
Results about mixed distributive laws 

motivated by considerations in 


logic and non-local games



Non-local games [1]

Referee

Alice Bob

q

a a'

q'

1. Referee sends a question to each player


2. Players answer without communicating


3. Win if answers satisfy some predefined 
conditions. 

[1] Mathematics of quantum entanglement via nonlocal games: https://qmath.ku.dk/events/conferences/quantum-entanglement/



Classical Strategies

Referee

Alice Bob

x

fa(x) fb(y)

y

• Deterministic functions  and .


 

fa fb

p( fa(x), fb(y) |x, y) = 1



Quantum Tensor Strategies

Referee

Alice Bob

x

a b

y

• Hilbert spaces  and 


• Shared entangled state 


• For any inputs x, y, POVMs  acting 
on  and 


ℋA ℋB

ψ ∈ ℋA ⊗ ℋB

{Ax,a}a, {Bx,b}b
ℋA ℋB

p(a, b |x, y) = ψ†Ax,a ⊗ By,bψ



Quantum Commuting Strategies

Referee

Alice Bob

x

a b

y

• Hilbert space 


• Shared entangled state 


• For any inputs x, y, POVMs , acting 
on 


•  commute for all x, a, y, b.


ℋ

ψ ∈ ℋ

{Ax,a}a, {Bx,b}b
ℋ

Ax,a and By,b

p(a, b |x, y) = ψ†Ax,aBy,bψ



Non-Signalling Strategies

Referee

Alice Bob

x

a b

y

• Any strategy where:





• Most general class of strategies with no 
communication.

∑
yb

p(ya, yb |xa, xb) = ∑
yb

p(ya, yb |xa, x′￼b)∀xa, ya, xb, x′￼b



Interlude: Interactive Proofs

VerifierProver

…

• All-powerful prover exchanges messages with a 
computationally limited verifier. 


• Prover tries to convince verifier that some string 
belongs to a language.


• Soundness: Cannot convince verifier of a false 
statement


• Completeness: Can convince verifier of a true 
statement. 



Interlude: Interactive Proofs

VerifierProver

…

• Different interactive proof systems give rise to 
different complexity classes


• Single message exchange and PTIME verifier  
NP


• Polynomially many messages and BPP verifier  
IP


• Polynomially many quantum messages and BQP 
verifier  QIP


IP = QIP = PSPACE

→

→

→



Multi-prover Interactive Proofs

• Polynomially many messages and BPP verifier 
 MIP


• Polynomially many quantum messages and 
BQP verifier  QMIP


MIP = QMIP = NEXP

→

→

Verifier

Prover Prover

… …



Multi-prover Interactive Proofs

• Polynomially many messages and BPP verifier 
and entangled provers  MIP*.→

Verifier

Prover Prover

… …



Interactive Proof Complexity Classes



(G, H)-Isomorphism Game

Intuition: Alice and Bob want to convince referee 
that 


1. Referee sends vertices from either graph


2. Players respond with vertices from other graph


3. Win if vertex relationships preserved

G ≅ H

Referee

Alice Bob

h

g h'

g'

[1] Albert Atserias, Laura Mančinska, David E. Roberson, Robert Šámal, Simone Severini, Antonios Varvitsiotis 
"Quantum and non-signalling graph isomorphisms" arXiv preprint arXiv:1611.09837 (2017).

https://arxiv.org/search/quant-ph?searchtype=author&query=Atserias%2C+A
https://arxiv.org/search/quant-ph?searchtype=author&query=Man%C4%8Dinska%2C+L
https://arxiv.org/search/quant-ph?searchtype=author&query=Roberson%2C+D+E
https://arxiv.org/search/quant-ph?searchtype=author&query=%C5%A0%C3%A1mal%2C+R
https://arxiv.org/search/quant-ph?searchtype=author&query=Severini%2C+S
https://arxiv.org/search/quant-ph?searchtype=author&query=Varvitsiotis%2C+A
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Homomorphism Game [1]

Intuition: Given finite structures  Alice and 
Bob want to convince referee that 


1. Referee sends Alice a tuple  and Bob 
an element 


2. Alice responds with a tuple  and Bob 
responds with an element 


3. Alice and Bob win if: 

A. 

B.

