From profinite words to profinite λ -terms Vincent Moreau, joint work with Paul-André Melliès and Sam van Gool Resources in Computation project meeting September 22, 2022 IRIF, Université Paris Cité, Inria Paris #### Context of the talk Two different kinds of automata: - Deterministic automata (in FinSet) - Non-deterministic automata (in FinRel) Profinite methods are well established for words using finite monoids. Contribution: definition of profinite λ -terms in any model and proof that Profinite words are in bijection with deterministic profinite λ -terms using the Church encoding of words and Reynolds parametricity. This leads to a notion of non-deterministic profinite λ -term in **FinRel**. # Interpreting words as λ -terms ## Simply typed λ -terms λ -terms are defined by the grammar $$M, N ::= x \mid \lambda x.M \mid MN.$$ Simple types are generated by the grammar $$A, B ::= o \mid A \Rightarrow B.$$ For simple types, typing derivations are generated by the following three rules: $$\frac{\Gamma, x : A \vdash x : A}{\Gamma, x : A \vdash x : A} \quad \text{Var} \quad \frac{\Gamma \vdash M : A \Rightarrow B \quad \Gamma \vdash N : A}{\Gamma \vdash MN : B} \quad \text{App} \quad \frac{\Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x . M : A \Rightarrow B} \quad \text{Abs}$$ ## The Church encoding for words Any natural number n can be encoded in the simply typed λ -calculus as $$S: \Phi \Rightarrow \Phi, Z: \Phi \vdash \underbrace{S(\ldots(SZ))}_{n \text{ applications}}: \Phi.$$ A natural number is just a word over a one-letter alphabet. For example, the word abba over the two-letter alphabet $\{a,b\}$ $$a: o \Rightarrow o, b: o \Rightarrow o, c: o \vdash a(b(b(ac))): o.$$ is encoded as the closed λ -term $$\lambda a.\lambda b.\lambda c.a(b(b(ac)))$$: $\underbrace{(o\Rightarrow o)}_{\text{letter }a} \Rightarrow \underbrace{(o\Rightarrow o)}_{\text{letter }b} \Rightarrow \underbrace{o}_{\text{input}} \Rightarrow \underbrace{o}_{\text{output}}$. ## **Categorical interpretation** Let **C** be a cartesian closed category. In order to interpret the simply typed λ -calculus in **C**, we pick an object Q of **C** in order to interpret the base type Φ and define, for any simple type A, the object $$[\![A]\!]_Q$$ by induction, as follows: The simply typed λ -terms are then interpreted by structural induction on their type derivation using the cartesian closed structure of **C**. # The category FinSet Fact. The category FinSet is cartesian closed: there is a bijection $$\mathsf{FinSet}(A \times B, C) \cong \mathsf{FinSet}(B, A \Rightarrow C)$$ natural in A and C, where $A \Rightarrow C$ is the set of functions from A to C. In particular, given a finite set Q used to interpret o, every word w over the alphabet $\Sigma = \{a, b\}$ seen as a λ -term $$\vdash W : \underbrace{(o \Rightarrow o)}_{\text{letter } a} \Rightarrow \underbrace{(o \Rightarrow o)}_{\text{letter } b} \Rightarrow \underbrace{o}_{\text{input}} \Rightarrow \underbrace{o}_{\text{output}}$$ can be interpreted in FinSet as $$\llbracket w \rrbracket_Q \in (Q \Rightarrow Q) \Rightarrow (Q \Rightarrow Q) \Rightarrow Q \Rightarrow Q$$ which describes how the word will interact with a deterministic automaton. # Entering the profinite world ### **Profinite words** ### **Definition.** A **profinite word** is a family of maps $u_M: \operatorname{Hom}(\Sigma^*,M) \longrightarrow M$ where M ranges over all finite monoids such that for every pair of homomorphisms $p: \Sigma^* \to M$ and $f: M \to N$, with M and N finite monoids, we have $u_N(f \circ p) = f(u_M(p))$, i.e. the following diagram commutes: $$\begin{array}{ccc} \mathsf{Hom}(\Sigma^*, M) & \xrightarrow{f \circ -} & \mathsf{Hom}(\Sigma^*, N) \\ \downarrow u_M & & \downarrow u_N \\ M & \xrightarrow{f} & N \end{array}$$ **Remark.