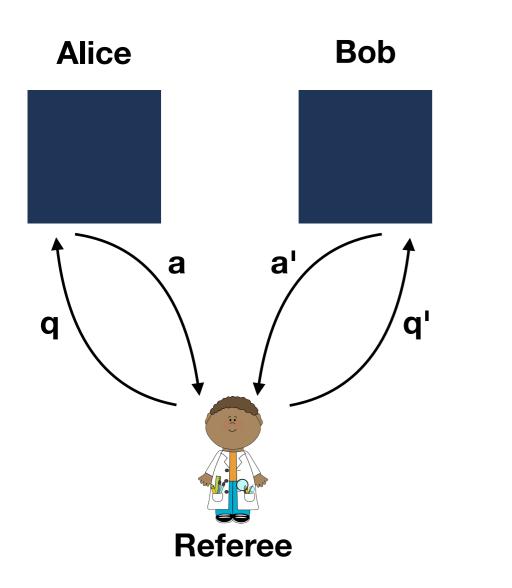
Results about mixed distributive laws motivated by considerations in logic and non-local games

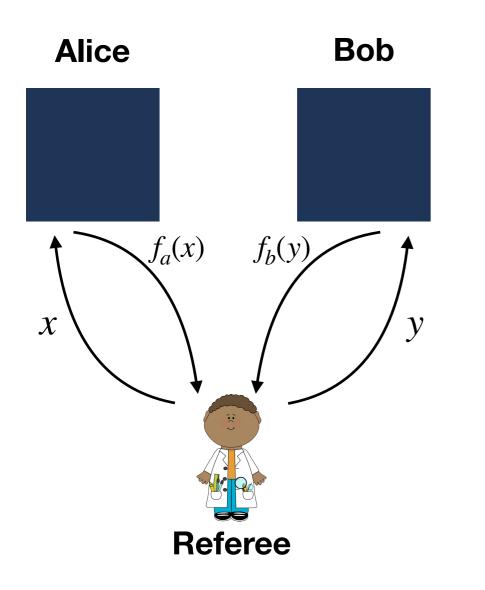
Non-local games [1]



- 1. Referee sends a question to each player
- 2. Players answer without communicating
- 3. Win if answers satisfy some predefined conditions.

[1] Mathematics of quantum entanglement via nonlocal games: https://qmath.ku.dk/events/conferences/quantum-entanglement/

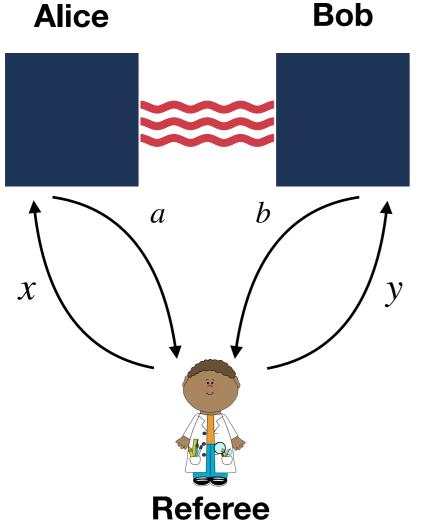
Classical Strategies



• Deterministic functions
$$f_a$$
 and f_b .

$$p(f_a(x), f_b(y) | x, y) = 1$$

Quantum Tensor Strategies

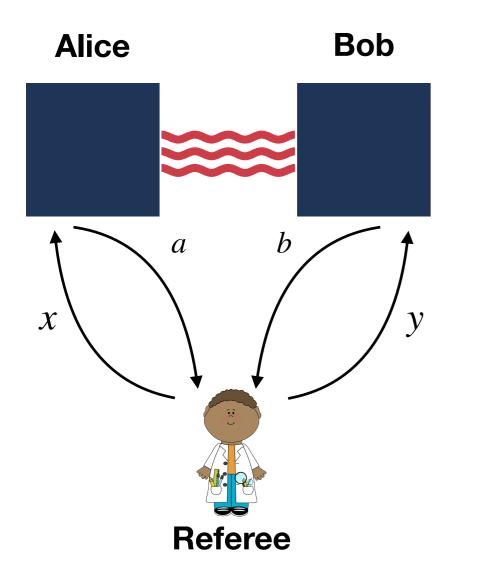


Bob

- Hilbert spaces \mathscr{H}_A and \mathscr{H}_B
- Shared entangled state $\psi \in \mathcal{H}_A \otimes \mathcal{H}_B$
- For any inputs x, y, POVMs $\{A_{x,a}\}_a, \{B_{x,b}\}_b$ acting on \mathcal{H}_A and \mathcal{H}_B

 $p(a, b | x, y) = \psi^{\dagger} A_{x,a} \otimes B_{y,b} \psi$

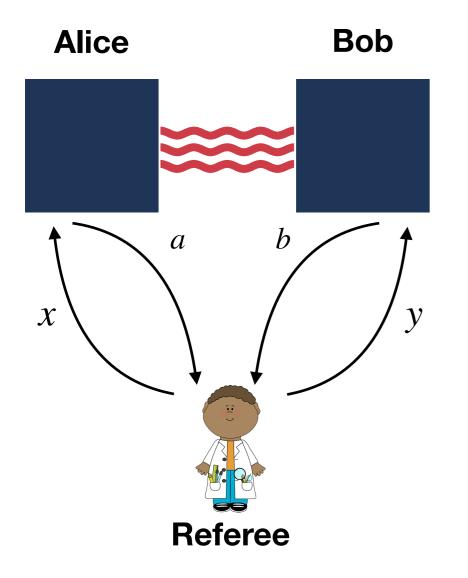
Quantum Commuting Strategies



- Hilbert space ${\mathscr H}$
- Shared entangled state $\psi \in \mathcal{H}$
- For any inputs x, y, POVMs $\{A_{x,a}\}_a, \{B_{x,b}\}_b$, acting on $\mathcal H$
- $A_{x,a}$ and $B_{y,b}$ commute for all x, a, y, b.