𝒜, ℬ
𝒜 → ℬ

x ∈ R𝒜

a ∈ A

y ∈ ℬk

b ∈ B

y ∈ ℛb

a = xi ⟹ b = yiReferee

Alice Bob

x
y b

a

[1] Abramsky, Samson, Rui Soares Barbosa, Nadish De Silva, and Octavio Zapata. "The quantum monad on relational structures." 
arXiv preprint arXiv:1705.07310 (2017).



Classical Strategies

Referee

Alice Bob

x

fa(x) fb(y)

y

• Deterministic functions  and .


 

fa fb

p( fa(x), fb(y) |x, y) = 1

[1] Abramsky, Samson, Rui Soares Barbosa, Nadish De Silva, and Octavio Zapata. "The quantum monad on relational structures." 
arXiv preprint arXiv:1705.07310 (2017).



Classical Strategies

Referee

Alice Bob

x

fa(x) fb(y)

y

• Deterministic functions  and .


 

fa fb

p( fa(x), fb(y) |x, y) = 1

There exists a perfect classical strategy for the 
homomorphism game iff 𝒜 → ℬ

[1] Abramsky, Samson, Rui Soares Barbosa, Nadish De Silva, and Octavio Zapata. "The quantum monad on relational structures." 
arXiv preprint arXiv:1705.07310 (2017).



Quantum Strategies

Referee

Alice Bob

• Alice and Bob to share an entangled state which 
they can perform measurements on. 


• We say there is a quantum homomorphism 
 whenever a quantum perfect strategy 

exists for the homomorphism game.
𝒜

q
→ ℬ

[1] Abramsky, Samson, Rui Soares Barbosa, Nadish De Silva, and Octavio Zapata. "The quantum monad on relational structures." 
arXiv preprint arXiv:1705.07310 (2017).

Theorem [1]:  iff there exists a 
kleisli morphism  for some .

𝒜
q

→ ℬ
𝒜 → ℚ=dℬ d



A comonad is a triple  where: 

1.  is an endofunctor.

2.The counit  is a natural 

transformation.

3.The compultiplication  is a 

natural transformation.


And the following equations hold:


(W, ϵ, δ)
W : C → C

η : W → idC

δ : M → M2

Wδ ∘ δ = δW ∘ δ; Wϵ ∘ δ = ϵW ∘ δ = idW

Monads and Comonads

A monad is a triple  where: 

1.  is an endofunctor.

2. The unit  is a natural 

transformation.

3. The multiplication  is a natural 

transformation.


And the following equations hold:


(M, η, μ)
M : C → C

η : idC → M

μ : M2 → M

μ ∘ Mμ = μ ∘ μM; μ ∘ Mη = μ ∘ ηM = idM



Comonads model contextual 
computation e.g. list prefixes, tree nodes.


A contextual computation from  to  is 
represented as a morphisms  
and can be composed in the coKleisli 
category  of a comonad : 


• 


• 


• 


•   =   where:


-   and 

-

A B
WA → B

coKl(W ) W

Obj(coKl(W )) = Obj(C)
HomcoKl(W )(A, B) = Hom(WA, B)

idx = ϵx

g ∘ f WX f* WY g Z
f : WX → Y g : WY → Z
f* = Wf ∘ δx

Monads and Comonads

Monads model effectful computation e.g. 
nondeterminism, probabilities.


An effectful computation from  to  is 
represented as a morphism  
and can be composed in the Kleisli 
category  of a monad :


• 


• 


• 


•   =   where:


-   and 

-

A B
A → MB

Kl(M) M

Obj(Kl(M )) = Obj(C)
HomKl(M)(A, B) = Hom(A, MB)

idx = ηx

g ∘ f X f MY g* MZ
f : X → MY g : Y → MZ
g* = μz ∘ Mg

Natural question: When can computations that are both contextual, and effectful be 
modelled as morphisms in a suitable category? 



Distributive Laws

A (mixed) distributive law of a comonad  over a monad  is a natural 
transformation        satisfying four axioms:

(W, ϵ, δ) (M, η, μ)
λ : W ∘ M ⇒ M ∘ W

Unit Multiplication

Counit Comultiplication

Note that each axiom can be satisfied independently of the others.  In particular, we say that there 
exists a Kleisli law between  and  whenever the unit and multiplication axioms are satisfied.W M



BiKleisli Categories

A mixed distributive law        allows us to define a biKleisli category 
,  whose morphisms are of the form   :


• 


• 


• 


•   =   where:


,  can be seen as the Kleisli category of  lifted to , or equivalently 
as the coKleisli category of W lifted to .