** Any word $w \in \Sigma^*$ induces a profinite word u whose components are u_M : $p \mapsto p(w)$ where M ranges over all finite monoids. ### A profinite word which is not a word In any finite monoid M, all elements $m \in M$ have a unique power m^n (for $n \ge 1$) which is idempotent, i.e. such that $m^n m^n = m^n$. It is obtained for n = |M|!. Let w be any word over Σ . The family of maps $$u_M: \begin{array}{ccc} \operatorname{Hom}(\Sigma^*,M) & \longrightarrow & M \\ f & \longmapsto & f(w)^{|M|!} \end{array}$$ where M ranges over all finite monoids is an profinite word written w^{ω} which is not a finite word. The set of profinite words is endowed with a monoid structure computed pointwise. In that setting, w^{ω} is idempotent. # Key property: parametricity of profinite words **Definition.** Given M, N two finite monoids and $R \subseteq M \times N$, we say that R is a **monoidal relation** $M \rightarrow N$ if it is a submonoid of $M \times N$. This means that $$(e_M, e_N) \in R$$ and for all (m, n) and (m', n') in R , we have $(mm', nn') \in R$. **Proposition.** Let $u = (u_M)$ be a family of maps. The following are equivalent: - u is profinite - for every pair of homomorphisms $p: \Sigma^* \to M$ and $q: \Sigma^* \to N$ with M and N finite monoids, and for any monoidal relation $R: M \to N$, if for all $w \in \Sigma^*$ we have $(p(w), q(w)) \in R$, then $(u_M(p), u_N(q)) \in R$. # Parametric λ -terms # Definition of logical relations Recall that for any set Q we have defined the set $$[\![A]\!]_Q$$ by structural induction on the type A. We extend the construction to set-theoretic relations $R: P \rightarrow Q$, giving a relation $$\llbracket A \rrbracket_R : \llbracket A \rrbracket_P \to \llbracket A \rrbracket_Q.$$ by structural induction on the type A: # Double categories and main example A double category is given by the data of objects together with - 1-cells: vertical (\rightarrow) and horizontal (\rightarrow) arrows, - 2-cells: squares (⇒) between pairs of vertical and horizontal arrows which can be composed both horizontally or vertically. **Example.** the category whose objects are finite sets, vertical arrows are functions, horizontal arrows are relations and whose squares are unique and exist when: $$X \xrightarrow{R} Y$$ $$f \downarrow \qquad \downarrow g \qquad \text{iff} \qquad \forall x \in X, y \in Y, \quad \text{if } (x, y) \in R \quad \text{then } (f(x), g(y)) \in R'$$ $$X' \xrightarrow{R'} Y'$$ # Double categories as internal categories The category **Cat** of categories has pullbacks. **Definition.** A double category is a diagram $$\begin{array}{c} D_1 \\ s \left(\begin{array}{c} \uparrow i \\ D_0 \end{array} \right) t \end{array}$$ where $s \circ i = Id_{D_0} = t \circ i$, together with $m : D_1 \times_{D_0} D_1 \to D_1$ such that $s \circ m = s \circ \pi_1$ and $t \circ m = t \circ \pi_2$ such that the following monoidal identities hold: $$D_{1} \times_{D_{0}} D_{1} \times_{D_{0}} D_{1} \xrightarrow{\operatorname{Id}_{D_{1}} \times m} D_{1} \times_{D_{0}} D_{1}$$ $$m \times \operatorname{Id}_{D_{1}} \downarrow \qquad \qquad \downarrow m$$ $$D_{1} \times_{D_{0}} D_{1} \xrightarrow{m} D_{1}$$ # FinSet as an internal category **Example.** We can endow **FinSet** with a structure of double category: - the category D_0 is **FinSet** - the category D_1 is the category whose objects are relations $R: X \to Y$ and a morphism $f: (R: X \to Y) \to (R': X' \to Y')$ is a pair of functions $f_1: X \to X'$ and $f_2: Y \to Y'$ such that if $$(x,y) \in R$$ then $(f_1(x), f_2(y)) \in R'$. We take $s(R:X \to Y) = X$ and $t(R:X \to Y) = Y$. If $R:X \to Y$ and $R':Y \to Z$, we let $$m(R, R') = R \circ R' = \{(x, z) \in X \times Z \mid \exists y \in Y, (x, y) \in R, (y, z) \in R'\}$$. # Cartesian double categories A double category **D** is cartesian if the pairs of squares $$\begin{array}{cccc} X & \xrightarrow{R} & Y & & X & \xrightarrow{R} & Y \\ f_1 \downarrow & \downarrow C_1 & \downarrow g_1 & & f_2 \downarrow & \downarrow C_2 & \downarrow g_2 \\ X_1 & \xrightarrow{S_1} & Y_1 & & X_2 & \xrightarrow{S_2} & Y_2 \end{array}$$ is in bijection with the set of squares $$X \xrightarrow{R} Y$$ $$\langle f_1, f_2 \rangle \downarrow \qquad \qquad \downarrow \langle C_1, C_2 \rangle \qquad \downarrow \langle g_1, g_2 \rangle$$ $$X_1 \times X_2 \xrightarrow{S_1 \times S_2} Y_1 \times Y_2$$ and the horizontal morphism $Id_1: 1 \rightarrow 1$ is terminal. Internally: D_0 and D_1 are cartesian and s and t strictly respect the cartesian structure. ## Cartesian closed double categories A cartesian double category **D** is closed if the set of squares $$\begin{array}{ccc} X_1 \times X_2 & \xrightarrow{R_1 \times R_2} & Y_1 \times Y_2 \\ f \downarrow & & \downarrow c & \downarrow g \\ X & \xrightarrow{R} & Y \end{array}$$ is in bijection with the set of squares $$X_{2} \xrightarrow{R_{2}} Y_{2}$$ $$Cur(f) \downarrow \qquad \qquad \downarrow Cur(C) \qquad \downarrow Cur(g)$$ $$X_{1} \Rightarrow X \xrightarrow{R_{1} \Rightarrow R} Y_{1} \Rightarrow Y$$ Internally: D_0 and D_1 are CCCs and s and t strictly respect the CCC structure. Fact. The double category of finite sets is cartesian closed. #### Parametric λ -terms Let us consider a cartesian closed double category. **Definition.** Let A be a simple type. A parametric λ -term of type A is the data - a family of vertical maps $\theta_Q: 1 \to \llbracket A \rrbracket_Q$ where Q ranges over all objects - a family of squares $\theta_R: \mathsf{Id}_1 \Rightarrow [\![A]\!]_R$ where R ranges over all horizontal arrows such that the horizontal source and target of a square θ_R for $R:P\to Q$ are the maps θ_P and θ_Q , which we can represent as ## Parametric λ -terms and profinite words In the case of **FinSet**, a parametric λ -term of type A amounts to a family $\theta_Q \in [\![A]\!]_Q$ where Q ranges over all finite sets, such that, for every binary relation $R: P \rightarrow Q$, we have $$(\theta_P, \theta_Q) \in [A]_R$$. **Theorem.** Parametric λ -terms define a cartesian closed category, and the parametric λ -terms of type $$\mathsf{Church}_{\Sigma} \ := \ \underbrace{(\circ \Rightarrow \circ) \Rightarrow \ldots \Rightarrow (\circ \Rightarrow \circ)}_{|\Sigma| \ \mathsf{times}} \Rightarrow (\circ \Rightarrow \circ)$$ are in bijection with the profinite words on Σ . ### Conclusion #### Current & future work: - find a syntax for parametric λ -terms of any type in the deterministic model; - determine the parametric λ -terms of type Church_Σ in the model associated to nondeterministic automata; - investigate a generalization of logic on words with MSO to a logic on λ -terms. ### Conclusion #### Current & future work: - find a syntax for parametric λ -terms of any type in the deterministic model; - determine the parametric λ -terms of type Church_Σ in the model associated to nondeterministic automata; - investigate a generalization of logic on words with MSO to a logic on λ -terms. Thank you for your attention! Any questions? # Bibliography | [Geh13] | Mai Gehrke. Stone duality, topological algebra, and recognition. 2013. DOI: 10.48550/ARXIV.1309.2422. URL: https://arxiv.org/abs/1309.2422. | |---------|--| | [GS16] | Samuel J. v. Gool and Benjamin Steinberg. <i>Pro-aperiodic monoids via saturated models</i> . 2016. DOI: 10.48550/ARXIV.1609.07736. URL: https://arxiv.org/abs/1609.07736. | | [Mel17] | Paul-André Melliès. "Higher-order parity automata". In: Proceedings of