 $p(a, b \mid x, y) = \psi^{\dagger} A_{x,a} B_{y,b} \psi$

Non-Signalling Strategies

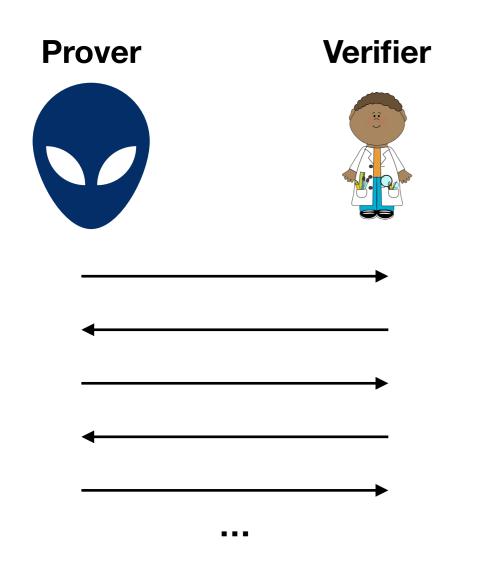


• Any strategy where:

$$\sum_{y_b} p(y_a, y_b | x_a, x_b) = \sum_{y_b} p(y_a, y_b | x_a, x_b') \forall x_a, y_a, x_b, x_b'$$

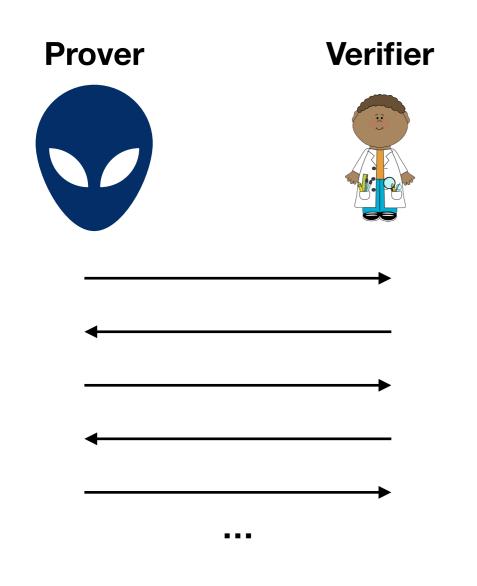
• Most general class of strategies with no communication.

Interlude: Interactive Proofs



- All-powerful prover exchanges messages with a computationally limited verifier.
- Prover tries to convince verifier that some string belongs to a language.
- Soundness: Cannot convince verifier of a false statement
- **Completeness**: Can convince verifier of a true statement.

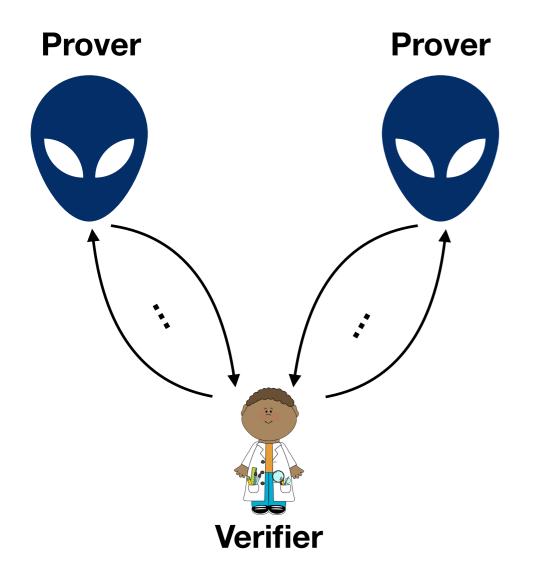
Interlude: Interactive Proofs



- Different interactive proof systems give rise to different complexity classes
- Single message exchange and PTIME verifier \rightarrow NP
- Polynomially many messages and BPP verifier \rightarrow IP
- Polynomially many quantum messages and BQP verifier \rightarrow QIP

IP = QIP = PSPACE

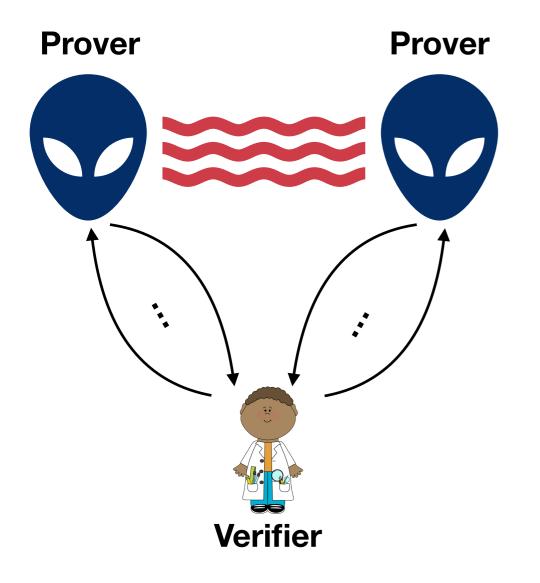
Multi-prover Interactive Proofs



- Polynomially many messages and BPP verifier \rightarrow MIP
- Polynomially many quantum messages and BQP verifier \rightarrow QMIP