λ : W ∘ M ⇒ M ∘ W
biKl(W M) WA → MB

Obj(biKl(W, M )) = Obj(C)
HombiKl(W,M)(A, B) = Hom(WA, MB)

idx = ηx ∘ ϵx

g ∘ f WX f* WMY λY MWY g* MZ

biKl(W M) M coKl(W )
Kl(M)

Natural question: When can computations that are both contextual, and effectful be 
modelled as morphisms in a suitable category? 



Motivating Question

If the answer is yes we can define a bikleisli category with morphisms of the form 
. This would allow us to talk about quantum winning strategies for 

duplicator.
Gk𝒜 → Qdℬ

Is there a distributive law for game comonads  over ?Gk Qd



No-Go Theorems

• Distributive laws are not guaranteed to exist, and even when they do, finding them is 
often difficult. 


• A result attributed to Plotkin shows that the powerset monad does not distribute 
over the distribution monad.


• [1] Vastly generalises this result to present several families of no-go-theorems for 
when the existence of distributive laws between pairs of monads is impossible.

[1] Zwart, Maaike, and Dan Marsden. "No-go theorems for distributive laws." In 2019 34th Annual ACM/IEEE Symposium on Logic in 
Computer Science (LICS), pp. 1-13. IEEE, 2019.

Our contribution: First examples of no-go results for comonad-monad distributive laws.



• The non-empty powerset monad  on  is given by:

1.  is the set of subsets of .

2.   is the singleton set .

3.  takes a union of sets.


•   The prefix list comonad  on  is given by:

1.    is the set of all non-empty lists over . 

2. .

3. .

(P, η, μ) SET
P(X) X
ηX(x) {x}
μX

(N, ϵ, δ) SET
N(X) X

ϵX[x1, . . . , xn] = xn

δX[x1, . . . , xn] = [[x1], [x1, x2], . . . , [x1, x2, . . . xn]]

Prefix-List and Power Set

Also known as non-empty list. Isomorphic to suffix list.



Plotkin Style Counter-Example

Collapse, Swap and Tag Lemma: There is a unique pointed Kleisli law 
 with components given by: λN : NP → PN

λN
X [X1, . . . , XN] = {[x1, …, xn] ∣ xi ∈ Xi}

≠

Theorem: There is no distributive law of the comonad  over the monad (N, ϵ, δ) (P, η, μ)



 Theorem : Assume the following diagram commutes:


Then we have (with some caveats): 

1. If  is a distributive law and  are monic, then  is a distributive law.

2. If  is a distributive law and  are epic, then  is a distributive law.


λ′￼ τ, σ λ
λ τ, σ λ′￼

Transfer Theorems

 is a comonad map, that is:  and 
 is a monad map, that is:  and 

τ δ′￼∘ τ = (τ ⋆ τ) ∘ δ ϵ′￼∘ τ = ϵ
σ ρ ∘ μ = μ′￼∘ (ρ ⋆ ρ) ρ ∘ η = η′￼



Proof sketch

• Transfer theorems can be proven elegantly using string diagrams:



Proof Sketch

• Or alternatively using straightforward (but tedious) algebra: 



Containers

• Containers are endofunctors  which have an associated set of 
shapes  and a set of positions  for each shape  such that  is the S-
indexed coproduct of the exponential functors .


• Over , containers are equivalent to polynomial functors.


• Using the transfer theorems we will show how our results extend to many comonads 
whose underlying functor is a container (also known as directed containers).

F : SET → SET
S P(s) s ∈ S F

(_)P(s)

SET

[1] Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Categories of containers. In International Conference on Foundations of 
Software Science and Computation Structures, pages 23–38. Springer, 2003.



Containers

•  The prefix list functor  is a container where  and 


• The labelled binary suffix tree comonad  on  is given by:

1.  is the set of all binary trees with nodes labelled by elements of .

2.  returns the root node of t. 

3.  replaces each node of t with the subtree rooted at that node.

N S = Nat P(s) = {1,2,…, s}

(B, ϵB, δB) SET
B(X) X
ϵX(t)
δX(t)



Second No-Go Result

• Intuitively,  sends a list  to a tree with a single path, which is the reverse of . It 
is easy to see that this map is monic.

