Dawar:
Resources and Co-resources: a junction between categorical semantics and
descriptive complexity, 1/10/2019–31/3/2023

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 2 / 36

Research Vision
Resources are pervasive throughout computation:

if we think of algorithms and complexity, ideas of efficiency and complexity
are based on consumption of resources such as space and time but also:
resource logics, e.g. separation logic
type theories, resource lambda calculi, closely related to differentiable calculi
and the foundations of differentiable programming
process semantics, game semantics etc.

Resources are studied in different-looking ways in these specialised areas.

Symptom of a wider phenomenon in CS, of sub-specialisms not communicating
with each othjer

Our vision is to bring these different strands together, and create a unified theory
of resources in computation which will allow the flow of ideas and techniques
between these different areas, leading to new kinds of results and insights.

This is a bold but credible hypothesis, based on recent breakthrough results, and
with clear ideas and directions for how to make progress.

Another important aspect is bringing researchers and communities together, and
building a new research community in this emerging area.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 3 / 36

Research Vision
Resources are pervasive throughout computation:

if we think of algorithms and complexity, ideas of efficiency and complexity
are based on consumption of resources such as space and time but also:
resource logics, e.g. separation logic
type theories, resource lambda calculi, closely related to differentiable calculi
and the foundations of differentiable programming
process semantics, game semantics etc.

Resources are studied in different-looking ways in these specialised areas.

Symptom of a wider phenomenon in CS, of sub-specialisms not communicating
with each othjer

Our vision is to bring these different strands together, and create a unified theory
of resources in computation which will allow the flow of ideas and techniques
between these different areas, leading to new kinds of results and insights.

This is a bold but credible hypothesis, based on recent breakthrough results, and
with clear ideas and directions for how to make progress.

Another important aspect is bringing researchers and communities together, and
building a new research community in this emerging area.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 3 / 36

Research Vision
Resources are pervasive throughout computation:

if we think of algorithms and complexity, ideas of efficiency and complexity
are based on consumption of resources such as space and time but also:
resource logics, e.g. separation logic
type theories, resource lambda calculi, closely related to differentiable calculi
and the foundations of differentiable programming
process semantics, game semantics etc.

Resources are studied in different-looking ways in these specialised areas.

Symptom of a wider phenomenon in CS, of sub-specialisms not communicating
with each othjer

Our vision is to bring these different strands together, and create a unified theory
of resources in computation which will allow the flow of ideas and techniques
between these different areas, leading to new kinds of results and insights.

This is a bold but credible hypothesis, based on recent breakthrough results, and
with clear ideas and directions for how to make progress.

Another important aspect is bringing researchers and communities together, and
building a new research community in this emerging area.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 3 / 36

Research Vision
Resources are pervasive throughout computation:

if we think of algorithms and complexity, ideas of efficiency and complexity
are based on consumption of resources such as space and time but also:
resource logics, e.g. separation logic
type theories, resource lambda calculi, closely related to differentiable calculi
and the foundations of differentiable programming
process semantics, game semantics etc.

Resources are studied in different-looking ways in these specialised areas.

Symptom of a wider phenomenon in CS, of sub-specialisms not communicating
with each othjer

Our vision is to bring these different strands together, and create a unified theory
of resources in computation which will allow the flow of ideas and techniques
between these different areas, leading to new kinds of results and insights.

This is a bold but credible hypothesis, based on recent breakthrough results, and
with clear ideas and directions for how to make progress.

Another important aspect is bringing researchers and communities together, and
building a new research community in this emerging area.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 3 / 36

Research Vision
Resources are pervasive throughout computation:

if we think of algorithms and complexity, ideas of efficiency and complexity
are based on consumption of resources such as space and time but also:
resource logics, e.g. separation logic
type theories, resource lambda calculi, closely related to differentiable calculi
and the foundations of differentiable programming
process semantics, game semantics etc.

Resources are studied in different-looking ways in these specialised areas.

Symptom of a wider phenomenon in CS, of sub-specialisms not communicating
with each othjer

Our vision is to bring these different strands together, and create a unified theory
of resources in computation which will allow the flow of ideas and techniques
between these different areas, leading to new kinds of results and insights.

This is a bold but credible hypothesis, based on recent breakthrough results, and
with clear ideas and directions for how to make progress.

Another important aspect is bringing researchers and communities together, and
building a new research community in this emerging area.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 3 / 36

Research Vision
Resources are pervasive throughout computation:

if we think of algorithms and complexity, ideas of efficiency and complexity
are based on consumption of resources such as space and time but also:
resource logics, e.g. separation logic
type theories, resource lambda calculi, closely related to differentiable calculi
and the foundations of differentiable programming
process semantics, game semantics etc.

Resources are studied in different-looking ways in these specialised areas.

Symptom of a wider phenomenon in CS, of sub-specialisms not communicating
with each othjer

Our vision is to bring these different strands together, and create a unified theory
of resources in computation which will allow the flow of ideas and techniques
between these different areas, leading to new kinds of results and insights.

This is a bold but credible hypothesis, based on recent breakthrough results, and
with clear ideas and directions for how to make progress.

Another important aspect is bringing researchers and communities together, and
building a new research community in this emerging area.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 3 / 36

Structure vs Power: The Great Divide

Structure:

compositionality, semantics

How we can master the complexity
of computer systems and software?

Power:

expressiveness, complexity

How we can harness the power of
computation and recognize its
limits?

A shocking fact: the current state of the art is almost disjoint communities of
researchers studying Structure and Power respectively, with no common technical
language or tools.

This is a major obstacle to fundamental progress in Computer Science.

An analogy: the Grothendieck program in algebraic geometry. The (very abstract)
tools developed there were ultimately critical for concrete results, e.g. Wiles/FLT.

Mazur quoting Lenstra:

twenty years ago he was firm in his conviction that he DID want to solve
Diophantine equations, and that he DID NOT wish to represent functors
– and now he is amused to discover himself representing functors in order
to solve Diophantine equations!

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 4 / 36

Structure vs Power: The Great Divide

Structure:

compositionality, semantics

How we can master the complexity
of computer systems and software?

Power:

expressiveness, complexity

How we can harness the power of
computation and recognize its
limits?

A shocking fact: the current state of the art is almost disjoint communities of
researchers studying Structure and Power respectively, with no common technical
language or tools.

This is a major obstacle to fundamental progress in Computer Science.

An analogy: the Grothendieck program in algebraic geometry. The (very abstract)
tools developed there were ultimately critical for concrete results, e.g. Wiles/FLT.

Mazur quoting Lenstra:

twenty years ago he was firm in his conviction that he DID want to solve
Diophantine equations, and that he DID NOT wish to represent functors
– and now he is amused to discover himself representing functors in order
to solve Diophantine equations!

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 4 / 36

Structure vs Power: The Great Divide

Structure:

compositionality, semantics

How we can master the complexity
of computer systems and software?

Power:

expressiveness, complexity

How we can harness the power of
computation and recognize its
limits?

A shocking fact: the current state of the art is almost disjoint communities of
researchers studying Structure and Power respectively, with no common technical
language or tools.

This is a major obstacle to fundamental progress in Computer Science.

An analogy: the Grothendieck program in algebraic geometry. The (very abstract)
tools developed there were ultimately critical for concrete results, e.g. Wiles/FLT.

Mazur quoting Lenstra:

twenty years ago he was firm in his conviction that he DID want to solve
Diophantine equations, and that he DID NOT wish to represent functors
– and now he is amused to discover himself representing functors in order
to solve Diophantine equations!

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 4 / 36

Structure vs Power: The Great Divide

Structure:

compositionality, semantics

How we can master the complexity
of computer systems and software?

Power:

expressiveness, complexity

How we can harness the power of
computation and recognize its
limits?

A shocking fact: the current state of the art is almost disjoint communities of
researchers studying Structure and Power respectively, with no common technical
language or tools.

This is a major obstacle to fundamental progress in Computer Science.

An analogy: the Grothendieck program in algebraic geometry. The (very abstract)
tools developed there were ultimately critical for concrete results, e.g. Wiles/FLT.

Mazur quoting Lenstra:

twenty years ago he was firm in his conviction that he DID want to solve
Diophantine equations, and that he DID NOT wish to represent functors
– and now he is amused to discover himself representing functors in order
to solve Diophantine equations!

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 4 / 36

Structure vs Power: The Great Divide

Structure:

compositionality, semantics

How we can master the complexity
of computer systems and software?

Power:

expressiveness, complexity

How we can harness the power of
computation and recognize its
limits?

A shocking fact: the current state of the art is almost disjoint communities of
researchers studying Structure and Power respectively, with no common technical
language or tools.

This is a major obstacle to fundamental progress in Computer Science.

An analogy: the Grothendieck program in algebraic geometry. The (very abstract)
tools developed there were ultimately critical for concrete results, e.g. Wiles/FLT.

Mazur quoting Lenstra:

twenty years ago he was firm in his conviction that he DID want to solve
Diophantine equations, and that he DID NOT wish to represent functors
– and now he is amused to discover himself representing functors in order
to solve Diophantine equations!

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 4 / 36

The topic for this talk

We shall discuss a novel approach to relating categorical semantics, which
exemplifies “Structure”, to finite model theory, which exemplifies “Power”.

Based on:

The Pebbling Comonad in Finite Model Theory, SA, Anuj Dawar and
Pengming Wang, LiCS 2017.

Relating Structure to Power: comonadic semantics for computational
resources, SA and Nihil Shah, CSL 2018. Extended version in Journal of
Logic and Computation 2021.

Current EPSRC project with Anuj Dawar (Cambridge) on:
Resources and Co-resources: a junction between categorical semantics and
descriptive complexity.

Post-docs Dan Marsden, Luca Reggio (Marie-Curie Fellow), Tomáš Jakl
Ph.D. students Tom Paine, Nihil Shah, Adam Ó Conghaile.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 5 / 36

The topic for this talk

We shall discuss a novel approach to relating categorical semantics, which
exemplifies “Structure”, to finite model theory, which exemplifies “Power”.

Based on:

The Pebbling Comonad in Finite Model Theory, SA, Anuj Dawar and
Pengming Wang, LiCS 2017.

Relating Structure to Power: comonadic semantics for computational
resources, SA and Nihil Shah, CSL 2018. Extended version in Journal of
Logic and Computation 2021.

Current EPSRC project with Anuj Dawar (Cambridge) on:
Resources and Co-resources: a junction between categorical semantics and
descriptive complexity.

Post-docs Dan Marsden, Luca Reggio (Marie-Curie Fellow), Tomáš Jakl
Ph.D. students Tom Paine, Nihil Shah, Adam Ó Conghaile.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 5 / 36

The topic for this talk

We shall discuss a novel approach to relating categorical semantics, which
exemplifies “Structure”, to finite model theory, which exemplifies “Power”.

Based on:

The Pebbling Comonad in Finite Model Theory, SA, Anuj Dawar and
Pengming Wang, LiCS 2017.

Relating Structure to Power: comonadic semantics for computational
resources, SA and Nihil Shah, CSL 2018. Extended version in Journal of
Logic and Computation 2021.

Current EPSRC project with Anuj Dawar (Cambridge) on:
Resources and Co-resources: a junction between categorical semantics and
descriptive complexity.

Post-docs Dan Marsden, Luca Reggio (Marie-Curie Fellow), Tomáš Jakl
Ph.D. students Tom Paine, Nihil Shah, Adam Ó Conghaile.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 5 / 36

People

Anuj Dawar Dan Marsden Luca Reggio Tomáš Jakl

Nihil Shah Tom Paine Adam Ó Conghaile

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 6 / 36

People

Anuj Dawar Dan Marsden Luca Reggio Tomáš Jakl

Nihil Shah Tom Paine Adam Ó Conghaile

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 6 / 36

The setting: relational structures

A relational vocabulary σ is a family of relation symbols R, each of some arity
n > 0.

A relational structure for σ is A = (A, {RA | R ∈ σ})), where RA ⊆ An.

A homomorphism of σ-structures f : A → B is a function f : A → B such that,
for each relation R ∈ σ of arity n and (a1, . . . , an) ∈ An:

(a1, . . . , an) ∈ RA ⇒ (f (a1), . . . , f (an))) ∈ RB.

There notions are pervasive in

logic (model theory),

computer science (databases, constraint satisfaction, finite model theory)

combinatorics (graphs and graph homomorphisms).

Our setting will be R(σ), the category of relational structures and
homomorphisms.
N.B. Not the usual setting in model theory.