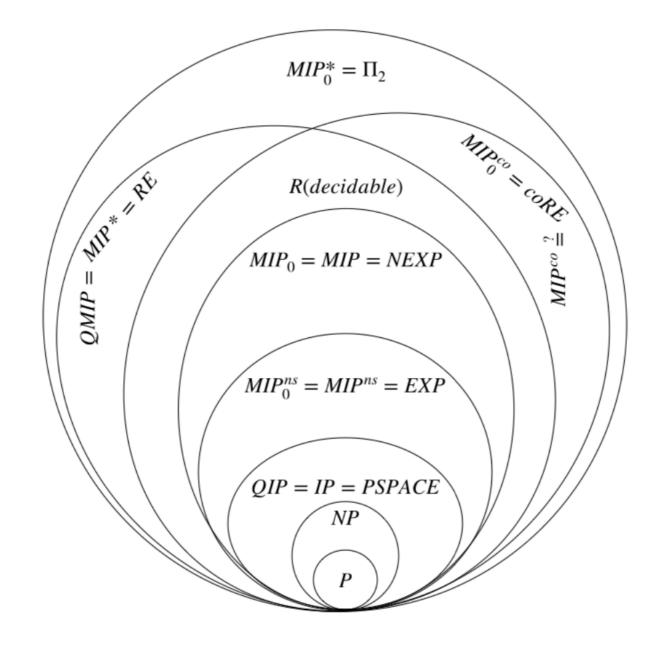
MIP = QMIP = NEXP

Multi-prover Interactive Proofs

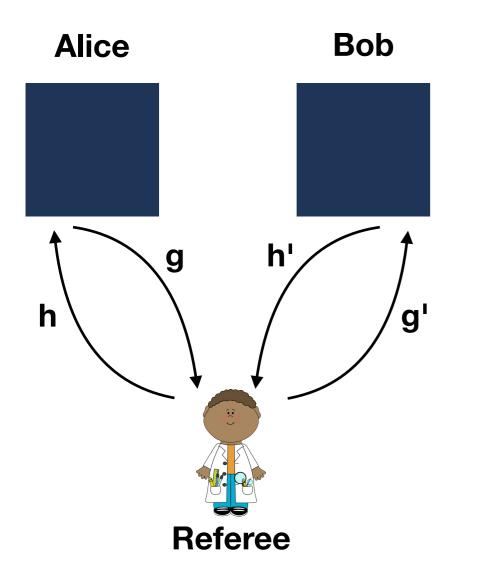


• Polynomially many messages and BPP verifier and entangled provers \rightarrow MIP*.

Interactive Proof Complexity Classes



(G, H)-Isomorphism Game



Intuition: Alice and Bob want to convince referee that $G \cong H$

- 1. Referee sends vertices from either graph
- 2. Players respond with vertices from other graph
- 3. Win if vertex relationships preserved

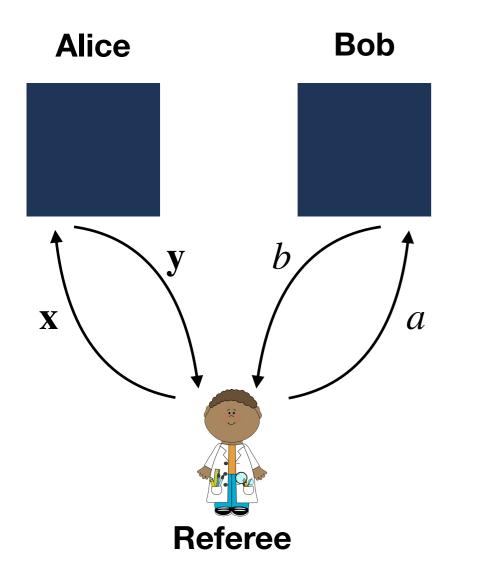
[1] <u>Albert Atserias</u>, <u>Laura Mančinska</u>, <u>David E. Roberson</u>, <u>Robert Šámal</u>, <u>Simone Severini</u>, <u>Antonios Varvitsiotis</u> "Quantum and non-signalling graph isomorphisms" *arXiv preprint arXiv:1611.09837* (2017).

(G, H)-Isomorphism Game

Strategy	Matrix Formulation	Homomorphism Count	Complexity
Classical	Permutation Matrix	All graphs	Quasi-Polynomial
Quantum	Magic Unitary	?	Undecidable
Commuting	Projective Permutation Matrix	Planar graphs	CoRE-complete
Non-signalling	Doubly Stochastic Matrix	Trees	Polynomial

[1] <u>Albert Atserias</u>, <u>Laura Mančinska</u>, <u>David E. Roberson</u>, <u>Robert Šámal</u>, <u>Simone Severini</u>, <u>Antonios Varvitsiotis</u> "Quantum and non-signalling graph isomorphisms" *arXiv preprint arXiv:1611.09837* (2017).

Homomorphism Game [1]

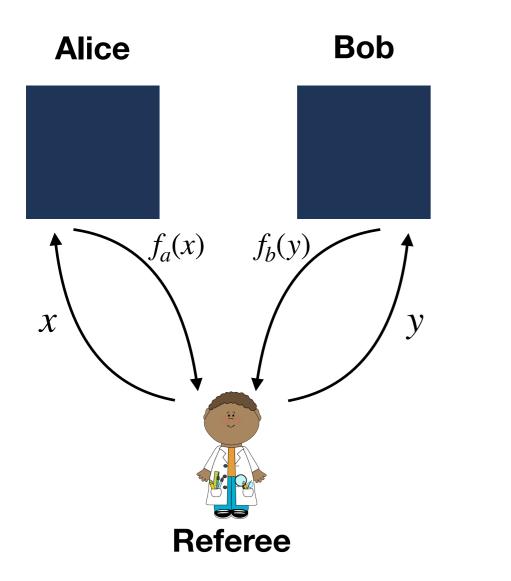


Intuition: Given finite structures \mathscr{A}, \mathscr{B} Alice and Bob want to convince referee that $\mathscr{A} \to \mathscr{B}$

- 1. Referee sends Alice a tuple $\mathbf{x} \in R^{\mathscr{A}}$ and Bob an element $a \in A$
- 2. Alice responds with a tuple $\mathbf{y} \in \mathscr{B}^k$ and Bob responds with an element $b \in B$
- 3. Alice and Bob win if:

A. $\mathbf{y} \in \mathscr{R}^b$ B. $a = \mathbf{x}_i \implies b = \mathbf{y}_i$

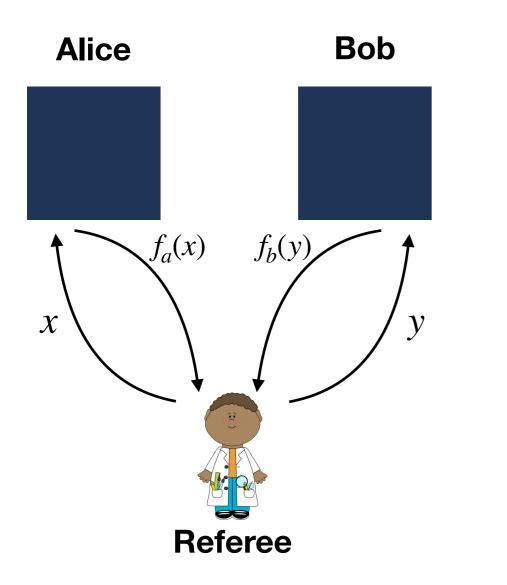
Classical Strategies



• Deterministic functions f_a and f_b .

