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» Sheaf-theoretic formalism for contextuality

' The sheaf-theoretic structure of non-locality and contextuality’
Abramsky & Brandenburger, New Journal of Physics, 2011.

‘Logical Bell inequalities’
Abramsky & Hardy, Physical Review A, 2012.

‘Contextuality, cohomology, and paradox’
Abramsky, B, Kishida, Lal, & Mansfield, CSL 2015.

(cf. Cabello—Severini-Winter, Acin—Fritz—Leverrier-Sainz)
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Based on joint work with Samson Abramsky, Martti Karvonen, Shane Mansfield

» Resource theory for contextuality

‘Contextual fraction as a measure of contextuality’
Abramsky, B, Mansfield, Physical Review Letters, 2017.

‘Categories of empirical models’
Karvonen, QPL 2018.

‘A comonadic view of simulation and quantum resources’
Abramsky, B, Karvonen, Mansfield, LiCS 2019.

‘Closing Bell: boxing black box simulations in the resource theory of contextuality’
B, Karvonen, Mansfield, in Abramsky on Logic and Structure in CS and Beyond, Springer, 2022.
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This talk

Based on joint work with Samson Abramsky, Martti Karvonen, Shane Mansfield

> Partial Boolean algebras

‘The logic of contextuality’
Abramsky & B, CSL 2021.

‘Duality for transitive partial CABAs'
Abramsky & B, TACL 2022.

» Resource theory via pBAs

ongoing work with Martti Karvonen
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Central object of study of quantum information and computation theory:
the advantage afforded by quantum resources in information-processing tasks.

v

A range of examples are known and have been studied ... but a systematic understanding of
the scope and structure of quantum advantage is lacking.

v

A hypothesis: this is related to non-classical features of quantum mechancics.

v

Contextuality is a quintessential marker of non-classicality, an empirical phenomenon
distinguishing QM from classical physical theories.
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> Not all properties may be observed at once.

» Jointly observable properties provide partial snapshots.

Local consistency but Global inconsistency
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Contextuality and advantage in quantum computation

It has been established as a useful resource conferring quantum advantage in informatic tasks.

» Measurement-based quantum computation (MBQC)

‘Contextuality in measurement-based quantum computation’
Raussendorf, Physical Review A, 2013.

» Magic state distillation

‘Contextuality supplies the ‘magic’ for quantum computation’
Howard, Wallman, Veitch, Emerson, Nature, 2014.

» Shallow circuits

‘Quantum advantage with shallow circuits’
Bravyi, Gossett, Koenig, Science, 2018.

» Contextuality analysis: Aasnaess, Forthcoming, 2020.
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v

The focus shifts from objects. ..
(empirical models e : S, the behaviours that may be used as resources)

v

to morphisms
(convertions between behaviours)

d ~» e simulation of empirical model e : T using empirical model d : S.

v

The ‘free’ operations are given by classical procedures S — T.

v

We first consider non-adaptive procedures,

v

and then capture adaptivity via a comonadic construction.
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Measurement scenario S = (Xs, X s, Os):
> Xs is a finite set of measurements;

> Os = (Osﬁx)xexs specifies for each x € Xs a
non-empty set Os , of allowed outcomes

> Y s is an abstract simplicial complex on Xs whose
faces are the measurement contexts;
i.e. a set of subsets of X, that:
> contains all singletons:

{x} € X5 for all x € Xs;
> is downwards closed:

o €Xgand T CoimpliesT € Xg.

Xs :{ 'Y }7 057 = OS,y = 05, = {071}7 rs=| {{ 7)’}»{% }’{ ) }}
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Behaviour: empirical model

Empirical model e : S is a family {e, },ex, where:

> e, is a probability distribution on the set of joint
outcomes Os , :=[], ., Os.x

xXeo

» These satisfy no-disturbance:
if 7 C o, then e;|, = e,.
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Experiments and procedures

» An O-valued S-experiment is a protocol for an

o~ o~~~ interaction with the box S producing a value in O:

» which measurements to perform;

> how to interpret their joint outcome into an
‘ﬁ outcome in O.
&

» A deterministic procedure S —> T specifies an
S-experiment (Or -valued) for each measurement
x of T. (subject to compatibility conditions)

> A classical procedure is a probabilistic mixture of
deterministic procedures.