τB
X L L

Lemma: There exists a monic comonad map  τB : N ⇒ B

Collapse, Swap and Tag Lemma: There is a unique kleisli law  with components:
λB : BP ⇒ PB
λB

X(T ) = {t | root(t) ∈ root(T ) and x1
t↝ x2 ⟹ x1 ∈ X1, x2 ∈ X2s . t . X1

T↝ X2}



Proof Sketch

 Theorem : Assume the following diagram commutes:


Then we have: 

• If  is a distributive law and  are monic, then  is a distributive law.λ′￼ τ, σ λ

Set , , , , 
,  and .


The conditions of this theorem are now 
satisfied thanks to the two lemmas. 


The uniqueness of  completes the proof. 

M = M′￼= P W = N W′￼= B λ = λN

λ′￼= λB τ = τB σ = idP

λB

Corollary: If there is a distributive law of  over  then there is also a 
distributive law of  over .

(B, ϵB, δB) (P, η, μ)
(N, ϵ, δ) (P, η, μ)



More containers

•  The underlined list comonad  on  is given by:

1.    is the set of all pointed lists over . A pointed list is a tuple  

where  is a list and  refers to an index of .

2. .

3. .


•  Given k pebbles, the pebble list comonad  on  is given by:

1.    is the set of non-empty list of moves  where .

2. .

3.  where 

(N*, ϵ*, δ*) SET
N*(X) X (L, i)

L i L
ϵ*X ([x1, . . . , xn], i) = xi

δX(L, i) = ([(L,1), (L,2), …, (L, n)], i)

(Nk, ϵk, δk) SET
Nk(X) (p, x) p ∈ [k], x ∈ X

ϵ*X [(p1, x1), . . . , (pn, xn)] = xn

δX[(p1, x1), . . . , (pn, xn)] = [(p1, L1), . . . , (pn, Ln)]
Li = [(p1, x1), …, (pi, xi)]

Generalised Theorem: Any Container has a pointed kleisli law over the powerset monad. 



Theorem: Let  be a comonad. If T is a container then there exists a 
unique pointed kleisli law . 

If either of the following conditions are satisfied, there is no distributive law of 

 over :


1. There exists a monic comonad morphism  such that 
 satisfy the conditions of transfer theorem (1).


2. There exists an epic comonad morphism  such that 
 satisfy the conditions of transfer theorem (2).

(T, ϵ, δ)
λT : TP → PT

(T, ϵ, δ) (P, η, μ)

τT : N2 ⇒ T
λT, λN, τT, idP

τT : T ⇒ N2
λT, λN, τT, idP

Sufficient Conditions

Example: There is no distributive law of  over (N*, ϵ*, δ*) (P, η, μ)

Example: There is no distributive law of  over (Nk, ϵk, δk) (P, η, μ)



Distribution Monads

• A commutative semiring is given by  such that  is an 
additive commutative monoid and  is a multiplicative commutative monoid 
with multiplication distributing over addition.


• The distribution monad for ,  is a monad on  given by: 


1.  s.t .


2. 

3. 


• The standard probability distribution monad is recovered as the distribution monad 
for . 


• The finite non-empty powerset monad is recovered as the distribution monad for the 
boolean semiring .

𝕊 = (S,0𝕊,1𝕊, + , . ) (S,0𝕊 + , . )
(S,1𝕊, . )

𝕊 (ℳ𝕊, ηD, μD) SET
ℳ𝕊(X) = {φ : X → S ∣ supp(φ) is finite} ∑

i

si = 1
ηX(x) = 1𝕊x
μX(∑i siφi)(x) = ∑i si . φi(x)

𝕊 = (ℝ≥0,0,1, + , × )

𝔹 = ({0,1},0,1, ∨ , ∧ )



 Theorem : Assume the following diagram commutes:


Then we have: 

2. If  is a distributive law and  are epic, then  is a distributive law.λ τ, σ λ′￼

Set , , 
, ,  and .


The conditions of this theorem are now 
satisfied.


Uniqueness up to support completes the 
proof.

M = 𝒟𝕊, M′￼= P W = W′￼= N
λ = λℳ𝕊 λ′￼= λN τ = idN σ = supp

Corollary: None of the comonads discussed distribute over .

(Some cardinality caveats swept under the rug)

(𝒟𝕊, η, μ)

Uniqueness up to support: If T is a container and   are pointed kleisli laws 
then we have .

λ, λ′￼: T𝒟𝕊 → 𝒟𝕊T
supp(λX(t)) = supp(λ′￼X(t))



Quantum Monad

• The graded quantum monad  is a graded monad on  given by:


•  is the set of all functions  satisfiying .


•  is the set of all tuples  satisfying:


1. : 


2. 