$$p(f_a(x), f_b(y) | x, y) = 1$$

Classical Strategies

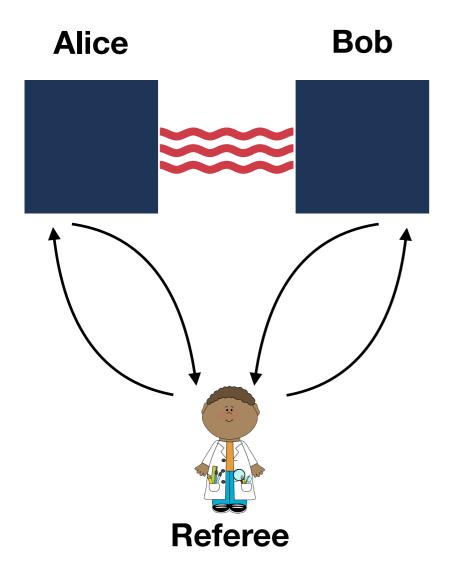


• Deterministic functions f_a and f_b .

$$p(f_a(x), f_b(y) | x, y) = 1$$

There exists a perfect classical strategy for the homomorphism game iff $\mathscr{A}\to\mathscr{B}$

Quantum Strategies



- Alice and Bob to share an entangled state which they can perform measurements on.
- We say there is a quantum homomorphism

 A → *B* whenever a quantum perfect strategy exists for the homomorphism game.

Theorem [1]: $\mathscr{A} \xrightarrow{q} \mathscr{B}$ iff there exists a kleisli morphism $\mathscr{A} \to \mathbb{Q}_{=d} \mathscr{B}$ for some d.

Monads and Comonads

- A monad is a triple (M, η, μ) where:
- 1. $M: C \rightarrow C$ is an endofunctor.
- 2. The unit $\eta: id_C \to M$ is a natural transformation.
- 3. The multiplication $\mu: M^2 \to M$ is a natural transformation.

And the following equations hold:

 $\mu \circ M\mu = \mu \circ \mu M; \quad \mu \circ M\eta = \mu \circ \eta M = id_M$

A **comonad** is a triple (W, ϵ, δ) where:

- 1. $W: C \rightarrow C$ is an endofunctor.
- 2. The counit $\eta: W \rightarrow id_C$ is a natural transformation.
- 3. The compultiplication $\delta: M \to M^2$ is a natural transformation.

And the following equations hold:

$$W\delta \circ \delta = \delta W \circ \delta; \quad W\epsilon \circ \delta = \epsilon W \circ \delta = id_W$$

Monads and Comonads

Monads model effectful computation e.g. nondeterminism, probabilities.

An effectful computation from A to B is represented as a morphism $A \rightarrow MB$ and can be composed in the Kleisli category Kl(M) of a monad M:

- Obj(Kl(M)) = Obj(C)
- $Hom_{Kl(M)}(A, B) = Hom(A, MB)$
- $id_x = \eta_x$
- $g \circ f = X \xrightarrow{f} MY \xrightarrow{g^*} MZ$ where:
 - $f: X \to MY$ and $g: Y \to MZ$
 - $g^* = \mu_z \circ Mg$

Comonads model contextual computation e.g. list prefixes, tree nodes.

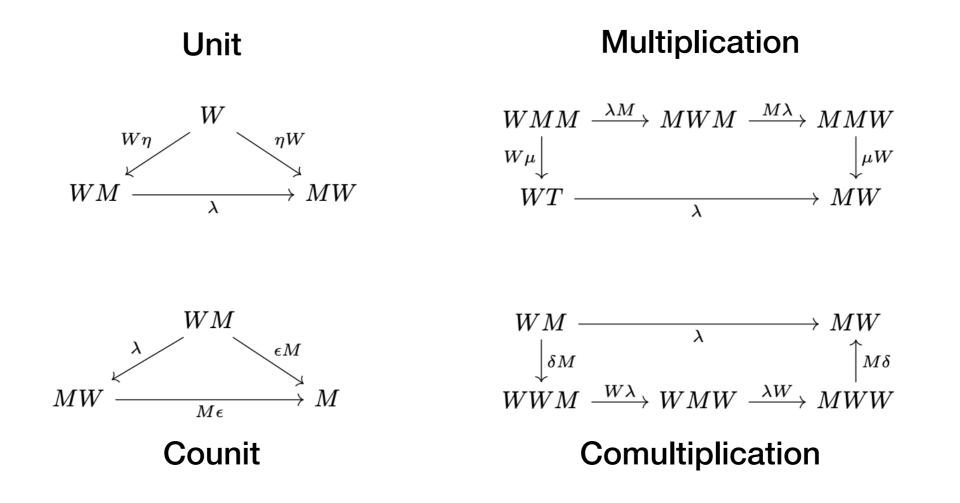
A contextual computation from *A* to *B* is represented as a morphisms $WA \rightarrow B$ and can be composed in the **coKleisli** category *coKl(W)* of a comonad *W*:

- Obj(coKl(W)) = Obj(C)
- $Hom_{coKl(W)}(A, B) = Hom(WA, B)$
- $id_x = \epsilon_x$
- $g \circ f = WX \xrightarrow{f^*} WY \xrightarrow{g} Z$ where:
 - $f: WX \to Y$ and $g: WY \to Z$
 - $f^* = W\!f \circ \delta_{\!_X}$

Natural question: When can computations that are both contextual, and effectful be modelled as morphisms in a suitable category?

Distributive Laws

A (mixed) **distributive law** of a comonad (W, ϵ, δ) over a monad (M, η, μ) is a natural transformation $\lambda \colon W \circ M \Rightarrow M \circ W$ satisfying four axioms:



Note that each axiom can be satisfied independently of the others. In particular, we say that there exists a **Kleisli law** between W and M whenever the unit and multiplication axioms are satisfied.

BiKleisli Categories

Natural question: When can computations that are both contextual, and effectful be modelled as morphisms in a suitable category?