This will be the extensional category.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 7 / 36

The setting: relational structures
A relational vocabulary σ is a family of relation symbols R, each of some arity
n > 0.

A relational structure for σ is A = (A, {RA | R ∈ σ})), where RA ⊆ An.

A homomorphism of σ-structures f : A → B is a function f : A → B such that,
for each relation R ∈ σ of arity n and (a1, . . . , an) ∈ An:

(a1, . . . , an) ∈ RA ⇒ (f (a1), . . . , f (an))) ∈ RB.

There notions are pervasive in

logic (model theory),

computer science (databases, constraint satisfaction, finite model theory)

combinatorics (graphs and graph homomorphisms).

Our setting will be R(σ), the category of relational structures and
homomorphisms.
N.B. Not the usual setting in model theory.

This will be the extensional category.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 7 / 36

The setting: relational structures
A relational vocabulary σ is a family of relation symbols R, each of some arity
n > 0.

A relational structure for σ is A = (A, {RA | R ∈ σ})), where RA ⊆ An.

A homomorphism of σ-structures f : A → B is a function f : A → B such that,
for each relation R ∈ σ of arity n and (a1, . . . , an) ∈ An:

(a1, . . . , an) ∈ RA ⇒ (f (a1), . . . , f (an))) ∈ RB.

There notions are pervasive in

logic (model theory),

computer science (databases, constraint satisfaction, finite model theory)

combinatorics (graphs and graph homomorphisms).

Our setting will be R(σ), the category of relational structures and
homomorphisms.
N.B. Not the usual setting in model theory.

This will be the extensional category.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 7 / 36

The setting: relational structures
A relational vocabulary σ is a family of relation symbols R, each of some arity
n > 0.

A relational structure for σ is A = (A, {RA | R ∈ σ})), where RA ⊆ An.

A homomorphism of σ-structures f : A → B is a function f : A → B such that,
for each relation R ∈ σ of arity n and (a1, . . . , an) ∈ An:

(a1, . . . , an) ∈ RA ⇒ (f (a1), . . . , f (an))) ∈ RB.

There notions are pervasive in

logic (model theory),

computer science (databases, constraint satisfaction, finite model theory)

combinatorics (graphs and graph homomorphisms).

Our setting will be R(σ), the category of relational structures and
homomorphisms.
N.B. Not the usual setting in model theory.

This will be the extensional category.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 7 / 36

The setting: relational structures
A relational vocabulary σ is a family of relation symbols R, each of some arity
n > 0.

A relational structure for σ is A = (A, {RA | R ∈ σ})), where RA ⊆ An.

A homomorphism of σ-structures f : A → B is a function f : A → B such that,
for each relation R ∈ σ of arity n and (a1, . . . , an) ∈ An:

(a1, . . . , an) ∈ RA ⇒ (f (a1), . . . , f (an))) ∈ RB.

There notions are pervasive in

logic (model theory),

computer science (databases, constraint satisfaction, finite model theory)

combinatorics (graphs and graph homomorphisms).

Our setting will be R(σ), the category of relational structures and
homomorphisms.
N.B. Not the usual setting in model theory.

This will be the extensional category.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 7 / 36

The setting: relational structures
A relational vocabulary σ is a family of relation symbols R, each of some arity
n > 0.

A relational structure for σ is A = (A, {RA | R ∈ σ})), where RA ⊆ An.

A homomorphism of σ-structures f : A → B is a function f : A → B such that,
for each relation R ∈ σ of arity n and (a1, . . . , an) ∈ An:

(a1, . . . , an) ∈ RA ⇒ (f (a1), . . . , f (an))) ∈ RB.

There notions are pervasive in

logic (model theory),

computer science (databases, constraint satisfaction, finite model theory)

combinatorics (graphs and graph homomorphisms).

Our setting will be R(σ), the category of relational structures and
homomorphisms.
N.B. Not the usual setting in model theory.

This will be the extensional category.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 7 / 36

The setting: relational structures
A relational vocabulary σ is a family of relation symbols R, each of some arity
n > 0.

A relational structure for σ is A = (A, {RA | R ∈ σ})), where RA ⊆ An.

A homomorphism of σ-structures f : A → B is a function f : A → B such that,
for each relation R ∈ σ of arity n and (a1, . . . , an) ∈ An:

(a1, . . . , an) ∈ RA ⇒ (f (a1), . . . , f (an))) ∈ RB.

There notions are pervasive in

logic (model theory),

computer science (databases, constraint satisfaction, finite model theory)

combinatorics (graphs and graph homomorphisms).

Our setting will be R(σ), the category of relational structures and
homomorphisms.
N.B. Not the usual setting in model theory.

This will be the extensional category.
Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 7 / 36

Adjunctions recalled

Given a ring R, the category of R-modules is denoted R–Mod. There is an
evident forgetful functor U : R–Mod → Set, and an adjunction

Set R–Mod

R(•)

U

⊥

R(X) is the free module generated by X (formal finite R-linear combinations over
X).

The universal mapping property:

Set R–Mod

X UR(X)

UM

η

f
Uf̂

R(X)

M

f̂

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 8 / 36

Adjunctions recalled

Given a ring R, the category of R-modules is denoted R–Mod. There is an
evident forgetful functor U : R–Mod → Set, and an adjunction

Set R–Mod

R(•)

U

⊥

R(X) is the free module generated by X (formal finite R-linear combinations over
X).

The universal mapping property:

Set R–Mod

X UR(X)

UM

η

f
Uf̂

R(X)

M

f̂

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 8 / 36

Monads and Comonads
Given an adjunction

C D

L

R

⊥

there is an associated monad RL on C, and comonad LR on D.

These notions are pervasive in mathematics:

monads occur in topology, and finitary monads on Set subsume universal
algebra.
comonads feature in descent theory
Galois correspondences: closures and coclosures.

In our context, we can think of a resource-indexed comonad Ck as a modality:

CkA → B

means we have a homomorphism which only needs to be checked against a limited
part of the structure of A.

This is exactly what logical languages do!
They calibrate limited means for accessing structures.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 9 / 36

Monads and Comonads
Given an adjunction

C D

L

R

⊥

there is an associated monad RL on C, and comonad LR on D.

These notions are pervasive in mathematics:

monads occur in topology, and finitary monads on Set subsume universal
algebra.
comonads feature in descent theory
Galois correspondences: closures and coclosures.

In our context, we can think of a resource-indexed comonad Ck as a modality:

CkA → B

means we have a homomorphism which only needs to be checked against a limited
part of the structure of A.

This is exactly what logical languages do!
They calibrate limited means for accessing structures.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 9 / 36

Monads and Comonads
Given an adjunction

C D

L

R

⊥

there is an associated monad RL on C, and comonad LR on D.

These notions are pervasive in mathematics:

monads occur in topology, and finitary monads on Set subsume universal
algebra.
comonads feature in descent theory
Galois correspondences: closures and coclosures.

In our context, we can think of a resource-indexed comonad Ck as a modality:

CkA → B

means we have a homomorphism which only needs to be checked against a limited
part of the structure of A.

This is exactly what logical languages do!
They calibrate limited means for accessing structures.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 9 / 36

Monads and Comonads
Given an adjunction

C D

L

R

⊥

there is an associated monad RL on C, and comonad LR on D.

These notions are pervasive in mathematics:

monads occur in topology, and finitary monads on Set subsume universal
algebra.
comonads feature in descent theory
Galois correspondences: closures and coclosures.

In our context, we can think of a resource-indexed comonad Ck as a modality:

CkA → B

means we have a homomorphism which only needs to be checked against a limited
part of the structure of A.

This is exactly what logical languages do!
They calibrate limited means for accessing structures.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 9 / 36

The general scheme: resource-indexed adjunctions

In our approach, we build tree-structured covers of a given, purely extensional
relational structure.
Aside: analogies with game semantics for higher-order computation/logic.

Such a tree cover will in general not have the full properties of the original
structure, but be a “best approximation” in some resource-restricted setting.

More precisely, this means that we have a (comonadic) adjunction, yielding
the corresponding comonad.

The objects of the category where the approximations live have an intrinsic
tree structure, which can be captured axiomatically, as arboreal categories.

The tree encodes a process for generating (parts of) the relational structure,
to which resource notions can be applied.

This allows us to apply resource notions to the objects of the extensional
category via the adjunction.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 10 / 36

The general scheme: resource-indexed adjunctions

In our approach, we build tree-structured covers of a given, purely extensional
relational structure.

Aside: analogies with game semantics for higher-order computation/logic.

Such a tree cover will in general not have the full properties of the original
structure, but be a “best approximation” in some resource-restricted setting.

More precisely, this means that we have a (comonadic) adjunction, yielding
the corresponding comonad.

The objects of the category where the approximations live have an intrinsic
tree structure, which can be captured axiomatically, as arboreal categories.

The tree encodes a process for generating (parts of) the relational structure,
to which resource notions can be applied.

This allows us to apply resource notions to the objects of the extensional
category via the adjunction.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 10 / 36

The general scheme: resource-indexed adjunctions

In our approach, we build tree-structured covers of a given, purely extensional
relational structure.
Aside: analogies with game semantics for higher-order computation/logic.

Such a tree cover will in general not have the full properties of the original
structure, but be a “best approximation” in some resource-restricted setting.

More precisely, this means that we have a (comonadic) adjunction, yielding
the corresponding comonad.

The objects of the category where the approximations live have an intrinsic
tree structure, which can be captured axiomatically, as arboreal categories.

The tree encodes a process for generating (parts of) the relational structure,
to which resource notions can be applied.

This allows us to apply resource notions to the objects of the extensional
category via the adjunction.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 10 / 36

The general scheme: resource-indexed adjunctions

In our approach, we build tree-structured covers of a given, purely extensional
relational structure.
Aside: analogies with game semantics for higher-order computation/logic.

Such a tree cover will in general not have the full properties of the original
structure, but be a “best approximation” in some resource-restricted setting.

More precisely, this means that we have a (comonadic) adjunction, yielding
the corresponding comonad.

The objects of the category where the approximations live have an intrinsic
tree structure, which can be captured axiomatically, as arboreal categories.

The tree encodes a process for generating (parts of) the relational structure,
to which resource notions can be applied.

This allows us to apply resource notions to the objects of the extensional
category via the adjunction.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 10 / 36

The general scheme: resource-indexed adjunctions

In our approach, we build tree-structured covers of a given, purely extensional
relational structure.
Aside: analogies with game semantics for higher-order computation/logic.

Such a tree cover will in general not have the full properties of the original
structure, but be a “best approximation” in some resource-restricted setting.

More precisely, this means that we have a (comonadic) adjunction, yielding
the corresponding comonad.

The objects of the category where the approximations live have an intrinsic
tree structure, which can be captured axiomatically, as arboreal categories.

The tree encodes a process for generating (parts of) the relational structure,
to which resource notions can be applied.

This allows us to apply resource notions to the objects of the extensional
category via the adjunction.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 10 / 36

The general scheme: resource-indexed adjunctions

In our approach, we build tree-structured covers of a given, purely extensional
relational structure.
Aside: analogies with game semantics for higher-order computation/logic.

Such a tree cover will in general not have the full properties of the original
structure, but be a “best approximation” in some resource-restricted setting.

More precisely, this means that we have a (comonadic) adjunction, yielding
the corresponding comonad.

The objects of the category where the approximations live have an intrinsic
tree structure, which can be captured axiomatically, as arboreal categories.

The tree encodes a process for generating (parts of) the relational structure,
to which resource notions can be applied.

This allows us to apply resource notions to the objects of the extensional
category via the adjunction.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 10 / 36

The general scheme: resource-indexed adjunctions

In our approach, we build tree-structured covers of a given, purely extensional
relational structure.
Aside: analogies with game semantics for higher-order computation/logic.

Such a tree cover will in general not have the full properties of the original
structure, but be a “best approximation” in some resource-restricted setting.

More precisely, this means that we have a (comonadic) adjunction, yielding
the corresponding comonad.

The objects of the category where the approximations live have an intrinsic
tree structure, which can be captured axiomatically, as arboreal categories.

The tree encodes a process for generating (parts of) the relational structure,
to which resource notions can be applied.

This allows us to apply resource notions to the objects of the extensional
category via the adjunction.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 10 / 36

The general scheme: resource-indexed adjunctions

In our approach, we build tree-structured covers of a given, purely extensional
relational structure.
Aside: analogies with game semantics for higher-order computation/logic.