• The natural transformations  are the identity.


•  where  if .


•  is given by tensor multiplication i.e. .

(ℚ=, ηq, μd,d′￼) R(σ)

ℚ=n(𝒳) p : X → Proj(d) ∑
x∈X

p(x) = I

Rℚ=d𝒳 (p1, . . . , pk)

∀i, j ∈ [k], x, x′￼∈ X : [pi(x), pj(x′￼)] = 0

∀(x1, . . . , xk) ∈ Xk, ifx ∉ R𝒳, then p1(x1) . . . pk(xk) = 0

ℚn=n′￼

ηq
𝒳(x) = δx δx(x) = I1, δx(x′￼) = 0 x ≠ x′￼

μd,d′￼
𝒳 μd,d′￼

𝒳 (P)(x) := ∑
p∈ℚd′￼

P(p) ⊗ p(x)

[1] Abramsky, Samson, Rui Soares Barbosa, Nadish De Silva, and Octavio Zapata. "The quantum monad on relational structures." 
arXiv preprint arXiv:1705.07310 (2017).



Quantum Monad
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•  is the set of all functions  satisfiying .


•  is the set of all tuples  satisfying:


1. : 


2. 


• The natural transformations  are the identity.
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ℚ=n(𝒳) p : X → Proj(d) ∑
x∈X

p(x) = I

Rℚ=d𝒳 (p1, . . . , pk)
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arXiv preprint arXiv:1705.07310 (2017).



Quantum Monad

• If we  only consider the action of  on the underlying universe of structures, we 
get a graded monad  on the category .


• We can “Degrade”[1] this graded monad to obtain a normal monad :


1.  is the set of all functions  satisfying 


2.  where  if .

3.  is given by tensor multiplication i.e. .


• This can be seen as a variant of the distribution monad where probability 
distributions are replaced with PVMs.

ℚ=d

(Q=, ηq, μd,d′￼) SET

(Q, ηq, μq)

Q(X) p : X → Proj ∑
x∈X

p(x) = I
ηq

X(x) = δx δx(x) = I1, δx(x′￼) = 0 x ≠ x′￼

μq
𝒳 μd,d′￼

𝒳 (P)(x) := ∑
p∈Q

P(p) ⊗ p(x)

[1] Dylan McDermott, Maciej Piróg, and Tarmo Uustalu. 2020. Degrading Lists



Kleisli Categories and Quantum 
Homomorphisms

[1] Abramsky, Samson, Rui Soares Barbosa, Nadish De Silva, and Octavio Zapata. "The quantum monad on relational structures." 
arXiv preprint arXiv:1705.07310 (2017).

Theorem [1]:  iff there exists a kleisli morphism  for some .𝒜
q

→ ℬ 𝒜 → ℚdℬ d

Theorem:  iff there exists a kleisli morphism .𝒜
q

→ ℬ 𝒜 → Qℬ



Quantum Monad

Theorem: There is no comonad-monad distributive law of the form  
for any comonad  seen thus far. 

WQ → QW
W

Open problem: Rule out existence of graded distributive laws of the form W=aQ=b ⇒ Q=iW=j



Monad-Comonad Distributive Laws



A Go Theorem

Theorem: There exists a distributive law  of the prefix list 
comonad over the distribution monad for  with components given by:





Where  and  refers to the th last element of .

λ : D𝕊N ⇒ ND𝕊
𝕊

λX(s1L1 + … + sNLN) = [s1L1[−k] + . . . + sNLN[−k], s1L1[−k + 1] + . . . + sNLN[−k + 1], s1L1[−1] + . . . + sNLN[−1]]

k = min(length(Li)) L[−i] i L

Open problem: Is  a distributive law of  over ?λ ℚ 𝔼



Comonad Generalisation

• When we view the prefix list functor as a container, we can think of the distributive 
law described previously as a two-step process:


1. Identifying the common subshape of all the non-empty lists in . 


2. Merge together the elements at each position of the common subshape, while 
ignoring elements at other positions.


• This idea can be adapted and used to come up with distributive laws for other 
containers. For example, we can construct distributive laws of  over the stream 
comonad or the binary suffix tree comonad. 

D𝕊N(X)

D𝕊

Open problem: How abstractly can this distributive law be stated? Does it work for all comonads 
whose underlying functor is a container? 

Open problem: More generally, can we come up with an axiomatic account of when mixed 
distributive laws can or cannot exist?