A mixed distributive law $\lambda: W \circ M \Rightarrow M \circ W$ allows us to define a biKleisli category biKl(W, M) whose morphisms are of the form $WA \rightarrow MB$:

- Obj(biKl(W, M)) = Obj(C)
- $Hom_{biKl(W,M)}(A,B) = Hom(WA,MB)$

•
$$id_x = \eta_x \circ \epsilon_x$$

• $g \circ f = WX \xrightarrow{f^*} WMY \xrightarrow{\lambda_Y} MWY \xrightarrow{g^*} MZ$ where:

biKl(W, M) can be seen as the Kleisli category of M lifted to coKl(W), or equivalently as the coKleisli category of W lifted to Kl(M).

Motivating Question

Is there a distributive law for game comonads G_k over Q_d ?

If the answer is yes we can define a bikleisli category with morphisms of the form $G_k \mathscr{A} \to Q_d \mathscr{B}$. This would allow us to talk about quantum winning strategies for duplicator.

No-Go Theorems

- Distributive laws are not guaranteed to exist, and even when they do, finding them is often difficult.
- A result attributed to Plotkin shows that the powerset monad does not distribute over the distribution monad.
- [1] Vastly generalises this result to present several families of no-go-theorems for when the existence of distributive laws between pairs of monads is impossible.

Our contribution: First examples of no-go results for comonad-monad distributive laws.

^[1] Zwart, Maaike, and Dan Marsden. "No-go theorems for distributive laws." In 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1-13. IEEE, 2019.

Prefix-List and Power Set

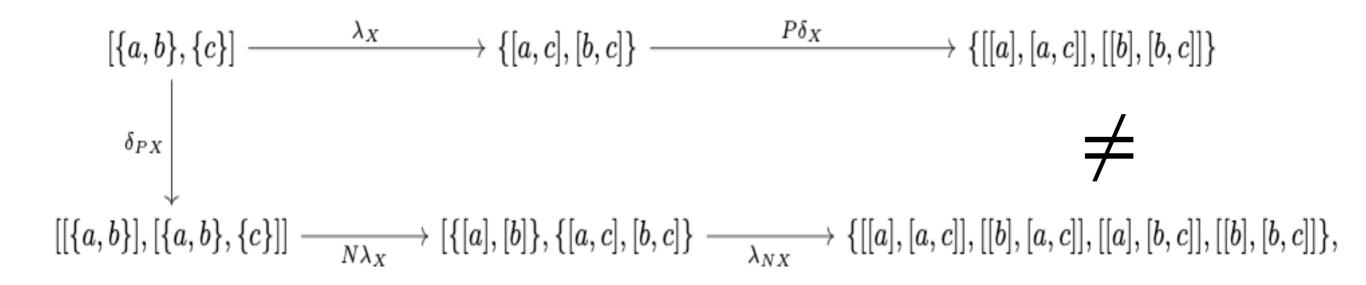
- The non-empty powerset monad (P, η, μ) on **SET** is given by:
 - 1. P(X) is the set of subsets of X.
 - 2. $\eta_X(x)$ is the singleton set $\{x\}$.
 - 3. μ_X takes a union of sets. Also known as non-empty list. Isomorphic to suffix list.
- The prefix list comonad (N, ϵ, δ) on **SET** is given by:
 - 1. N(X) is the set of all non-empty lists over X.

$$2. \quad \epsilon_X[x_1,\ldots,x_n] = x_n.$$

3. $\delta_X[x_1, \dots, x_n] = [[x_1], [x_1, x_2], \dots, [x_1, x_2, \dots, x_n]].$

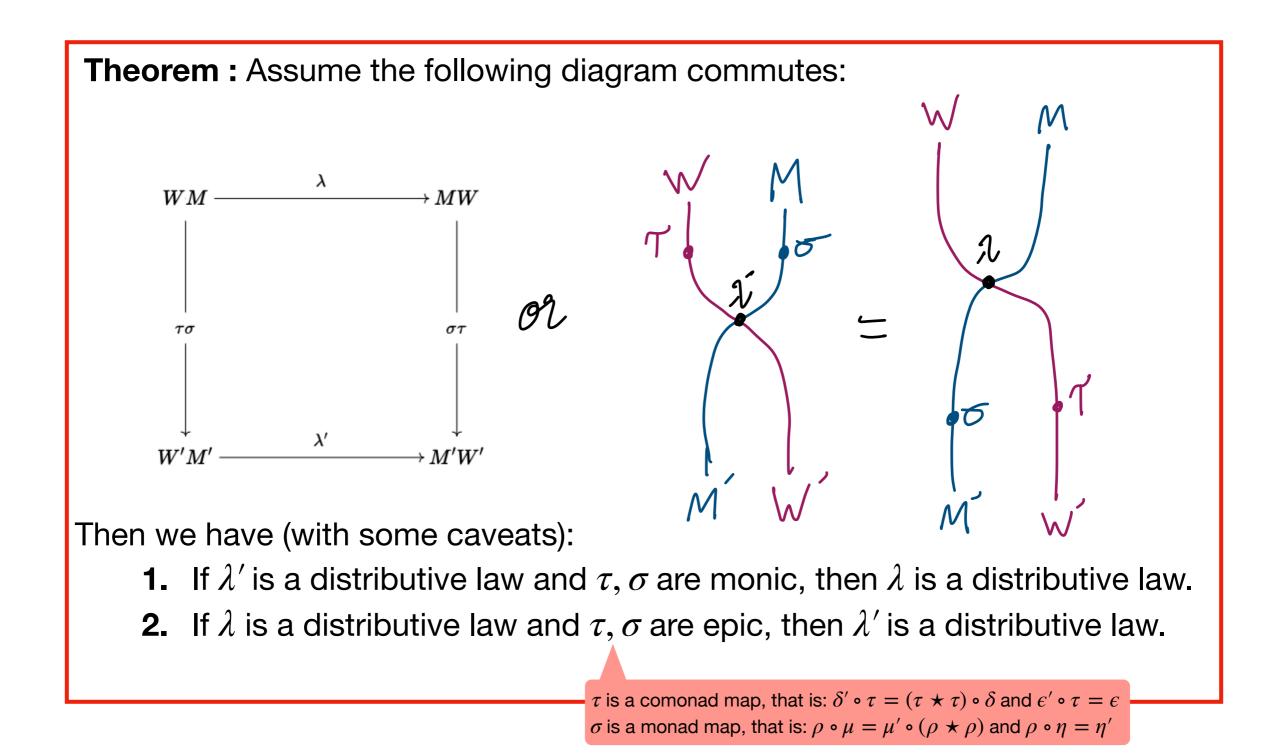
Plotkin Style Counter-Example

Collapse, Swap and Tag Lemma: There is a unique pointed Kleisli law $\lambda^N \colon NP \to PN$ with components given by: $\lambda^N_X[X_1, \dots, X_N] = \{[x_1, \dots, x_n] \mid x_i \in X_i\}$