Such a tree cover will in general not have the full properties of the original
structure, but be a “best approximation” in some resource-restricted setting.

More precisely, this means that we have a (comonadic) adjunction, yielding
the corresponding comonad.

The objects of the category where the approximations live have an intrinsic
tree structure, which can be captured axiomatically, as arboreal categories.

The tree encodes a process for generating (parts of) the relational structure,
to which resource notions can be applied.

This allows us to apply resource notions to the objects of the extensional
category via the adjunction.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 10 / 36

First example

A forest is a poset (F ,≤) such that, for all x ∈ F , the set of predecessors is a
finite chain.
A forest morphism preserves roots and the covering relation.

A forest-ordered σ-structure (A,≤) is a σ-structure A with a forest order ≤ on A.

This must satisfy condition (E): elements of A which are adjacent in the Gaifman
graph of A must be comparable in the order.

The mininum height of such a forest order on A is the tree-depth of A (Nešeťril
and Ossona de Mendez).

Important combinatorial parameter, used extensively by Rossman in his
Homomorphism Preservation Theorems.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 11 / 36

First example

A forest is a poset (F ,≤) such that, for all x ∈ F , the set of predecessors is a
finite chain.
A forest morphism preserves roots and the covering relation.

A forest-ordered σ-structure (A,≤) is a σ-structure A with a forest order ≤ on A.

This must satisfy condition (E): elements of A which are adjacent in the Gaifman
graph of A must be comparable in the order.

The mininum height of such a forest order on A is the tree-depth of A (Nešeťril
and Ossona de Mendez).

Important combinatorial parameter, used extensively by Rossman in his
Homomorphism Preservation Theorems.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 11 / 36

First example

A forest is a poset (F ,≤) such that, for all x ∈ F , the set of predecessors is a
finite chain.
A forest morphism preserves roots and the covering relation.

A forest-ordered σ-structure (A,≤) is a σ-structure A with a forest order ≤ on A.

This must satisfy condition (E): elements of A which are adjacent in the Gaifman
graph of A must be comparable in the order.

The mininum height of such a forest order on A is the tree-depth of A (Nešeťril
and Ossona de Mendez).

Important combinatorial parameter, used extensively by Rossman in his
Homomorphism Preservation Theorems.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 11 / 36

First example

A forest is a poset (F ,≤) such that, for all x ∈ F , the set of predecessors is a
finite chain.
A forest morphism preserves roots and the covering relation.

A forest-ordered σ-structure (A,≤) is a σ-structure A with a forest order ≤ on A.

This must satisfy condition (E): elements of A which are adjacent in the Gaifman
graph of A must be comparable in the order.

The mininum height of such a forest order on A is the tree-depth of A (Nešeťril
and Ossona de Mendez).

Important combinatorial parameter, used extensively by Rossman in his
Homomorphism Preservation Theorems.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 11 / 36

First example

A forest is a poset (F ,≤) such that, for all x ∈ F , the set of predecessors is a
finite chain.
A forest morphism preserves roots and the covering relation.

A forest-ordered σ-structure (A,≤) is a σ-structure A with a forest order ≤ on A.

This must satisfy condition (E): elements of A which are adjacent in the Gaifman
graph of A must be comparable in the order.

The mininum height of such a forest order on A is the tree-depth of A (Nešeťril
and Ossona de Mendez).

Important combinatorial parameter, used extensively by Rossman in his
Homomorphism Preservation Theorems.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 11 / 36

Resource cover and adjunction
There is a category RE (σ), and an evident forgetful functor U : RE (σ) → R(σ).

For each k > 0, if we restrict to forest orders of height ≤ k, we get a sub-category
RE

k (σ), and a functor Uk : RE
k (σ) → R(σ).

This functor has a right adjoint Gk , giving rise to a comonad Ek = UkGk on R(σ).

Given a structure A, the universe of GkA is A≤k , the non-empty sequences of
length ≤ k .

This is forest-ordered by the prefix order.

The counit map εA : A≤k → A sends a sequence [a1, . . . , an] to an.

How do we lift the relations on A to GkA?

Given e.g. a binary relation R, we define RGkA to the set of pairs (s, t) such
that

▶ s ⊑ t or t ⊑ s (in prefix order)

▶ RA(εA(s), εA(t)).

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 12 / 36

Resource cover and adjunction
There is a category RE (σ), and an evident forgetful functor U : RE (σ) → R(σ).

For each k > 0, if we restrict to forest orders of height ≤ k, we get a sub-category
RE

k (σ), and a functor Uk : RE
k (σ) → R(σ).

This functor has a right adjoint Gk , giving rise to a comonad Ek = UkGk on R(σ).

Given a structure A, the universe of GkA is A≤k , the non-empty sequences of
length ≤ k .

This is forest-ordered by the prefix order.

The counit map εA : A≤k → A sends a sequence [a1, . . . , an] to an.

How do we lift the relations on A to GkA?

Given e.g. a binary relation R, we define RGkA to the set of pairs (s, t) such
that

▶ s ⊑ t or t ⊑ s (in prefix order)

▶ RA(εA(s), εA(t)).

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 12 / 36

Resource cover and adjunction
There is a category RE (σ), and an evident forgetful functor U : RE (σ) → R(σ).

For each k > 0, if we restrict to forest orders of height ≤ k, we get a sub-category
RE

k (σ), and a functor Uk : RE
k (σ) → R(σ).

This functor has a right adjoint Gk , giving rise to a comonad Ek = UkGk on R(σ).

Given a structure A, the universe of GkA is A≤k , the non-empty sequences of
length ≤ k .

This is forest-ordered by the prefix order.

The counit map εA : A≤k → A sends a sequence [a1, . . . , an] to an.

How do we lift the relations on A to GkA?

Given e.g. a binary relation R, we define RGkA to the set of pairs (s, t) such
that

▶ s ⊑ t or t ⊑ s (in prefix order)

▶ RA(εA(s), εA(t)).

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 12 / 36

Resource cover and adjunction
There is a category RE (σ), and an evident forgetful functor U : RE (σ) → R(σ).

For each k > 0, if we restrict to forest orders of height ≤ k, we get a sub-category
RE

k (σ), and a functor Uk : RE
k (σ) → R(σ).

This functor has a right adjoint Gk , giving rise to a comonad Ek = UkGk on R(σ).

Given a structure A, the universe of GkA is A≤k , the non-empty sequences of
length ≤ k .

This is forest-ordered by the prefix order.

The counit map εA : A≤k → A sends a sequence [a1, . . . , an] to an.

How do we lift the relations on A to GkA?

Given e.g. a binary relation R, we define RGkA to the set of pairs (s, t) such
that

▶ s ⊑ t or t ⊑ s (in prefix order)

▶ RA(εA(s), εA(t)).

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 12 / 36

Resource cover and adjunction
There is a category RE (σ), and an evident forgetful functor U : RE (σ) → R(σ).

For each k > 0, if we restrict to forest orders of height ≤ k, we get a sub-category
RE

k (σ), and a functor Uk : RE
k (σ) → R(σ).

This functor has a right adjoint Gk , giving rise to a comonad Ek = UkGk on R(σ).

Given a structure A, the universe of GkA is A≤k , the non-empty sequences of
length ≤ k .

This is forest-ordered by the prefix order.

The counit map εA : A≤k → A sends a sequence [a1, . . . , an] to an.

How do we lift the relations on A to GkA?

Given e.g. a binary relation R, we define RGkA to the set of pairs (s, t) such
that

▶ s ⊑ t or t ⊑ s (in prefix order)

▶ RA(εA(s), εA(t)).

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 12 / 36

Resource cover and adjunction
There is a category RE (σ), and an evident forgetful functor U : RE (σ) → R(σ).

For each k > 0, if we restrict to forest orders of height ≤ k, we get a sub-category
RE

k (σ), and a functor Uk : RE
k (σ) → R(σ).

This functor has a right adjoint Gk , giving rise to a comonad Ek = UkGk on R(σ).

Given a structure A, the universe of GkA is A≤k , the non-empty sequences of
length ≤ k .

This is forest-ordered by the prefix order.

The counit map εA : A≤k → A sends a sequence [a1, . . . , an] to an.

How do we lift the relations on A to GkA?

Given e.g. a binary relation R, we define RGkA to the set of pairs (s, t) such
that

▶ s ⊑ t or t ⊑ s (in prefix order)

▶ RA(εA(s), εA(t)).

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 12 / 36

Resource cover and adjunction
There is a category RE (σ), and an evident forgetful functor U : RE (σ) → R(σ).

For each k > 0, if we restrict to forest orders of height ≤ k, we get a sub-category
RE

k (σ), and a functor Uk : RE
k (σ) → R(σ).

This functor has a right adjoint Gk , giving rise to a comonad Ek = UkGk on R(σ).

Given a structure A, the universe of GkA is A≤k , the non-empty sequences of
length ≤ k .

This is forest-ordered by the prefix order.

The counit map εA : A≤k → A sends a sequence [a1, . . . , an] to an.

How do we lift the relations on A to GkA?

Given e.g. a binary relation R, we define RGkA to the set of pairs (s, t) such
that

▶ s ⊑ t or t ⊑ s (in prefix order)

▶ RA(εA(s), εA(t)).

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 12 / 36

Resource cover and adjunction
There is a category RE (σ), and an evident forgetful functor U : RE (σ) → R(σ).

For each k > 0, if we restrict to forest orders of height ≤ k, we get a sub-category
RE

k (σ), and a functor Uk : RE
k (σ) → R(σ).

This functor has a right adjoint Gk , giving rise to a comonad Ek = UkGk on R(σ).

Given a structure A, the universe of GkA is A≤k , the non-empty sequences of
length ≤ k .

This is forest-ordered by the prefix order.

The counit map εA : A≤k → A sends a sequence [a1, . . . , an] to an.

How do we lift the relations on A to GkA?

Given e.g. a binary relation R, we define RGkA to the set of pairs (s, t) such
that

▶ s ⊑ t or t ⊑ s (in prefix order)

▶ RA(εA(s), εA(t)).

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 12 / 36

Resource cover and adjunction
There is a category RE (σ), and an evident forgetful functor U : RE (σ) → R(σ).

For each k > 0, if we restrict to forest orders of height ≤ k, we get a sub-category
RE

k (σ), and a functor Uk : RE
k (σ) → R(σ).

This functor has a right adjoint Gk , giving rise to a comonad Ek = UkGk on R(σ).

Given a structure A, the universe of GkA is A≤k , the non-empty sequences of
length ≤ k .

This is forest-ordered by the prefix order.

The counit map εA : A≤k → A sends a sequence [a1, . . . , an] to an.

How do we lift the relations on A to GkA?

Given e.g. a binary relation R, we define RGkA to the set of pairs (s, t) such
that

▶ s ⊑ t or t ⊑ s (in prefix order)

▶ RA(εA(s), εA(t)).

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 12 / 36

Resource cover and adjunction
There is a category RE (σ), and an evident forgetful functor U : RE (σ) → R(σ).

For each k > 0, if we restrict to forest orders of height ≤ k, we get a sub-category
RE

k (σ), and a functor Uk : RE
k (σ) → R(σ).

This functor has a right adjoint Gk , giving rise to a comonad Ek = UkGk on R(σ).

Given a structure A, the universe of GkA is A≤k , the non-empty sequences of
length ≤ k .

This is forest-ordered by the prefix order.

The counit map εA : A≤k → A sends a sequence [a1, . . . , an] to an.

How do we lift the relations on A to GkA?

Given e.g. a binary relation R, we define RGkA to the set of pairs (s, t) such
that

▶ s ⊑ t or t ⊑ s (in prefix order)

▶ RA(εA(s), εA(t)).

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 12 / 36

The couniversal property

Arboreal category Extensional category

GkA

F

f̂

UkGkA A

UkF

εA

Uk f̂ f

Moreover, the adjunction is comonadic, meaning that the category of coalgebras
for Ek is exactly RE

k (σ).

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 13 / 36

The couniversal property

Arboreal category Extensional category

GkA

F

f̂

UkGkA A

UkF

εA

Uk f̂ f

Moreover, the adjunction is comonadic, meaning that the category of coalgebras
for Ek is exactly RE

k (σ).

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 13 / 36

Consequences

Remember that the right adjoint is uniquely determined by the forgetful functor,
and the comonad by the adjunction.