12 /39




































Classical procedures
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Deterministic procedure f : S — T is (mf, af):

{  \[  \[ \[ \ > 7mr LT —> Lg is a simplicial relation:

; » for each x € Xt specifies 7r(x) C Xs
» If o € Z7 then r(0) € Ls, where
‘ﬁ‘ ¢ (o) = Uxeomr(X).
&
> ar = (af x)xex; Where Qf x . Os,m(x) — O1x
EI maps joint outcomes of 7¢(x) to outcomes of x.
Probabilistic procedure f : S — T is f =) . rif;

where r; >0, > .ri=1and ;:S— T
deterministic procedures.
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» Which black-box transformations arise in this fashion?



Characterising classical transformations

Given F : Emp(S) — Emp(T), can it be realised by a classical procedure?
l.e. is there a procedure f : S — T s.t. F = Emp(f)?
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Relativising contextuality

Given F : Emp(S) — Emp(T), can it be realised by an experimental
procedure? l.e. is there a procedure f : S — T s.t. F = Emp(f)?

Special case S =/

Given an empirical model e € Emp(T), is it noncontextual?
(Non-contextual models are those which can be simulated from nothing.)

JaYatatal
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From objects to morphisms .. .and back!

Given F : Emp(S) — Emp(T), can it be realised by an classical procedure?
l.e. is there a procedure f : S — T s.t. F = Emp(f)?

is special case of reduces to

Given an empirical model, is it noncontextual?
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Answering the question by internalisation

A convex preserving F : Emp(S) — Emp(T) induces a canonical model e : [S, T].

F is realised by a deterministic procedure iff eF is deterministic and satisfies gis 7).

F is realised by a classical procedure iff er is non-contextual and satisfies gs 7.
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Two special cases of simulations

» f: | — T from the trivial scenario are non-contextual models.

» f: S5 — 2 to the single measurement two-outcome scenario is a predicate

> It induces a map EMP(S) — [0, 1] yielding the probability that it holds.
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These protocols proceed iteratively by first performing a set of measurements over the given
scenario, and then conditioning their further measurements on the observed outcomes.

Note that different paths can lead into different, incompatible contexts.
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These protocols proceed iteratively by first performing a set of measurements over the given
scenario, and then conditioning their further measurements on the observed outcomes.

Note that different paths can lead into different, incompatible contexts.

Thus they incorporate adaptive classical processing, of the kind used e.g. in Measurement-Based
Quantum Computing.

Previously considered in:

‘A combinatorial approach to nonlocality and contextuality’
Acin, Fritz, Leverrier, Sainz, Communications in Mathematical Physics, 2015.

Formally, we construct a comonad MP on the category of empirical models, where MP(e: S)
is the model obtained by taking all measurement protocols over the given scenario.
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The MP construction

Empirical models in S are then naturally lifted to this scenario MP(S).
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The MP construction

Empirical models in S are then naturally lifted to this scenario MP(S).

Proposition
MP defines a comonoidal comonad on the category of deterministic classical procedres (and
therefore on the category of empirical models).

Roughly: comultiplication MP(S) — MP?(S) by “flattening”, unit MP(S) — S,
and MP(S ® T) — MP(S) ® MP(T)
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General simulations

Given empirical models e and d, a simulation of e by d is a map
d®@c— e
in Empy,p, the coKleisli category of MP, i.e. a map
MP(d®c) — e

in Emp, for some noncontextual model c.
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General simulations

Given empirical models e and d, a simulation of e by d is a map
d®c—e
in Empy,p, the coKleisli category of MP, i.e. a map
MP(d®c) — e
in Emp, for some noncontextual model c.

The use of the noncontextual model ¢ allows for classical randomness in the simulation.