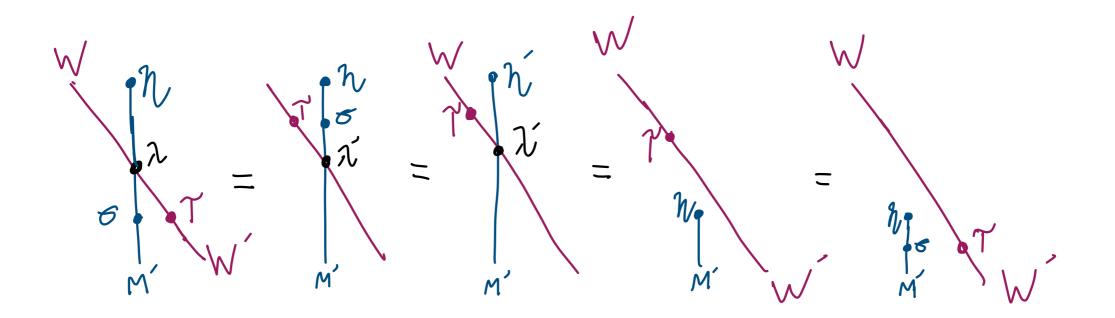
Theorem: There is no distributive law of the comonad (N, ϵ, δ) over the monad (P, η, μ)

Transfer Theorems



Proof sketch

• Transfer theorems can be proven elegantly using string diagrams:



Proof Sketch

• Or alternatively using straightforward (but tedious) algebra:

$$(\sigma \star \tau) \circ \lambda' \circ W' \eta' = \lambda \circ (\tau \star \sigma) \circ W' \eta'$$

$$= \lambda \circ \tau M \circ W' \sigma \circ (W' \eta')$$
definition of \star

$$= \lambda \circ \tau M \circ W' (\sigma \circ \eta')$$

$$F(\alpha \circ \beta) = F\alpha \circ F\beta$$

$$= \lambda \circ \tau M \circ W' \eta$$
definition of monad map
$$= \lambda \circ (\tau \star \eta)$$
definition of \star

$$= \lambda \circ W \eta \circ \tau \mathbf{id}$$
definition of \star

$$= \eta W \circ \mathbf{id} \tau$$

$$= \eta W \circ \mathbf{id} \tau$$

$$= M \tau \circ \eta W'$$
definition of \star

$$= M \tau \circ (\sigma \circ \eta') W'$$
definition of monad map
$$= \Lambda \tau \circ \sigma W' \circ \eta' W'$$
definition of monad map
$$= M \tau \circ \sigma W' \circ \eta' W'$$
definition of \star

$$= M \tau \circ \eta W'$$
definition of monad map
$$= M \tau \circ \sigma W' \circ \eta' W'$$
definition of monad map
$$= (\sigma \star \tau) \circ \eta' W'$$
definition of \star

Containers

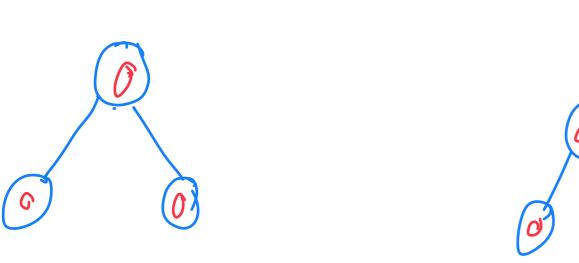
- Containers are endofunctors *F* : SET → SET which have an associated set of shapes *S* and a set of positions *P*(*s*) for each shape *s* ∈ *S* such that *F* is the S-indexed coproduct of the exponential functors (_)^{*P*(*s*)}.
- Over SET, containers are equivalent to polynomial functors.
- Using the transfer theorems we will show how our results extend to many comonads whose underlying functor is a container (also known as directed containers).

[1] Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Categories of containers. In International Conference on Foundations of Software Science and Computation Structures, pages 23–38. Springer, 2003.

Containers

• The prefix list functor *N* is a container where S = Nat and $P(s) = \{1, 2, ..., s\}$

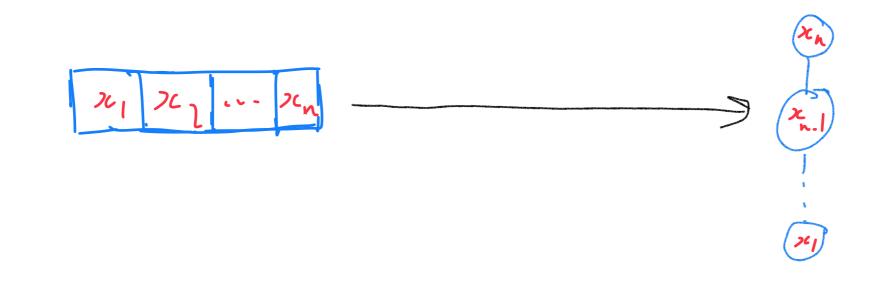
- The labelled binary suffix tree comonad $(B, \epsilon^B, \delta^B)$ on **SET** is given by:
 - 1. B(X) is the set of all binary trees with nodes labelled by elements of X.
 - 2. $\epsilon_X(t)$ returns the root node of t.
 - 3. $\delta_X(t)$ replaces each node of t with the subtree rooted at that node.