As we shall now see, this structure gives us directly:

The Ehrenfeucht-Fräıssé game

The quantifier-rank indexed fragments of FOL

Equivalences of structures induced by:
▶ the full fragment of q.r. ≤ k
▶ the existential positive part of the fragment
▶ the extension of the fragment with counting quantifiers

We also recover the important tree-depth combinatorial parameter from the
coalgebras of the comonad

Moreover, this template can be used to give similar analyses of a wealth of other
logical and combinatorial notions.

This general pattern has been axiomatised in Arboreal Categories and Resources,
SA and Luca Reggio (ICALP 2021, available at arXiv:2102.08109).

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 14 / 36

Consequences

Remember that the right adjoint is uniquely determined by the forgetful functor,
and the comonad by the adjunction.

As we shall now see, this structure gives us directly:

The Ehrenfeucht-Fräıssé game

The quantifier-rank indexed fragments of FOL

Equivalences of structures induced by:
▶ the full fragment of q.r. ≤ k
▶ the existential positive part of the fragment
▶ the extension of the fragment with counting quantifiers

We also recover the important tree-depth combinatorial parameter from the
coalgebras of the comonad

Moreover, this template can be used to give similar analyses of a wealth of other
logical and combinatorial notions.

This general pattern has been axiomatised in Arboreal Categories and Resources,
SA and Luca Reggio (ICALP 2021, available at arXiv:2102.08109).

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 14 / 36

Consequences

Remember that the right adjoint is uniquely determined by the forgetful functor,
and the comonad by the adjunction.

As we shall now see, this structure gives us directly:

The Ehrenfeucht-Fräıssé game

The quantifier-rank indexed fragments of FOL

Equivalences of structures induced by:
▶ the full fragment of q.r. ≤ k
▶ the existential positive part of the fragment
▶ the extension of the fragment with counting quantifiers

We also recover the important tree-depth combinatorial parameter from the
coalgebras of the comonad

Moreover, this template can be used to give similar analyses of a wealth of other
logical and combinatorial notions.

This general pattern has been axiomatised in Arboreal Categories and Resources,
SA and Luca Reggio (ICALP 2021, available at arXiv:2102.08109).

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 14 / 36

Consequences

Remember that the right adjoint is uniquely determined by the forgetful functor,
and the comonad by the adjunction.

As we shall now see, this structure gives us directly:

The Ehrenfeucht-Fräıssé game

The quantifier-rank indexed fragments of FOL

Equivalences of structures induced by:
▶ the full fragment of q.r. ≤ k
▶ the existential positive part of the fragment
▶ the extension of the fragment with counting quantifiers

We also recover the important tree-depth combinatorial parameter from the
coalgebras of the comonad

Moreover, this template can be used to give similar analyses of a wealth of other
logical and combinatorial notions.

This general pattern has been axiomatised in Arboreal Categories and Resources,
SA and Luca Reggio (ICALP 2021, available at arXiv:2102.08109).

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 14 / 36

Model comparison games

Especially important in finite model theory, where model comparison games such
as Ehrenfeucht-Fräıssé games, pebble games and bisimulation games play a
central role.

The EF-game between A and B. In the i ’th round, Spoiler moves by choosing an
element in A or B; Duplicator responds by choosing an element in the other
structure. Duplicator wins after k rounds if the relation {(ai , bi) | 1 ≤ i ≤ k} is a
partial isomorphism.

In the existential EF-game, Spoiler only plays in A, and Duplicator responds in B.

The Ehrenfeucht-Fräıssé theorem says that a winning strategy for Duplicator in
the k-round EF game characterizes the equivalence ≡Lk , where Lk is the
fragment of first-order logic of formulas with quantifier rank ≤ k.

Similarly, there are k-pebble games, and bismulation games played to depth k.

Aside: other kinds of logic games, e.g. evaluation games, proof games?
Cf. Jouko’s talk.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 15 / 36

Model comparison games

Especially important in finite model theory, where model comparison games such
as Ehrenfeucht-Fräıssé games, pebble games and bisimulation games play a
central role.

The EF-game between A and B. In the i ’th round, Spoiler moves by choosing an
element in A or B; Duplicator responds by choosing an element in the other
structure. Duplicator wins after k rounds if the relation {(ai , bi) | 1 ≤ i ≤ k} is a
partial isomorphism.

In the existential EF-game, Spoiler only plays in A, and Duplicator responds in B.

The Ehrenfeucht-Fräıssé theorem says that a winning strategy for Duplicator in
the k-round EF game characterizes the equivalence ≡Lk , where Lk is the
fragment of first-order logic of formulas with quantifier rank ≤ k.

Similarly, there are k-pebble games, and bismulation games played to depth k.

Aside: other kinds of logic games, e.g. evaluation games, proof games?
Cf. Jouko’s talk.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 15 / 36

Model comparison games

Especially important in finite model theory, where model comparison games such
as Ehrenfeucht-Fräıssé games, pebble games and bisimulation games play a
central role.

The EF-game between A and B. In the i ’th round, Spoiler moves by choosing an
element in A or B; Duplicator responds by choosing an element in the other
structure. Duplicator wins after k rounds if the relation {(ai , bi) | 1 ≤ i ≤ k} is a
partial isomorphism.

In the existential EF-game, Spoiler only plays in A, and Duplicator responds in B.

The Ehrenfeucht-Fräıssé theorem says that a winning strategy for Duplicator in
the k-round EF game characterizes the equivalence ≡Lk , where Lk is the
fragment of first-order logic of formulas with quantifier rank ≤ k.

Similarly, there are k-pebble games, and bismulation games played to depth k.

Aside: other kinds of logic games, e.g. evaluation games, proof games?
Cf. Jouko’s talk.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 15 / 36

Model comparison games

Especially important in finite model theory, where model comparison games such
as Ehrenfeucht-Fräıssé games, pebble games and bisimulation games play a
central role.

The EF-game between A and B. In the i ’th round, Spoiler moves by choosing an
element in A or B; Duplicator responds by choosing an element in the other
structure. Duplicator wins after k rounds if the relation {(ai , bi) | 1 ≤ i ≤ k} is a
partial isomorphism.

In the existential EF-game, Spoiler only plays in A, and Duplicator responds in B.

The Ehrenfeucht-Fräıssé theorem says that a winning strategy for Duplicator in
the k-round EF game characterizes the equivalence ≡Lk , where Lk is the
fragment of first-order logic of formulas with quantifier rank ≤ k.

Similarly, there are k-pebble games, and bismulation games played to depth k.

Aside: other kinds of logic games, e.g. evaluation games, proof games?
Cf. Jouko’s talk.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 15 / 36

Model comparison games

Especially important in finite model theory, where model comparison games such
as Ehrenfeucht-Fräıssé games, pebble games and bisimulation games play a
central role.

The EF-game between A and B. In the i ’th round, Spoiler moves by choosing an
element in A or B; Duplicator responds by choosing an element in the other
structure. Duplicator wins after k rounds if the relation {(ai , bi) | 1 ≤ i ≤ k} is a
partial isomorphism.

In the existential EF-game, Spoiler only plays in A, and Duplicator responds in B.

The Ehrenfeucht-Fräıssé theorem says that a winning strategy for Duplicator in
the k-round EF game characterizes the equivalence ≡Lk , where Lk is the
fragment of first-order logic of formulas with quantifier rank ≤ k.

Similarly, there are k-pebble games, and bismulation games played to depth k.

Aside: other kinds of logic games, e.g. evaluation games, proof games?
Cf. Jouko’s talk.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 15 / 36

Model comparison games

Especially important in finite model theory, where model comparison games such
as Ehrenfeucht-Fräıssé games, pebble games and bisimulation games play a
central role.

The EF-game between A and B. In the i ’th round, Spoiler moves by choosing an
element in A or B; Duplicator responds by choosing an element in the other
structure. Duplicator wins after k rounds if the relation {(ai , bi) | 1 ≤ i ≤ k} is a
partial isomorphism.

In the existential EF-game, Spoiler only plays in A, and Duplicator responds in B.

The Ehrenfeucht-Fräıssé theorem says that a winning strategy for Duplicator in
the k-round EF game characterizes the equivalence ≡Lk , where Lk is the
fragment of first-order logic of formulas with quantifier rank ≤ k.

Similarly, there are k-pebble games, and bismulation games played to depth k.

Aside: other kinds of logic games, e.g. evaluation games, proof games?
Cf. Jouko’s talk.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 15 / 36

CoKleisli maps are strategies
Intuitively, an element of A≤k represents a play in A of length ≤ k.

A coKleisli morphism EkA → B represents a Duplicator strategy for the
existential Ehrenfeucht-Fräıssé game with k rounds:

Spoiler plays only in A, and bi = f [a1, . . . , ai] represents Duplicator’s response in
B to the i ’th move by Spoiler.

The winning condition for Duplicator in this game is that, after k rounds have
been played, the induced relation {(ai , bi) | 1 ≤ i ≤ k} is a partial homomorphism
from A to B.

Theorem

The following are equivalent:

1 There is a homomorphism EkA → B.

2 Duplicator has a winning strategy for the existential
Ehrenfeucht-Fräıssé game with k rounds, played from A to B.

3 For every existential positive sentence φ with quantifier rank ≤ k,
A |= φ ⇒ B |= φ.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 16 / 36

CoKleisli maps are strategies
Intuitively, an element of A≤k represents a play in A of length ≤ k.

A coKleisli morphism EkA → B represents a Duplicator strategy for the
existential Ehrenfeucht-Fräıssé game with k rounds:

Spoiler plays only in A, and bi = f [a1, . . . , ai] represents Duplicator’s response in
B to the i ’th move by Spoiler.

The winning condition for Duplicator in this game is that, after k rounds have
been played, the induced relation {(ai , bi) | 1 ≤ i ≤ k} is a partial homomorphism
from A to B.

Theorem

The following are equivalent:

1 There is a homomorphism EkA → B.

2 Duplicator has a winning strategy for the existential
Ehrenfeucht-Fräıssé game with k rounds, played from A to B.

3 For every existential positive sentence φ with quantifier rank ≤ k,
A |= φ ⇒ B |= φ.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 16 / 36

CoKleisli maps are strategies
Intuitively, an element of A≤k represents a play in A of length ≤ k.

A coKleisli morphism EkA → B represents a Duplicator strategy for the
existential Ehrenfeucht-Fräıssé game with k rounds:

Spoiler plays only in A, and bi = f [a1, . . . , ai] represents Duplicator’s response in
B to the i ’th move by Spoiler.

The winning condition for Duplicator in this game is that, after k rounds have
been played, the induced relation {(ai , bi) | 1 ≤ i ≤ k} is a partial homomorphism
from A to B.

Theorem

The following are equivalent:

1 There is a homomorphism EkA → B.

2 Duplicator has a winning strategy for the existential
Ehrenfeucht-Fräıssé game with k rounds, played from A to B.

3 For every existential positive sentence φ with quantifier rank ≤ k,
A |= φ ⇒ B |= φ.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 16 / 36

CoKleisli maps are strategies
Intuitively, an element of A≤k represents a play in A of length ≤ k.

A coKleisli morphism EkA → B represents a Duplicator strategy for the
existential Ehrenfeucht-Fräıssé game with k rounds:

Spoiler plays only in A, and bi = f [a1, . . . , ai] represents Duplicator’s response in
B to the i ’th move by Spoiler.

The winning condition for Duplicator in this game is that, after k rounds have
been played, the induced relation {(ai , bi) | 1 ≤ i ≤ k} is a partial homomorphism
from A to B.

Theorem

The following are equivalent:

1 There is a homomorphism EkA → B.

2 Duplicator has a winning strategy for the existential
Ehrenfeucht-Fräıssé game with k rounds, played from A to B.

3 For every existential positive sentence φ with quantifier rank ≤ k,
A |= φ ⇒ B |= φ.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 16 / 36

CoKleisli maps are strategies
Intuitively, an element of A≤k represents a play in A of length ≤ k.

A coKleisli morphism EkA → B represents a Duplicator strategy for the
existential Ehrenfeucht-Fräıssé game with k rounds:

Spoiler plays only in A, and bi = f [a1, . . . , ai] represents Duplicator’s response in
B to the i ’th move by Spoiler.

The winning condition for Duplicator in this game is that, after k rounds have
been played, the induced relation {(ai , bi) | 1 ≤ i ≤ k} is a partial homomorphism
from A to B.

Theorem

The following are equivalent:

1 There is a homomorphism EkA → B.

2 Duplicator has a winning strategy for the existential
Ehrenfeucht-Fräıssé game with k rounds, played from A to B.

3 For every existential positive sentence φ with quantifier rank ≤ k,
A |= φ ⇒ B |= φ.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 16 / 36

Open pathwise embeddings and back-and-forth
equivalences

How do we capture back-and-forth equivalences, and hence the whole logic rather
than just the existential positive part?