We denote the existence of a simulation of e by d as d ~~ e, read “d simulates e".
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The (partial algebraic) logical view



Algebra of predicates

» For simplicity, we make two restrictions to the kind of scenarios we consider:

> all measurements are dichotomic: they have two outcomes 0 and 1 (think of true and false).
> only consider graphical measurement scena
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Algebra of predicates

» For simplicity, we make two restrictions to the kind of scenarios we consider:

> all measurements are dichotomic: they have two outcomes 0 and 1 (think of true and false).
> only consider graphical measurement scena

» We can now think of predicates f : S — 2 as new measurements:

> a measurement x € Xs is represented by the predicate x — x on inputs, and id on outputs.

> given a measurement x € Xs, we can consider a predicate —x mapping x — x on inputs, and
— on outputs.

> given compatible measurements x,y € Xs, we can build xVy and x A y.

» ~~ partial Boolean algebras.
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Quantum physics and logic

Traditional quantum logic

Birkhoff & von Neumann (1936), ‘ The logic of quantum mechanics’.

v

The lattice P(?), of projectors on a Hilbert space , as a non-classical logic for QM.

v

Interpret A (infimum) and V (supremum) as logical operations.

v

Distributivity fails: pA(gVr)# (pAq)V(pAr).

v

Only commuting measurements can be performed together.
So, what is the operational meaning of p A g, when p and g do not commute?
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Quantum physics and logic

An alternative approach

Kochen & Specker (1965), ‘' The problem of hidden variables in quantum mechanics'.

» The seminal work on contextuality used partial Boolean algebras.
» Only admit physically meaningful operations.

> Represent incompatibility by partiality.

Kochen (2015), ‘A reconstruction of quantum mechanics’.

» Kochen develops a large part of foundations of quantum theory in this framework.
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Boolean algebras

Boolean algebra (A,0,1,—,V,A):
> aset A

» constants 0,1 € A

> a unary operation - : A — A

» binary operations V, A : A2 — A
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Boolean algebras

Boolean algebra (A,0,1,—,V,A):

> aset A

» constants 0,1 € A

> a unary operation - : A — A

» binary operations V, A : A2 — A

satisfying the usual axioms: (A,V,0) and (A, A, 1) are commutative monoids,
V and A distribute over each other,
aV—-a=1land aA—-a=0.

E.g.: (P(X),2,X,U,N), in particular 2 = {0,1} = P({*}).
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Partial Boolean algebras
Partial Boolean algebra (A, ®,0,1, =, V, A):

> aset A
> a reflexive, symmetric binary relation ® on A, read commeasurability or compatibility
» constants 0,1 € A

> (total) unary operation = : A — A

v

(partial) binary operations V,A: ® — A
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Partial Boolean algebra (A, ®,0,1, =, V, A):

> aset A
> a reflexive, symmetric binary relation ® on A, read commeasurability or compatibility

» constants 0,1 € A

v

(total) unary operation - : A — A

v

(partial) binary operations V,A: ® — A

such that every set S of pairwise-commeasurable elements is contained in a set T of pairwise-
commeasurable elements which is a Boolean algebra under the restriction of the given operations.

E.g.: P(H), the projectors on a Hilbert space H.
Conjunction, i.e. meet of projectors, becomes partial, defined only on commuting projectors.

Morphisms of pBAs are maps preserving commeasurability, and the operations wherever defined.
This gives a category pBA.
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Let H be a Hilbert space with dim# > 3, and P(H) its pBA of projectors.
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Contextuality, or the Kochen—Specker theorem

Kochen & Specker (1965).

Let H be a Hilbert space with dim# > 3, and P(#H) its pBA of projectors.

There is no pBA homomorphism P(H) — 2. ‘

» No assignment of truth values to all propositions which respects logical operations on jointly
testable propositions.
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An apparent contradiction
» BA is a full subcategory of pBA.

v

A is the colimit in pBA of the diagem C(A) of its boolean subalgebras.

v

Let C(A) be the colimit in BA of the same diagram C(A).

v

The cone from C(A) to C(A) is also a cone in pBA,

hence there is a mediating morphism A — C(A) !

v

But note that BA is an equational variety of algebras over Set.