Second No-Go Result

Lemma: There exists a monic comonad map $\tau^B : N \Rightarrow B$

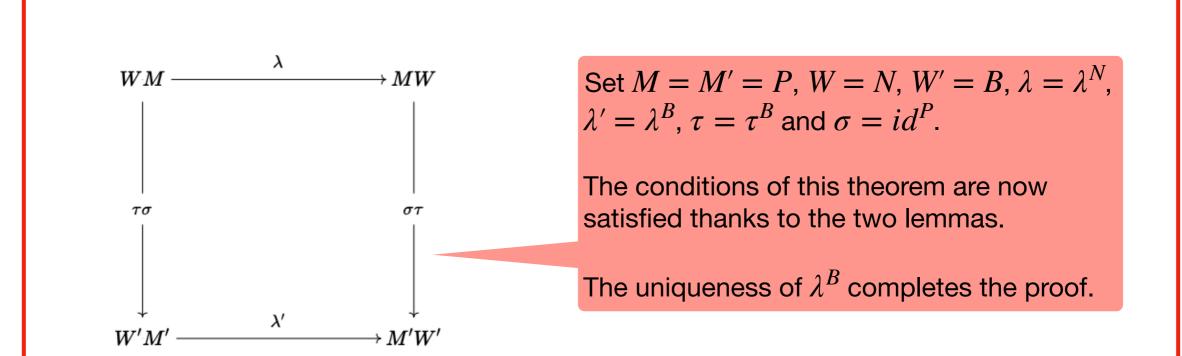
• Intuitively, τ_X^B sends a list **L** to a tree with a single path, which is the reverse of **L**. It is easy to see that this map is monic.



Collapse, Swap and Tag Lemma: There is a unique kleisli law $\lambda^B : BP \Rightarrow PB$ with components: $\lambda^B_X(T) = \{t \mid \operatorname{root}(t) \in \operatorname{root}(T) \text{ and } x_1 \stackrel{t}{\leadsto} x_2 \implies x_1 \in X_1, x_2 \in X_2s \, t \, X_1 \stackrel{T}{\leadsto} X_2\}$

Proof Sketch

Theorem : Assume the following diagram commutes:



Then we have:

• If λ' is a distributive law and τ, σ are monic, then λ is a distributive law.

Corollary: If there is a distributive law of $(B, \epsilon^B, \delta^B)$ over (P, η, μ) then there is also a distributive law of (N, ϵ, δ) over (P, η, μ) .

More containers

- The underlined list comonad $(N^*, \epsilon^*, \delta^*)$ on **SET** is given by:
 - 1. $N^*(X)$ is the set of all pointed lists over *X*. A pointed list is a tuple (**L**, *i*) where **L** is a list and *i* refers to an index of **L**.
 - 2. $\epsilon_X^*([x_1, \dots, x_n], i) = x_i$.
 - 3. $\delta_X(\mathbf{L}, i) = ([(\mathbf{L}, 1), (\mathbf{L}, 2), \dots, (\mathbf{L}, n)], i).$
- Given k pebbles, the pebble list comonad $(N^k, \epsilon^k, \delta^k)$ on **SET** is given by:
 - 1. $N^{k}(X)$ is the set of non-empty list of *moves* (p, x) where $p \in [k], x \in X$.

2.
$$\epsilon_X^*[(p_1, x_1), \dots, (p_n, x_n)] = x_n$$

3. $\delta_X[(p_1, x_1), \dots, (p_n, x_n)] = [(p_1, \mathbf{L}_1), \dots, (p_n, \mathbf{L}_n)]$ where $\mathbf{L}_i = [(p_1, x_1), \dots, (p_i, x_i)]$

Generalised Theorem: Any Container has a pointed kleisli law over the powerset monad.

Sufficient Conditions

Theorem: Let (T, ϵ, δ) be a comonad. If T is a container then there exists a unique pointed kleisli law $\lambda^T : TP \to PT$. If either of the following conditions are satisfied, there is no distributive law of (T, ϵ, δ) over (P, η, μ) :

- **1.** There exists a monic comonad morphism $\tau^T : N_2 \Rightarrow T$ such that $\lambda^T, \lambda^N, \tau^T, id^P$ satisfy the conditions of transfer theorem (1).
- **2.** There exists an epic comonad morphism $\tau^T : T \Rightarrow N_2$ such that $\lambda^T, \lambda^N, \tau^T, id^P$ satisfy the conditions of transfer theorem (2).

Example: There is no distributive law of $(N^*, \epsilon^*, \delta^*)$ over (P, η, μ)

Example: There is no distributive law of $(N^k, \epsilon^k, \delta^k)$ over (P, η, μ)

Distribution Monads

- A commutative semiring is given by $\mathbb{S} = (S, 0_{\mathbb{S}}, 1_{\mathbb{S}}, +, .)$ such that $(S, 0_{\mathbb{S}} +, .)$ is an additive commutative monoid and $(S, 1_{\mathbb{S}}, .)$ is a multiplicative commutative monoid with multiplication distributing over addition.
- The distribution monad for \mathbb{S} , $(\mathcal{M}_{\mathbb{S}}, \eta^D, \mu^D)$ is a monad on **SET** given by:
 - 1. $\mathcal{M}_{\mathbb{S}}(X) = \{ \varphi : X \to S \mid \operatorname{supp}(\varphi) \text{ is finite} \} \text{ s.t } \sum s_i = 1.$
 - 2. $\eta_X(x) = 1_{\mathbb{S}} x$

3.
$$\mu_X(\sum_i s_i \varphi_i)(x) = \sum_i s_i \cdot \varphi_i(x)$$

- The standard probability distribution monad is recovered as the distribution monad for $\mathbb{S} = (\mathbb{R}_{\geq 0}, 0, 1, +, \times)$.
- The finite non-empty powerset monad is recovered as the distribution monad for the boolean semiring 𝔅 = ({0,1},0,1,∨,∧).

Uniqueness up to support: If T is a container and $\lambda, \lambda' : T \mathscr{D}_{\mathbb{S}} \to \mathscr{D}_{\mathbb{S}} T$ are pointed kleisli laws then we have $supp(\lambda_X(t)) = supp(\lambda'_X(t))$.

Theorem : Assume the following diagram commutes: $\begin{array}{c} WM & \xrightarrow{\lambda} & \longrightarrow MW \\ & & & & \\ & & & \\ & & & & & \\ & & & &$

Then we have:

2. If λ is a distributive law and τ , σ are epic, then λ' is a distributive law.

Corollary: None of the comonads discussed distribute over $(\mathcal{D}_{\mathbb{S}}, \eta, \mu)$. (Some cardinality caveats swept under the rug)

- The graded quantum monad $(\mathbb{Q}_{=}, \eta^{q}, \mu^{d,d'})$ is a graded monad on $\mathbf{R}(\sigma)$ given by:
 - $\mathbb{Q}_{=n}(\mathcal{X})$ is the set of all functions $p: X \to Proj(d)$ satisfying $\sum p(x) = I$.