The key idea is to work in the arboreal category RE
k (σ), where we have enough

process structure to make game and bisimulation notions meaningful.

The key notions are

paths, i.e. objects of RE
k (σ) in which the order is linear (so the forest is a

single branch), and

path embeddings, i.e. forest morphisms with paths as domains which are
embeddings of relational structures.

These are special cases of notions which are axiomatised in the arboreal categories
setting in great generality.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 17 / 36

Open pathwise embeddings and back-and-forth
equivalences

How do we capture back-and-forth equivalences, and hence the whole logic rather
than just the existential positive part?

The key idea is to work in the arboreal category RE
k (σ), where we have enough

process structure to make game and bisimulation notions meaningful.

The key notions are

paths, i.e. objects of RE
k (σ) in which the order is linear (so the forest is a

single branch), and

path embeddings, i.e. forest morphisms with paths as domains which are
embeddings of relational structures.

These are special cases of notions which are axiomatised in the arboreal categories
setting in great generality.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 17 / 36

Open pathwise embeddings and back-and-forth
equivalences

How do we capture back-and-forth equivalences, and hence the whole logic rather
than just the existential positive part?

The key idea is to work in the arboreal category RE
k (σ), where we have enough

process structure to make game and bisimulation notions meaningful.

The key notions are

paths, i.e. objects of RE
k (σ) in which the order is linear (so the forest is a

single branch), and

path embeddings, i.e. forest morphisms with paths as domains which are
embeddings of relational structures.

These are special cases of notions which are axiomatised in the arboreal categories
setting in great generality.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 17 / 36

Open pathwise embeddings and back-and-forth
equivalences

How do we capture back-and-forth equivalences, and hence the whole logic rather
than just the existential positive part?

The key idea is to work in the arboreal category RE
k (σ), where we have enough

process structure to make game and bisimulation notions meaningful.

The key notions are

paths, i.e. objects of RE
k (σ) in which the order is linear (so the forest is a

single branch), and

path embeddings, i.e. forest morphisms with paths as domains which are
embeddings of relational structures.

These are special cases of notions which are axiomatised in the arboreal categories
setting in great generality.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 17 / 36

Pathwise embeddings and open maps

A morphism f : X → Y in RE
k (σ) is a pathwise embedding if, for all path

embeddings m : P ↣ X , the composite f ◦m is a path embedding.

To capture the “back” or p-morphism condition, we introduce a notion of open
map (Joyal-Nielsen-Winskel) that, combined with the concept of pathwise
embedding, will allow us to define an appropriate notion of bisimulation.

A morphism f : X → Y in RE
k (σ) is said to be open if it satisfies the following

path-lifting property: Given any commutative square

P Q

X Yf

with P,Q paths, there exists a diagonal filler Q → X (i.e. an arrow Q → X
making the two triangles commute).

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 18 / 36

Pathwise embeddings and open maps

A morphism f : X → Y in RE
k (σ) is a pathwise embedding if, for all path

embeddings m : P ↣ X , the composite f ◦m is a path embedding.

To capture the “back” or p-morphism condition, we introduce a notion of open
map (Joyal-Nielsen-Winskel) that, combined with the concept of pathwise
embedding, will allow us to define an appropriate notion of bisimulation.

A morphism f : X → Y in RE
k (σ) is said to be open if it satisfies the following

path-lifting property: Given any commutative square

P Q

X Yf

with P,Q paths, there exists a diagonal filler Q → X (i.e. an arrow Q → X
making the two triangles commute).

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 18 / 36

Pathwise embeddings and open maps

A morphism f : X → Y in RE
k (σ) is a pathwise embedding if, for all path

embeddings m : P ↣ X , the composite f ◦m is a path embedding.

To capture the “back” or p-morphism condition, we introduce a notion of open
map (Joyal-Nielsen-Winskel) that, combined with the concept of pathwise
embedding, will allow us to define an appropriate notion of bisimulation.

A morphism f : X → Y in RE
k (σ) is said to be open if it satisfies the following

path-lifting property: Given any commutative square

P Q

X Yf

with P,Q paths, there exists a diagonal filler Q → X (i.e. an arrow Q → X
making the two triangles commute).

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 18 / 36

Bisimulations

A bisimulation between objects X ,Y of RE
k (σ) is a span of open pathwise

embeddings

R

X Y

If such a bisimulation exists, we say that X and Y are bisimilar.

Theorem

GkA and GkB are bisimilar in RE
k (σ) iff Duplicator has a winning strategy in the

k-round Ehrenfeucht-Fräıssé game between A and B.

Note that we use the resource category RE
k (σ) to study logical properties of

objects of the extensional category R(σ).

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 19 / 36

Bisimulations

A bisimulation between objects X ,Y of RE
k (σ) is a span of open pathwise

embeddings

R

X Y

If such a bisimulation exists, we say that X and Y are bisimilar.

Theorem

GkA and GkB are bisimilar in RE
k (σ) iff Duplicator has a winning strategy in the

k-round Ehrenfeucht-Fräıssé game between A and B.

Note that we use the resource category RE
k (σ) to study logical properties of

objects of the extensional category R(σ).

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 19 / 36

Connection to logic
Fragments of first-order logic:

Lk is the fragment of quantifier-rank ≤ k .

∃Lk is the existential positive fragment of Lk

Lk(#) is the extension of Lk with counting quantifiers ∃≤n, ∃≥n

We define three resource-indexed equivalences on structures A, B of R(σ) using
the resource categories RE

k (σ):

A ⇄k B iff there are morphisms GkA → GkB and GkB → GkA.
Note that there need be no relationship between these morphisms.

A ↔k B iff GkA and GkB are bisimilar in RE
k (σ).

A ∼=k B iff GkA and GkB are isomorphic in RE
k (σ).

Theorem
For structures A and B:

(1) A ≡∃Lk B ⇐⇒ A ⇄k B.
(2) A ≡Lk B ⇐⇒ A ↔k B.
(3) A ≡Lk (#) B ⇐⇒ A ∼=k B.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 20 / 36

Connection to logic
Fragments of first-order logic:

Lk is the fragment of quantifier-rank ≤ k .

∃Lk is the existential positive fragment of Lk

Lk(#) is the extension of Lk with counting quantifiers ∃≤n, ∃≥n

We define three resource-indexed equivalences on structures A, B of R(σ) using
the resource categories RE

k (σ):

A ⇄k B iff there are morphisms GkA → GkB and GkB → GkA.
Note that there need be no relationship between these morphisms.

A ↔k B iff GkA and GkB are bisimilar in RE
k (σ).

A ∼=k B iff GkA and GkB are isomorphic in RE
k (σ).

Theorem
For structures A and B:

(1) A ≡∃Lk B ⇐⇒ A ⇄k B.
(2) A ≡Lk B ⇐⇒ A ↔k B.
(3) A ≡Lk (#) B ⇐⇒ A ∼=k B.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 20 / 36

Connection to logic
Fragments of first-order logic:

Lk is the fragment of quantifier-rank ≤ k .

∃Lk is the existential positive fragment of Lk

Lk(#) is the extension of Lk with counting quantifiers ∃≤n, ∃≥n

We define three resource-indexed equivalences on structures A, B of R(σ) using
the resource categories RE

k (σ):

A ⇄k B iff there are morphisms GkA → GkB and GkB → GkA.
Note that there need be no relationship between these morphisms.

A ↔k B iff GkA and GkB are bisimilar in RE
k (σ).

A ∼=k B iff GkA and GkB are isomorphic in RE
k (σ).

Theorem
For structures A and B:

(1) A ≡∃Lk B ⇐⇒ A ⇄k B.
(2) A ≡Lk B ⇐⇒ A ↔k B.
(3) A ≡Lk (#) B ⇐⇒ A ∼=k B.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 20 / 36

Coalgebra number and tree-depth
A coalgebra for a comonad (G , ε, δ) is a morphism α : A → GA such that the
following diagrams commute:

A GA

A

α

idA
εA

A GA

GA G 2A

α

α δA

Gα

We should only expect a coalgebra structure α : A → EkA to exist when the
k-local information on A is sufficient to determine the structure of A.

Our use of indexed comonads Ck opens up a new kind of question for coalgebras.
Given a structure A, we can ask: what is the least value of k such that a
Ck -coalgebra exists on A? We call this the coalgebra number of A.

Theorem
For the Ehrenfeucht-Fräıssé comonad Ek , the coalgebra number of A corresponds
precisely to the tree-depth of A.

This follows from the comonadicity of the adjunction.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 21 / 36

Coalgebra number and tree-depth
A coalgebra for a comonad (G , ε, δ) is a morphism α : A → GA such that the
following diagrams commute:

A GA

A

α

idA
εA

A GA

GA G 2A

α

α δA

Gα

We should only expect a coalgebra structure α : A → EkA to exist when the
k-local information on A is sufficient to determine the structure of A.

Our use of indexed comonads Ck opens up a new kind of question for coalgebras.
Given a structure A, we can ask: what is the least value of k such that a
Ck -coalgebra exists on A? We call this the coalgebra number of A.

Theorem
For the Ehrenfeucht-Fräıssé comonad Ek , the coalgebra number of A corresponds
precisely to the tree-depth of A.

This follows from the comonadicity of the adjunction.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 21 / 36

Coalgebra number and tree-depth
A coalgebra for a comonad (G , ε, δ) is a morphism α : A → GA such that the
following diagrams commute:

A GA

A

α

idA
εA

A GA

GA G 2A

α

α δA

Gα

We should only expect a coalgebra structure α : A → EkA to exist when the
k-local information on A is sufficient to determine the structure of A.

Our use of indexed comonads Ck opens up a new kind of question for coalgebras.
Given a structure A, we can ask: what is the least value of k such that a
Ck -coalgebra exists on A? We call this the coalgebra number of A.

Theorem
For the Ehrenfeucht-Fräıssé comonad Ek , the coalgebra number of A corresponds
precisely to the tree-depth of A.

This follows from the comonadicity of the adjunction.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 21 / 36

Coalgebra number and tree-depth
A coalgebra for a comonad (G , ε, δ) is a morphism α : A → GA such that the
following diagrams commute:

A GA

A

α

idA
εA

A GA

GA G 2A

α

α δA

Gα

We should only expect a coalgebra structure α : A → EkA to exist when the
k-local information on A is sufficient to determine the structure of A.

Our use of indexed comonads Ck opens up a new kind of question for coalgebras.
Given a structure A, we can ask: what is the least value of k such that a
Ck -coalgebra exists on A? We call this the coalgebra number of A.

Theorem
For the Ehrenfeucht-Fräıssé comonad Ek , the coalgebra number of A corresponds
precisely to the tree-depth of A.

This follows from the comonadicity of the adjunction.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 21 / 36

Coalgebra number and tree-depth
A coalgebra for a comonad (G , ε, δ) is a morphism α : A → GA such that the
following diagrams commute:

A GA

A

α

idA
εA

A GA

GA G 2A

α

α δA

Gα

We should only expect a coalgebra structure α : A → EkA to exist when the
k-local information on A is sufficient to determine the structure of A.

Our use of indexed comonads Ck opens up a new kind of question for coalgebras.
Given a structure A, we can ask: what is the least value of k such that a
Ck -coalgebra exists on A? We call this the coalgebra number of A.

Theorem
For the Ehrenfeucht-Fräıssé comonad Ek , the coalgebra number of A corresponds
precisely to the tree-depth of A.

This follows from the comonadicity of the adjunction.
Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 21 / 36

Pebble Games

Similar but subtly different to EF-games

Spoiler moves by placing one from a fixed set of pebbles on an element of A or B;
Duplicator responds by placing their matching pebble on an element of the other
structure.

Duplicator wins if after each round, the relation defined by the current positions of
the pebbles is a partial isomorphism

Thus there is a “sliding window” on the structures, of fixed size. It is this size
which bounds the resource, not the length of the play.

Whereas the k-round EF game corresponds to bounding the quantifier rank,
k-pebble games correspond to bounding the number of variables which can be
used in a formula.

Just as for EF-games, there is an existential-positive version, in which Spoiler only
plays in A, and Duplicator responds in B.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 22 / 36

Pebble Games

Similar but subtly different to EF-games

Spoiler moves by placing one from a fixed set of pebbles on an element of A or B;
Duplicator responds by placing their matching pebble on an element of the other
structure.