As such, it is complete and cocomplete, but it also admits the one-element algebra 1, in which
0 = 1. Note that 1 does not have a homomorphism to 2.

Thus, if a partial Boolean algebra A has no homomorphism to 2, the colimit of C(A), its diagram
of Boolean subalgebras, must be 1.

We could say that such a diagram is “implicitly contradictory”, and in trying to combine all the
information in a colimit, we obtain the manifestly contradictory 1.



Contextuality in partial Boolean algebras

An advantage of partial Boolean algebras is that the K-S property provides an intrinsic, logical
approach to defining state-independent contextuality.
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Contextuality in partial Boolean algebras

An advantage of partial Boolean algebras is that the K-S property provides an intrinsic, logical
approach to defining state-independent contextuality.

But where do states come in?
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States

Definition

A state or probability valuation on a partial Boolean algebra Ais a map v: A — [0, 1] such
that:
1. v(0) =0;

2. v(—x) =1-v(x);
3. for all x,y € Awith x®y, v(xVy)+v(xAy)=uv(x)+viy).
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States

Definition
A state or probability valuation on a partial Boolean algebra Ais a map v: A — [0, 1] such

that:

1. v(0) =0;

2. v(—x) =1-v(x);

3. for all x,y € Awith x®y, v(xVy)+v(xAy)=uv(x)+viy).

Proposition
States can be characterised as the maps v : A — [0, 1] such that, for every Boolean
subalgebra B of A, the restriction of v to B is a finitely additive probability measure on B.
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We can define a state v : A — [0, 1] to be probabilistically non-contextual if v extends to
C(A); that is, there is a state o : C(A) — [0, 1] such that v = D o).
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We can define a state v : A — [0, 1] to be probabilistically non-contextual if v extends to
C(A); that is, there is a state o : C(A) — [0, 1] such that v = D o).

By the universal property of C(A), this is equivalent to asking that there is some Boolean algebra
B, morphism h: A — B, and state ¥ : B — [0,1] such that v =D o 7.

Note that if A is K-S, C(A) =1, and there is no state on 1.
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Connection to the sheaf-theoretic approach

Free partial Boolean algebra on a reflexive graph (Xs, ~) (a ‘graphical’ measurement scenario).

» Generators G := {u(x) | x € X}.

» Pre-terms P: closure of G under Boolean operations and constants.
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Connection to the sheaf-theoretic approach

Free partial Boolean algebra on a reflexive graph (Xs, ~) (a ‘graphical’ measurement scenario).

v

Generators G := {u(x) | x € X}.

v

Pre-terms P: closure of G under Boolean operations and constants.

v

Define inductively:

> a predicate | (definedness or existence)
> a binary relation ® (commeasurability)
> a binary relation = (equivalence)

v

T:={teP|tl}.

v

A[®] = T/ =, with obvious definitions for © and operations.
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t(v) = u(V) tAU=StAU, tVu=t' VY

-t =-u

37/39



Mysteries of partiality

> The free pBA on a finite reflexive graph is finite
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Mysteries of partiality

» The free pBA on a finite reflexive graph is finite
» But the pBA (internally) generated by a subset of a pBA A may be infinite: e.g. P(C?® C?)

» The reason is that new compatibilities arise!
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Simulations as pBA

Given two graphical measurement scenarios:

» Simulations f : S — T induce a map Pred(T) — Pred(S) by precomposition.
» Deterministic simulations are pBA homomorphisms F(T) — F(S).
» Adaptive simulations: if-then-else algebras (Dicker).

» More general resolutions of identity: LEP

uNt=u, vA-t=v
u®v
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Relativising Logical Bell inequalities



A simple observation

‘Logical Bell inequalities', Abramsky & Hardy, Physical Review A, 2012.
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