 $x \in X$

• $R^{\mathbb{Q}_{=d}\mathcal{X}}$ is the set of all tuples (p_1, \ldots, p_k) satisfying:

1.
$$\forall i, j \in [k], x, x' \in X : [p_i(x), p_j(x')] = \mathbf{0}$$
:

2.
$$\forall (x_1, \dots, x_k) \in X^k$$
, if $\mathbf{x} \notin R^{\mathcal{X}}$, then $p_1(x_1) \dots p_k(x_k) = \mathbf{0}$

- The natural transformations $\mathbb{Q}_{n=n'}$ are the identity.
- $\eta_{\mathcal{X}}^{q}(x) = \delta_{x}$ where $\delta_{x}(x) = I_{1}, \delta_{x}(x') = \mathbf{0}$ if $x \neq x'$. • $\mu_{\mathcal{X}}^{d,d'}$ is given by tensor multiplication i.e. $\mu_{\mathcal{X}}^{d,d'}(P)(x) := \sum_{p \in \mathbb{Q}_{d'}} P(p) \otimes p(x)$.

- The graded quantum monad $(\mathbb{Q}_{=}, \eta^{q}, \mu^{d,d'})$ is a graded monad on $\mathbf{R}(\sigma)$ given by:
 - $\mathbb{Q}_{=n}(\mathcal{X})$ is the set of all functions $p: X \to Proj(d)$ satisfying $\sum p(x) = I$.

 $x \in X$

• $R^{\mathbb{Q}_{=d}\mathcal{X}}$ is the set of all tuples (p_1, \ldots, p_k) satisfying:

1. $\forall i, j \in [k], x, x' \in X : [p_i(x), p_j(x')] = 0$:

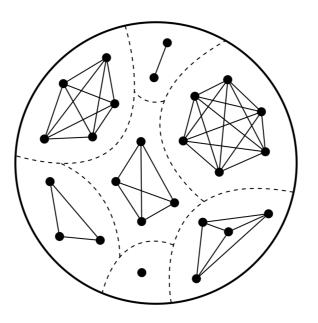
- 2. $\forall (x_1, \dots, x_k) \in X^k, if \mathbf{x} \notin R^{\mathcal{X}}, \text{then } p_1(x_1) \dots p_k(x_k) = \mathbf{0}$
- The natural transformations $\mathbb{Q}_{n=n'}$ are the identity.
- $\eta_{\mathcal{X}}^{q}(x) = \delta_{x}$ where $\delta_{x}(x) = I_{1}, \delta_{x}(x') = \mathbf{0}$ if $x \neq x'$. • $\mu_{\mathcal{X}}^{d,d'}$ is given by tensor multiplication i.e. $\mu_{\mathcal{X}}^{d,d'}(P)(x) := \sum_{p \in \mathbb{Q}_{d'}} P(p) \otimes p(x)$.

- If we only consider the action of $\mathbb{Q}_{=d}$ on the underlying universe of structures, we get a graded monad $(Q_{=}, \eta^{q}, \mu^{d,d'})$ on the category **SET**.
- We can "Degrade"[1] this graded monad to obtain a normal monad (Q, η^q, μ^q) :
 - 1. Q(X) is the set of all functions $p: X \to Proj$ satisfying $\sum_{x \in X} p(x) = I$ 2. $\eta_X^q(x) = \delta_x$ where $\delta_x(x) = I_1, \delta_x(x') = \mathbf{0}$ if $x \neq x'$. 3. $\mu_{\mathcal{X}}^q$ is given by tensor multiplication i.e. $\mu_{\mathcal{X}}^{d,d'}(P)(x) := \sum_{p \in Q} P(p) \otimes p(x)$.
- This can be seen as a variant of the distribution monad where probability distributions are replaced with PVMs.

Kleisli Categories and Quantum Homomorphisms

Theorem [1]: $\mathscr{A} \xrightarrow{q} \mathscr{B}$ iff there exists a kleisli morphism $\mathscr{A} \to \mathbb{Q}_d \mathscr{B}$ for some d.

Theorem: $\mathscr{A} \xrightarrow{q} \mathscr{B}$ iff there exists a kleisli morphism $\mathscr{A} \to Q\mathscr{B}$.



Theorem: There is no comonad-monad distributive law of the form $WQ \rightarrow QW$ for any comonad W seen thus far.

Open problem: Rule out existence of graded distributive laws of the form $W_{=a}Q_{=b} \Rightarrow Q_{=i}W_{=i}$

Monad-Comonad Distributive Laws

A Go Theorem

Theorem: There exists a distributive law $\lambda : D_{\mathbb{S}}N \Rightarrow ND_{\mathbb{S}}$ of the prefix list comonad over the distribution monad for \mathbb{S} with components given by:

 $\lambda_X(s_1L_1 + \dots + s_NL_N) = [s_1L_1[-k] + \dots + s_NL_N[-k], s_1L_1[-k+1] + \dots + s_NL_N[-k+1], s_1L_1[-1] + \dots + s_NL_N[-1]]$

Where $k = min(length(L_i))$ and L[-i] refers to the *i*th last element of *L*.

Open problem: Is λ a distributive law of \mathbb{Q} over \mathbb{E} ?

Comonad Generalisation

- When we view the prefix list functor as a container, we can think of the distributive law described previously as a two-step process:
 - 1. Identifying the common subshape of all the non-empty lists in $D_{S}N(X)$.
 - 2. Merge together the elements at each position of the common subshape, while ignoring elements at other positions.
- This idea can be adapted and used to come up with distributive laws for other containers. For example, we can construct distributive laws of $D_{\mathbb{S}}$ over the stream comonad or the binary suffix tree comonad.

Open problem: How abstractly can this distributive law be stated? Does it work for all comonads whose underlying functor is a container?

Open problem: More generally, can we come up with an axiomatic account of when mixed distributive laws can or cannot exist?