Duplicator wins if after each round, the relation defined by the current positions of
the pebbles is a partial isomorphism

Thus there is a “sliding window” on the structures, of fixed size. It is this size
which bounds the resource, not the length of the play.

Whereas the k-round EF game corresponds to bounding the quantifier rank,
k-pebble games correspond to bounding the number of variables which can be
used in a formula.

Just as for EF-games, there is an existential-positive version, in which Spoiler only
plays in A, and Duplicator responds in B.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 22 / 36

Pebble Games

Similar but subtly different to EF-games

Spoiler moves by placing one from a fixed set of pebbles on an element of A or B;
Duplicator responds by placing their matching pebble on an element of the other
structure.

Duplicator wins if after each round, the relation defined by the current positions of
the pebbles is a partial isomorphism

Thus there is a “sliding window” on the structures, of fixed size. It is this size
which bounds the resource, not the length of the play.

Whereas the k-round EF game corresponds to bounding the quantifier rank,
k-pebble games correspond to bounding the number of variables which can be
used in a formula.

Just as for EF-games, there is an existential-positive version, in which Spoiler only
plays in A, and Duplicator responds in B.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 22 / 36

Pebble Games

Similar but subtly different to EF-games

Spoiler moves by placing one from a fixed set of pebbles on an element of A or B;
Duplicator responds by placing their matching pebble on an element of the other
structure.

Duplicator wins if after each round, the relation defined by the current positions of
the pebbles is a partial isomorphism

Thus there is a “sliding window” on the structures, of fixed size. It is this size
which bounds the resource, not the length of the play.

Whereas the k-round EF game corresponds to bounding the quantifier rank,
k-pebble games correspond to bounding the number of variables which can be
used in a formula.

Just as for EF-games, there is an existential-positive version, in which Spoiler only
plays in A, and Duplicator responds in B.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 22 / 36

Pebble Games

Similar but subtly different to EF-games

Spoiler moves by placing one from a fixed set of pebbles on an element of A or B;
Duplicator responds by placing their matching pebble on an element of the other
structure.

Duplicator wins if after each round, the relation defined by the current positions of
the pebbles is a partial isomorphism

Thus there is a “sliding window” on the structures, of fixed size. It is this size
which bounds the resource, not the length of the play.

Whereas the k-round EF game corresponds to bounding the quantifier rank,
k-pebble games correspond to bounding the number of variables which can be
used in a formula.

Just as for EF-games, there is an existential-positive version, in which Spoiler only
plays in A, and Duplicator responds in B.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 22 / 36

Pebble Games

Similar but subtly different to EF-games

Spoiler moves by placing one from a fixed set of pebbles on an element of A or B;
Duplicator responds by placing their matching pebble on an element of the other
structure.

Duplicator wins if after each round, the relation defined by the current positions of
the pebbles is a partial isomorphism

Thus there is a “sliding window” on the structures, of fixed size. It is this size
which bounds the resource, not the length of the play.

Whereas the k-round EF game corresponds to bounding the quantifier rank,
k-pebble games correspond to bounding the number of variables which can be
used in a formula.

Just as for EF-games, there is an existential-positive version, in which Spoiler only
plays in A, and Duplicator responds in B.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 22 / 36

Pebble Games

Similar but subtly different to EF-games

Spoiler moves by placing one from a fixed set of pebbles on an element of A or B;
Duplicator responds by placing their matching pebble on an element of the other
structure.

Duplicator wins if after each round, the relation defined by the current positions of
the pebbles is a partial isomorphism

Thus there is a “sliding window” on the structures, of fixed size. It is this size
which bounds the resource, not the length of the play.

Whereas the k-round EF game corresponds to bounding the quantifier rank,
k-pebble games correspond to bounding the number of variables which can be
used in a formula.

Just as for EF-games, there is an existential-positive version, in which Spoiler only
plays in A, and Duplicator responds in B.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 22 / 36

Same same . . .

We can now run exactly the same script as for the Ehrenfeucht-Fräıssé case:

There is a category of k-pebbled forest-ordered structures, and a
resource-indexed adjunction with relational structures

We can define paths, pathwise embeddings, open maps, bisimilarity in RP
k (σ)

in exactly the same fashion as we did for RE
k (σ).

Hence we can define bisimulations between object of the extensional category
R(σ) using the resource category RP

k (σ).

We can define the equivalence relations A ⇄k B, A ↔k B, A ∼=k B with
respect to RP

k (σ).

We now take Lk to be the k-variable fragment of first-order logic. ∃Lk is the
existential-positive part of this fragment, Lk(#) its extension with counting
quantifiers.

With this notation, we get verbatim the same result as before, giving comonadic
characterizations of logical equivalences.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 23 / 36

Same same . . .

We can now run exactly the same script as for the Ehrenfeucht-Fräıssé case:

There is a category of k-pebbled forest-ordered structures, and a
resource-indexed adjunction with relational structures

We can define paths, pathwise embeddings, open maps, bisimilarity in RP
k (σ)

in exactly the same fashion as we did for RE
k (σ).

Hence we can define bisimulations between object of the extensional category
R(σ) using the resource category RP

k (σ).

We can define the equivalence relations A ⇄k B, A ↔k B, A ∼=k B with
respect to RP

k (σ).

We now take Lk to be the k-variable fragment of first-order logic. ∃Lk is the
existential-positive part of this fragment, Lk(#) its extension with counting
quantifiers.

With this notation, we get verbatim the same result as before, giving comonadic
characterizations of logical equivalences.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 23 / 36

Same same . . .

We can now run exactly the same script as for the Ehrenfeucht-Fräıssé case:

There is a category of k-pebbled forest-ordered structures, and a
resource-indexed adjunction with relational structures

We can define paths, pathwise embeddings, open maps, bisimilarity in RP
k (σ)

in exactly the same fashion as we did for RE
k (σ).

Hence we can define bisimulations between object of the extensional category
R(σ) using the resource category RP

k (σ).

We can define the equivalence relations A ⇄k B, A ↔k B, A ∼=k B with
respect to RP

k (σ).

We now take Lk to be the k-variable fragment of first-order logic. ∃Lk is the
existential-positive part of this fragment, Lk(#) its extension with counting
quantifiers.

With this notation, we get verbatim the same result as before, giving comonadic
characterizations of logical equivalences.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 23 / 36

Coalgebra number and tree-width

We can define the coalgebra number for the pebbling comonad exactly as done
before for the Ehrenfeucht-Fräıssé comonad.
A slightly more subtle argument is needed to show:

Theorem
For the pebbling comonad Pk , the coalgebra number of A corresponds precisely to
the tree-width of A.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 24 / 36

Where we are
We now have a considerable number of examples of game comonads
corresponding to various notions of model comparison game:

pebbling comonad

EF comonad

modal comonad

comonads for hybrid logic and other extensions of basic modal logic

guarded quantifier comonads (atom, loose and clique guards)

generalized quantifier comonads

pathwidth comonad

hypertree comonad

In each case, we have tight connections with logical fragments, and with
combinatorial invariants.

The connections involve both the coKleisli categories and the Eilenberg-Moore
categories of the comonads.

We get direct descriptions of the coalgebras in terms of comonadic forgetful
functors. These are important both for formulating bisimulation, and for the
connection with combinatorial invariants.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 25 / 36

Where we are
We now have a considerable number of examples of game comonads
corresponding to various notions of model comparison game:

pebbling comonad

EF comonad

modal comonad

comonads for hybrid logic and other extensions of basic modal logic

guarded quantifier comonads (atom, loose and clique guards)

generalized quantifier comonads

pathwidth comonad

hypertree comonad

In each case, we have tight connections with logical fragments, and with
combinatorial invariants.

The connections involve both the coKleisli categories and the Eilenberg-Moore
categories of the comonads.

We get direct descriptions of the coalgebras in terms of comonadic forgetful
functors. These are important both for formulating bisimulation, and for the
connection with combinatorial invariants.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 25 / 36

Where we are
We now have a considerable number of examples of game comonads
corresponding to various notions of model comparison game:

pebbling comonad

EF comonad

modal comonad

comonads for hybrid logic and other extensions of basic modal logic

guarded quantifier comonads (atom, loose and clique guards)

generalized quantifier comonads

pathwidth comonad

hypertree comonad

In each case, we have tight connections with logical fragments, and with
combinatorial invariants.

The connections involve both the coKleisli categories and the Eilenberg-Moore
categories of the comonads.

We get direct descriptions of the coalgebras in terms of comonadic forgetful
functors. These are important both for formulating bisimulation, and for the
connection with combinatorial invariants.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 25 / 36

Where we are
We now have a considerable number of examples of game comonads
corresponding to various notions of model comparison game:

pebbling comonad

EF comonad

modal comonad

comonads for hybrid logic and other extensions of basic modal logic

guarded quantifier comonads (atom, loose and clique guards)

generalized quantifier comonads

pathwidth comonad

hypertree comonad

In each case, we have tight connections with logical fragments, and with
combinatorial invariants.

The connections involve both the coKleisli categories and the Eilenberg-Moore
categories of the comonads.

We get direct descriptions of the coalgebras in terms of comonadic forgetful
functors. These are important both for formulating bisimulation, and for the
connection with combinatorial invariants.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 25 / 36

Summary table

Ck Logic κC →C
k ↔C

k
∼=C

k

Ek [AS21] FOL w/ qr ≤ k tree-depth ✓ ✓ ✓
Pk

[ADW17]
k-variable logic treewidth +1 ✓ ✓ ✓

Mk [AS21] ML w/ md ≤ k sync. tree-depth ✓ ✓ ✓
Gg

k [AM20] g-guarded logic w/
width ≤ k

guarded
treewidth

✓ ✓ ?

Hn,k

[CD20]
k-variable logic w/ Qn-
quantifiers

n-ary general
treewidth

✓ ✓ ✓

PRk k-variable logic
restricted-∧

pathwidth +1 ✓ ? ?

LGk k-conjunct guarded
logic

hypertree-width ✓ ? ?

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 26 / 36

Current developments

First wave: establishing the paradigm, finding many examples.

Culmination in an axiomatic framework of arboreal categories and arboreal
covers.

Second wave: an emerging landscape, “dividing lines” beginning to appear,
structural features.

▶ General versions of model-theoretic results such as preservation theorems:
Rossman’s homomorphism preservation theorems, van Benthem-Rosen, etc.

▶ Uniform proofs of preservation theorems in the finite and infinite cases:
“model theory without compactness”.

▶ Structural features of comonads (idempotence, bisimilar companions
property), and their significance for computational tractability.

▶ Lovasz-type theorems on counting homomorphisms.
▶ Combinatorial parameters: concrete cases, axiomatic approach via density

comonads.
▶ Classification of constraint satisfaction problems: use of sheaf-theoretic and

cohomological methods originally developed for quantum contextuality.

Survey paper: Structure and Power: an emerging synthesis, SA, in Fundamenta
Informaticae 2022, also arXiv:2206.07393

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 27 / 36

Current developments

First wave: establishing the paradigm, finding many examples.

Culmination in an axiomatic framework of arboreal categories and arboreal
covers.

Second wave: an emerging landscape, “dividing lines” beginning to appear,
structural features.

▶ General versions of model-theoretic results such as preservation theorems:
Rossman’s homomorphism preservation theorems, van Benthem-Rosen, etc.

▶ Uniform proofs of preservation theorems in the finite and infinite cases:
“model theory without compactness”.

▶ Structural features of comonads (idempotence, bisimilar companions
property), and their significance for computational tractability.

▶ Lovasz-type theorems on counting homomorphisms.
▶ Combinatorial parameters: concrete cases, axiomatic approach via density

comonads.
▶ Classification of constraint satisfaction problems: use of sheaf-theoretic and

cohomological methods originally developed for quantum contextuality.

Survey paper: Structure and Power: an emerging synthesis, SA, in Fundamenta
Informaticae 2022, also arXiv:2206.07393

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 27 / 36

Arboreal Categories and HPT

We axiomatize the notion of a category with intrinsic tree structure in a very
general setting, assuming only a factorization system and some colimits.

The whole pattern of results described in our examples can be carried out at
this abstract level.

For example, we can define back-and-forth games, and prove their
equivalence to bisimulations, at the abstract level.

This framework has been used to give a proof of a general form of Rossman’s
Equirank Homomorphism Preservation Theorem, which is a tour de force of
(finite) model theory.

This leads to an Equivariable HPT.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 28 / 36

CSP and the Feder-Vardi Conjecture

Given a finite relational structure B over a finite relational vocabulary σ, the
constraint satisfaction problem CSP(B) is to decide, for an instance given by a
finite σ-structure A, whether there is a homomorphism A → B.

The Feder-Vardi Conjecture (1993):

For every B, CSP(B) is either polynomial-time solvable, or NP-complete.

Evidence: known problems at the time were either NP-complete (e.g. 3-SAT), or
fell into two “islands of tractability”:

bounded width – exactly solvable by local consistency, or

“subgroup problems”

The two tractable classes identified by Feder and Vardi appeared to be quite
different in character.

This conjecture was recently proved (independently) by Bulatov and Zhuk (c.
2017).

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 29 / 36

CSP and the Feder-Vardi Conjecture

Given a finite relational structure B over a finite relational vocabulary σ, the
constraint satisfaction problem CSP(B) is to decide, for an instance given by a
finite σ-structure A, whether there is a homomorphism A → B.

The Feder-Vardi Conjecture (1993):

For every B, CSP(B) is either polynomial-time solvable, or NP-complete.

Evidence: known problems at the time were either NP-complete (e.g. 3-SAT), or
fell into two “islands of tractability”:

bounded width – exactly solvable by local consistency, or

“subgroup problems”

The two tractable classes identified by Feder and Vardi appeared to be quite
different in character.

This conjecture was recently proved (independently) by Bulatov and Zhuk (c.
2017).

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 29 / 36

CSP and the Feder-Vardi Conjecture

Given a finite relational structure B over a finite relational vocabulary σ, the
constraint satisfaction problem CSP(B) is to decide, for an instance given by a
finite σ-structure A, whether there is a homomorphism A → B.

The Feder-Vardi Conjecture (1993):

For every B, CSP(B) is either polynomial-time solvable, or NP-complete.

Evidence: known problems at the time were either NP-complete (e.g. 3-SAT), or
fell into two “islands of tractability”:

bounded width – exactly solvable by local consistency, or

“subgroup problems”

The two tractable classes identified by Feder and Vardi appeared to be quite
different in character.

This conjecture was recently proved (independently) by Bulatov and Zhuk (c.
2017).

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 29 / 36

CSP and the Feder-Vardi Conjecture

Given a finite relational structure B over a finite relational vocabulary σ, the
constraint satisfaction problem CSP(B) is to decide, for an instance given by a
finite σ-structure A, whether there is a homomorphism A → B.

The Feder-Vardi Conjecture (1993):

For every B, CSP(B) is either polynomial-time solvable, or NP-complete.

Evidence: known problems at the time were either NP-complete (e.g. 3-SAT), or
fell into two “islands of tractability”:

bounded width – exactly solvable by local consistency, or

“subgroup problems”

The two tractable classes identified by Feder and Vardi appeared to be quite
different in character.

This conjecture was recently proved (independently) by Bulatov and Zhuk (c.
2017).

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 29 / 36

CSP and the Feder-Vardi Conjecture

Given a finite relational structure B over a finite relational vocabulary σ, the
constraint satisfaction problem CSP(B) is to decide, for an instance given by a
finite σ-structure A, whether there is a homomorphism A → B.

The Feder-Vardi Conjecture (1993):

For every B, CSP(B) is either polynomial-time solvable, or NP-complete.

Evidence: known problems at the time were either NP-complete (e.g. 3-SAT), or
fell into two “islands of tractability”:

bounded width – exactly solvable by local consistency, or

“subgroup problems”

The two tractable classes identified by Feder and Vardi appeared to be quite
different in character.

This conjecture was recently proved (independently) by Bulatov and Zhuk (c.
2017).

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 29 / 36

Contextuality

In a nutshell: contextually arises where we have a family of overlapping pieces of
data which is locally consistent, but globally inconsistent.

Illustration: local consistency
Contextuality Analogy: Local Consistency

a a0

b

b0

Samson Abramsky (Department of Computer Science, University of Oxford)Quantum Contextuality: At the Borders of Paradox 9 / 37

Contextuality Analogy: Local Consistency

a a0

b

b0

Samson Abramsky (Department of Computer Science, University of Oxford)Quantum Contextuality: At the Borders of Paradox 9 / 37

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 30 / 36

Contextuality

In a nutshell: contextually arises where we have a family of overlapping pieces of
data which is locally consistent, but globally inconsistent.

Illustration: local consistency
Contextuality Analogy: Local Consistency

a a0

b

b0

Samson Abramsky (Department of Computer Science, University of Oxford)Quantum Contextuality: At the Borders of Paradox 9 / 37

Contextuality Analogy: Local Consistency

a a0

b

b0

Samson Abramsky (Department of Computer Science, University of Oxford)Quantum Contextuality: At the Borders of Paradox 9 / 37

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 30 / 36

Illustration: global inconsistency

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 31 / 36

Topology of Paradox

Clearly, the staircase as a whole cannot exist in the real world. Nonetheless,
the constituent parts make sense locally.

Quantum contextuality shows that the logical structure of quantum
mechanics exhibits exactly these features of local consistency, but global
inconsistency.

This can happen because not all variables can be measured at the same time
(non-commuting observables).

We note that Escher’s work was inspired by the Penrose stairs.

Indeed, these figures provide more than a mere analogy. Penrose has studied
the topological “twisting” in these figures using cohomology. This is quite
analogous to our use of sheaf cohomology to capture the logical twisting in
contextuality.

Recent cross-over of these ideas into Constraint Satisfaction and structure
isomorphism (refinements of Weisfeiler-Leman).

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 32 / 36

Local consistency as strong k-consistency: the
Kolaitis-Vardi representation

Given an approximation level k, we test if there are solutions for all ≤ k-element
subsets of the instance.

More precisely, this amounts to the existence of a non-empty family S of
homomorphisms f : C → B, where C is an induced substructure of A with
|C | ≤ k.

This is subject to the following conditions:

down-closure: If f : C → B ∈ S and C ′ ⊆ C , then f |C ′ : C ′ → B ∈ S .

forth condition: If f : C → B ∈ S , |C | < k, and a ∈ A, then for some
f ′ : C ∪ {a} → B ∈ S , f ′|C = f .

This is equivalent to the existence of a winning strategy for Duplicator in the
existential k-pebble game from A to B.

Notation: A →k B.

This fits perfectly into the sheaf-theoretic language used to capture contextuality
by Abramsky-Brandenburger et al!

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 33 / 36

Local consistency as strong k-consistency: the
Kolaitis-Vardi representation

Given an approximation level k , we test if there are solutions for all ≤ k-element
subsets of the instance.

More precisely, this amounts to the existence of a non-empty family S of
homomorphisms f : C → B, where C is an induced substructure of A with
|C | ≤ k.

This is subject to the following conditions:

down-closure: If f : C → B ∈ S and C ′ ⊆ C , then f |C ′ : C ′ → B ∈ S .

forth condition: If f : C → B ∈ S , |C | < k, and a ∈ A, then for some
f ′ : C ∪ {a} → B ∈ S , f ′|C = f .

This is equivalent to the existence of a winning strategy for Duplicator in the
existential k-pebble game from A to B.

Notation: A →k B.

This fits perfectly into the sheaf-theoretic language used to capture contextuality
by Abramsky-Brandenburger et al!

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 33 / 36

Local consistency as strong k-consistency: the
Kolaitis-Vardi representation

Given an approximation level k , we test if there are solutions for all ≤ k-element
subsets of the instance.

More precisely, this amounts to the existence of a non-empty family S of
homomorphisms f : C → B, where C is an induced substructure of A with
|C | ≤ k.

This is subject to the following conditions:

down-closure: If f : C → B ∈ S and C ′ ⊆ C , then f |C ′ : C ′ → B ∈ S .

forth condition: If f : C → B ∈ S , |C | < k, and a ∈ A, then for some
f ′ : C ∪ {a} → B ∈ S , f ′|C = f .

This is equivalent to the existence of a winning strategy for Duplicator in the
existential k-pebble game from A to B.

Notation: A →k B.

This fits perfectly into the sheaf-theoretic language used to capture contextuality
by Abramsky-Brandenburger et al!

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 33 / 36

Local consistency as strong k-consistency: the
Kolaitis-Vardi representation

Given an approximation level k , we test if there are solutions for all ≤ k-element
subsets of the instance.

More precisely, this amounts to the existence of a non-empty family S of
homomorphisms f : C → B, where C is an induced substructure of A with
|C | ≤ k.

This is subject to the following conditions:

down-closure: If f : C → B ∈ S and C ′ ⊆ C , then f |C ′ : C ′ → B ∈ S .

forth condition: If f : C → B ∈ S , |C | < k , and a ∈ A, then for some
f ′ : C ∪ {a} → B ∈ S , f ′|C = f .

This is equivalent to the existence of a winning strategy for Duplicator in the
existential k-pebble game from A to B.

Notation: A →k B.

This fits perfectly into the sheaf-theoretic language used to capture contextuality
by Abramsky-Brandenburger et al!

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 33 / 36

Local consistency as strong k-consistency: the
Kolaitis-Vardi representation

Given an approximation level k , we test if there are solutions for all ≤ k-element
subsets of the instance.

More precisely, this amounts to the existence of a non-empty family S of
homomorphisms f : C → B, where C is an induced substructure of A with
|C | ≤ k.

This is subject to the following conditions:

down-closure: If f : C → B ∈ S and C ′ ⊆ C , then f |C ′ : C ′ → B ∈ S .

forth condition: If f : C → B ∈ S , |C | < k , and a ∈ A, then for some
f ′ : C ∪ {a} → B ∈ S , f ′|C = f .

This is equivalent to the existence of a winning strategy for Duplicator in the
existential k-pebble game from A to B.

Notation: A →k B.

This fits perfectly into the sheaf-theoretic language used to capture contextuality
by Abramsky-Brandenburger et al!

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 33 / 36

Local consistency as strong k-consistency: the
Kolaitis-Vardi representation

Given an approximation level k , we test if there are solutions for all ≤ k-element
subsets of the instance.

More precisely, this amounts to the existence of a non-empty family S of
homomorphisms f : C → B, where C is an induced substructure of A with
|C | ≤ k.

This is subject to the following conditions:

down-closure: If f : C → B ∈ S and C ′ ⊆ C , then f |C ′ : C ′ → B ∈ S .

forth condition: If f : C → B ∈ S , |C | < k , and a ∈ A, then for some
f ′ : C ∪ {a} → B ∈ S , f ′|C = f .

This is equivalent to the existence of a winning strategy for Duplicator in the
existential k-pebble game from A to B.

Notation: A →k B.

This fits perfectly into the sheaf-theoretic language used to capture contextuality
by Abramsky-Brandenburger et al!

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 33 / 36

Local consistency as strong k-consistency: the
Kolaitis-Vardi representation

Given an approximation level k , we test if there are solutions for all ≤ k-element
subsets of the instance.

More precisely, this amounts to the existence of a non-empty family S of
homomorphisms f : C → B, where C is an induced substructure of A with
|C | ≤ k.

This is subject to the following conditions:

down-closure: If f : C → B ∈ S and C ′ ⊆ C , then f |C ′ : C ′ → B ∈ S .

forth condition: If f : C → B ∈ S , |C | < k , and a ∈ A, then for some
f ′ : C ∪ {a} → B ∈ S , f ′|C = f .

This is equivalent to the existence of a winning strategy for Duplicator in the
existential k-pebble game from A to B.

Notation: A →k B.

This fits perfectly into the sheaf-theoretic language used to capture contextuality
by Abramsky-Brandenburger et al!

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 33 / 36

Global sections and cohomology
A global section is a family of partial homomorphisms {sC : C → B}C⊆A,|C |≤k

which agrees on overlaps:

∀C ,C ′ : sC |C∩C ′ = sC ′ |C∩C ′

Global sections are in 1 − 1 correspondence with homomorphisms A → B.

In previous work with Barbosa, Mansfield, Kishida and Lal (ABKLM) I used
cohomology to characterise contextuality, i.e. the non-existence of such a
homomorphism.

This gives linear-algebraic approximations to global sections: a family {rC}C
where rC is a Z-linear combination of local sections, satisfying the compatibility
(i.e. agree-on-overlap) conditions, suitably extended to linear combinations.

Given s : C0 → B, we can ask if it has an extension to such a Z-linear family
{rC}, with rC0 = 1 · s.

We can use this test to filter out those local sections from the k-consistency
approximation which do not have such extensions, getting a sharper
approximation.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 34 / 36

Global sections and cohomology
A global section is a family of partial homomorphisms {sC : C → B}C⊆A,|C |≤k

which agrees on overlaps:

∀C ,C ′ : sC |C∩C ′ = sC ′ |C∩C ′

Global sections are in 1 − 1 correspondence with homomorphisms A → B.

In previous work with Barbosa, Mansfield, Kishida and Lal (ABKLM) I used
cohomology to characterise contextuality, i.e. the non-existence of such a
homomorphism.

This gives linear-algebraic approximations to global sections: a family {rC}C
where rC is a Z-linear combination of local sections, satisfying the compatibility
(i.e. agree-on-overlap) conditions, suitably extended to linear combinations.

Given s : C0 → B, we can ask if it has an extension to such a Z-linear family
{rC}, with rC0 = 1 · s.

We can use this test to filter out those local sections from the k-consistency
approximation which do not have such extensions, getting a sharper
approximation.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 34 / 36

Global sections and cohomology
A global section is a family of partial homomorphisms {sC : C → B}C⊆A,|C |≤k

which agrees on overlaps:

∀C ,C ′ : sC |C∩C ′ = sC ′ |C∩C ′

Global sections are in 1 − 1 correspondence with homomorphisms A → B.

In previous work with Barbosa, Mansfield, Kishida and Lal (ABKLM) I used
cohomology to characterise contextuality, i.e. the non-existence of such a
homomorphism.

This gives linear-algebraic approximations to global sections: a family {rC}C
where rC is a Z-linear combination of local sections, satisfying the compatibility
(i.e. agree-on-overlap) conditions, suitably extended to linear combinations.

Given s : C0 → B, we can ask if it has an extension to such a Z-linear family
{rC}, with rC0 = 1 · s.

We can use this test to filter out those local sections from the k-consistency
approximation which do not have such extensions, getting a sharper
approximation.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 34 / 36

Global sections and cohomology
A global section is a family of partial homomorphisms {sC : C → B}C⊆A,|C |≤k

which agrees on overlaps:

∀C ,C ′ : sC |C∩C ′ = sC ′ |C∩C ′

Global sections are in 1 − 1 correspondence with homomorphisms A → B.

In previous work with Barbosa, Mansfield, Kishida and Lal (ABKLM) I used
cohomology to characterise contextuality, i.e. the non-existence of such a
homomorphism.

This gives linear-algebraic approximations to global sections: a family {rC}C
where rC is a Z-linear combination of local sections, satisfying the compatibility
(i.e. agree-on-overlap) conditions, suitably extended to linear combinations.

Given s : C0 → B, we can ask if it has an extension to such a Z-linear family
{rC}, with rC0 = 1 · s.

We can use this test to filter out those local sections from the k-consistency
approximation which do not have such extensions, getting a sharper
approximation.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 34 / 36

Global sections and cohomology
A global section is a family of partial homomorphisms {sC : C → B}C⊆A,|C |≤k

which agrees on overlaps:

∀C ,C ′ : sC |C∩C ′ = sC ′ |C∩C ′

Global sections are in 1 − 1 correspondence with homomorphisms A → B.

In previous work with Barbosa, Mansfield, Kishida and Lal (ABKLM) I used
cohomology to characterise contextuality, i.e. the non-existence of such a
homomorphism.

This gives linear-algebraic approximations to global sections: a family {rC}C
where rC is a Z-linear combination of local sections, satisfying the compatibility
(i.e. agree-on-overlap) conditions, suitably extended to linear combinations.

Given s : C0 → B, we can ask if it has an extension to such a Z-linear family
{rC}, with rC0 = 1 · s.

We can use this test to filter out those local sections from the k-consistency
approximation which do not have such extensions, getting a sharper
approximation.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 34 / 36

Global sections and cohomology
A global section is a family of partial homomorphisms {sC : C → B}C⊆A,|C |≤k

which agrees on overlaps:

∀C ,C ′ : sC |C∩C ′ = sC ′ |C∩C ′

Global sections are in 1 − 1 correspondence with homomorphisms A → B.

In previous work with Barbosa, Mansfield, Kishida and Lal (ABKLM) I used
cohomology to characterise contextuality, i.e. the non-existence of such a
homomorphism.

This gives linear-algebraic approximations to global sections: a family {rC}C
where rC is a Z-linear combination of local sections, satisfying the compatibility
(i.e. agree-on-overlap) conditions, suitably extended to linear combinations.

Given s : C0 → B, we can ask if it has an extension to such a Z-linear family
{rC}, with rC0 = 1 · s.

We can use this test to filter out those local sections from the k-consistency
approximation which do not have such extensions, getting a sharper
approximation.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 34 / 36

Cohomological k-consistency
Key insight by Adam O’ Conghaile: this cohomological refinement of
k-consistency is efficiently computable!
(Since the predicate “s has a Z-linear extension” translates into solvability of a
polynomial size system of Z-linear equations).

So we get a new refined approximation algorithm for CSP(B).

A key property which follows from the ABKLM results on contextuality:

Proposition

Cohomological k-consistency is exact for affine templates B (i.e. solving linear
equations over finite rings).

So cohomological k-consistency captures the two main tractable classes identified
by Feder-Vardi in a unified fashion.

With Adam, Rui and Anuj, we are currently working on determining the exact
power of cohomological k-consistency:

Question
Is cohomological k-consistency exact for all tractable cases?

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 35 / 36

Cohomological k-consistency
Key insight by Adam O’ Conghaile: this cohomological refinement of
k-consistency is efficiently computable!
(Since the predicate “s has a Z-linear extension” translates into solvability of a
polynomial size system of Z-linear equations).

So we get a new refined approximation algorithm for CSP(B).

A key property which follows from the ABKLM results on contextuality:

Proposition

Cohomological k-consistency is exact for affine templates B (i.e. solving linear
equations over finite rings).

So cohomological k-consistency captures the two main tractable classes identified
by Feder-Vardi in a unified fashion.

With Adam, Rui and Anuj, we are currently working on determining the exact
power of cohomological k-consistency:

Question
Is cohomological k-consistency exact for all tractable cases?

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 35 / 36

Cohomological k-consistency
Key insight by Adam O’ Conghaile: this cohomological refinement of
k-consistency is efficiently computable!
(Since the predicate “s has a Z-linear extension” translates into solvability of a
polynomial size system of Z-linear equations).

So we get a new refined approximation algorithm for CSP(B).

A key property which follows from the ABKLM results on contextuality:

Proposition

Cohomological k-consistency is exact for affine templates B (i.e. solving linear
equations over finite rings).

So cohomological k-consistency captures the two main tractable classes identified
by Feder-Vardi in a unified fashion.

With Adam, Rui and Anuj, we are currently working on determining the exact
power of cohomological k-consistency:

Question
Is cohomological k-consistency exact for all tractable cases?

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 35 / 36

Cohomological k-consistency
Key insight by Adam O’ Conghaile: this cohomological refinement of
k-consistency is efficiently computable!
(Since the predicate “s has a Z-linear extension” translates into solvability of a
polynomial size system of Z-linear equations).

So we get a new refined approximation algorithm for CSP(B).

A key property which follows from the ABKLM results on contextuality:

Proposition

Cohomological k-consistency is exact for affine templates B (i.e. solving linear
equations over finite rings).

So cohomological k-consistency captures the two main tractable classes identified
by Feder-Vardi in a unified fashion.

With Adam, Rui and Anuj, we are currently working on determining the exact
power of cohomological k-consistency:

Question
Is cohomological k-consistency exact for all tractable cases?

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 35 / 36

Cohomological k-consistency
Key insight by Adam O’ Conghaile: this cohomological refinement of
k-consistency is efficiently computable!
(Since the predicate “s has a Z-linear extension” translates into solvability of a
polynomial size system of Z-linear equations).

So we get a new refined approximation algorithm for CSP(B).

A key property which follows from the ABKLM results on contextuality:

Proposition

Cohomological k-consistency is exact for affine templates B (i.e. solving linear
equations over finite rings).

So cohomological k-consistency captures the two main tractable classes identified
by Feder-Vardi in a unified fashion.

With Adam, Rui and Anuj, we are currently working on determining the exact
power of cohomological k-consistency:

Question
Is cohomological k-consistency exact for all tractable cases?

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 35 / 36

Cohomological k-equivalence

The whole story adapts quite straightforwardly to yield cohomological refinements
of the Weisfeiler-Leman approximations to graph and structure isomorphism.

Recall that these correspond to equivalence in k-variable logic with counting Ck .

Moreover, the result on completeness of cohomological k-consistency for affine
templates is leveraged to show that ≡Z

k is discriminating enough to defeat two
important families of counter-examples:

the CFI (Cai-Furer-Immerman) construction used to show that Ck is not
strong enough to characterise polynomial time, and

the constructions due to Lichter and Dawar et al. which are used to show
similar results for linear algebraic extensions of Ck .

References:

https://arxiv.org/abs/2206.15253 (AOC paper to appear in MFCS)

https://arxiv.org/abs/2206.12156 (SA notes)

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 36 / 36

https://arxiv.org/abs/2206.15253
https://arxiv.org/abs/2206.12156

Cohomological k-equivalence

The whole story adapts quite straightforwardly to yield cohomological refinements
of the Weisfeiler-Leman approximations to graph and structure isomorphism.

Recall that these correspond to equivalence in k-variable logic with counting Ck .

Moreover, the result on completeness of cohomological k-consistency for affine
templates is leveraged to show that ≡Z

k is discriminating enough to defeat two
important families of counter-examples:

the CFI (Cai-Furer-Immerman) construction used to show that Ck is not
strong enough to characterise polynomial time, and

the constructions due to Lichter and Dawar et al. which are used to show
similar results for linear algebraic extensions of Ck .

References:

https://arxiv.org/abs/2206.15253 (AOC paper to appear in MFCS)

https://arxiv.org/abs/2206.12156 (SA notes)

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 36 / 36

https://arxiv.org/abs/2206.15253
https://arxiv.org/abs/2206.12156

Cohomological k-equivalence

The whole story adapts quite straightforwardly to yield cohomological refinements
of the Weisfeiler-Leman approximations to graph and structure isomorphism.

Recall that these correspond to equivalence in k-variable logic with counting Ck .

Moreover, the result on completeness of cohomological k-consistency for affine
templates is leveraged to show that ≡Z

k is discriminating enough to defeat two
important families of counter-examples:

the CFI (Cai-Furer-Immerman) construction used to show that Ck is not
strong enough to characterise polynomial time, and

the constructions due to Lichter and Dawar et al. which are used to show
similar results for linear algebraic extensions of Ck .

References:

https://arxiv.org/abs/2206.15253 (AOC paper to appear in MFCS)

https://arxiv.org/abs/2206.12156 (SA notes)

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 36 / 36

https://arxiv.org/abs/2206.15253
https://arxiv.org/abs/2206.12156

Cohomological k-equivalence

The whole story adapts quite straightforwardly to yield cohomological refinements
of the Weisfeiler-Leman approximations to graph and structure isomorphism.

Recall that these correspond to equivalence in k-variable logic with counting Ck .

Moreover, the result on completeness of cohomological k-consistency for affine
templates is leveraged to show that ≡Z

k is discriminating enough to defeat two
important families of counter-examples:

the CFI (Cai-Furer-Immerman) construction used to show that Ck is not
strong enough to characterise polynomial time, and

the constructions due to Lichter and Dawar et al. which are used to show
similar results for linear algebraic extensions of Ck .

References:

https://arxiv.org/abs/2206.15253 (AOC paper to appear in MFCS)

https://arxiv.org/abs/2206.12156 (SA notes)

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 36 / 36

https://arxiv.org/abs/2206.15253
https://arxiv.org/abs/2206.12156

Samson Abramsky, Anuj Dawar, and Pengming Wang.
The pebbling comonad in finite model theory.
In Logic in Computer Science (LICS), 2017 32nd Annual ACM/IEEE
Symposium on, pages 1–12. IEEE, 2017.

Samson Abramsky and Dan Marsden.
Comonadic semantics for guarded fragments, 2020.
In LiCS 2021.

Samson Abramsky and Nihil Shah.
Relating structure and power: Comonadic semantics for computational
resources, 2021.
In Journal of Logic and Computation.

Adam Ó Conghaile and Anuj Dawar.
Game comonads & generalised quantifiers, 2020.

Samson Abramsky (Department of Computer Science, UCL) Resources in Computation 36 / 36

	Relating Structure to Power