the 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2017, Reykjavik, Iceland, 2017. 2017, pp. 1–12. | | [Pin] | Jean-Eric Pin. "Profinite Methods in Automata Theory". In: 26th International Symposium on Theoretical Aspects of Computer Science | International Symposium on Theoretical Aspects STACS 2009. IBFI Schloss Dagstuhl. URL: https://hal.inria.fr/inria-00359677. ## Cartesian closed categories The λ -calculus is about applying functions to arguments. The simply typed λ -calculus is interpreted using cartesian closed categories. A cartesian closed category **C** is a category: - with finite products - such that for every object A, the functor $$A \times - : C \rightarrow C$$ has a right adjoint $$A \Rightarrow -: \mathbf{C} \to \mathbf{C}$$. This is the categorified version of an implicative \land -semilattice. # Proof that profinite words are parametric Para \implies Pro. Let $p: \Sigma^* \to M$. Any morphism $u: M \to N$ induces a monoidal relation $R: M \to N$ which is its graph. By parametricity, $u_N(f \circ p) = f(u_M(p))$. **Pro** \Longrightarrow **Para.** Let $p: \Sigma^* \to M$ and $q: \Sigma^* \to N$ be homomorphisms and $R: M \to N$ be a monoidal relation such that for all $$w \in \Sigma^*$$, $(p(w), q(w)) \in R$. The monoidal relation R induces a submonoid $i: S \hookrightarrow M \times N$. Because of the above-stated property, there is $h: \Sigma^* \to S$ such that $i \circ h = \langle p, q \rangle$. Therefore, $$(u_{M}(p), u_{N}(q)) = (\pi_{1}(u_{M\times N}(\langle p, q \rangle)), \pi_{2}(u_{M\times N}(\langle p, q \rangle)))$$ $$= u_{M\times N}(\langle p, q \rangle)$$ $$= i(u_{S}(h)).$$ We obtain that $(u_M(p), u_N(q)) \in R$, so u is parametric. # The inverse bijections T and W $Pro \rightarrow Para$. Every profinite word u induces a parafinite term with components $$T(u)_Q$$: $\Sigma \Rightarrow (Q \Rightarrow Q) \longrightarrow Q \Rightarrow Q$ $p \longmapsto u_{Q \Rightarrow Q}(p)$ given the fact that $Q \Rightarrow Q$ is a monoid for the function composition. Para \rightarrow Pro. Every parametric term θ induces a profinite word with components $$W(\theta)_{M} : \begin{array}{c} \Sigma \Rightarrow M \longrightarrow M \\ p \longmapsto \theta_{M}(i_{M} \circ p)(e_{M}) \end{array} \begin{array}{c} \Sigma \Rightarrow (M \Rightarrow M) \xrightarrow{\theta_{M}} M \Rightarrow M \\ \downarrow -(e_{M}) \\ \Sigma \Rightarrow M \xrightarrow{W(\theta)_{M}} M \end{array}$$ where $i_M: M \to (M \Rightarrow M)$ is the Cayley embedding. These are bijections between profinite words and parametric λ -terms. Let u be a profinite word. Recall that $u_M : (\Sigma \Rightarrow M) \to M$. Its associated parametric λ -term T(u) has components $$T(u)_Q = u_{(Q \Rightarrow Q)}$$ Its associated profinite word W(T(u)), for $p : \Sigma \to M$, is equal to $$W(T(u))_{M}(p) = T(u)_{M}(i_{M} \circ p)(e_{M}) = u_{(M \Rightarrow M)}(i_{M} \circ p)(e_{M})$$ In order to show that W(T(u)) is u, we use the parametricity of profinite words. We consider the moinoidal logical relation $R \subseteq (M \Rightarrow M) \times M$ defined as $$R := \{(f, m) \in (M \Rightarrow M) \times M \mid \forall n \in M, f(n) = m \cdot n\}$$ We have that $$(i_M \circ p, p) \in [\![o \times \cdots \times o]\!]_R$$ because for all $a \in \Sigma$, for all $m \in I$, $(i_M \circ p)(a)(m) = p(a) \cdot m$. By parametricity of u applied to R, we have that $$(u_{(M\Rightarrow M)}(i_M \circ p), u_M(p)) \in \llbracket \mathfrak{o} \Rightarrow \mathfrak{o} \rrbracket_R$$ which means, by definition of $[\![o \Rightarrow o]\!]_R$, that for all $$(f, m) \in R$$, we have $(u_{(M \Rightarrow M)}(i_M \circ p)(f), u_M(p)(m)) \in R$ which gives the desired result: $$W(T(u)) = u_{(M \Rightarrow M)}(i_M \circ p)(e_M) = u_M(p)(m).$$ Let θ be a parafinite term. Recall that $\theta_Q \in (\Sigma \Rightarrow (Q \Rightarrow Q)) \Rightarrow (Q \Rightarrow Q)$. Its associated profinite word $W(\theta)$ is equal, for $p: \Sigma \to M$, to $$W(\theta)_{M}(p) = \theta_{M}(i_{M} \circ p)(e_{M}).$$ Its reassociated parametric λ -term $T(W(\theta))$ has components $$T(W(\theta))_Q = W_{(Q \Rightarrow Q)}.$$ We want to show that, for all $p : \Sigma \to (Q \Rightarrow Q)$, we have $\theta_Q(p) = T(W(\theta))_Q(p)$, i.e. for all $$q_0 \in Q$$, $\theta_{(Q \Rightarrow Q)}(i_{(Q \Rightarrow Q)} \circ p)(\operatorname{Id}_Q)(q_0) = \theta_Q(p)(q_0)$ To show that, we introduce, for any $q_0 \in Q$, the logical relation $$R_{q_0} := \{(f,q) \in (Q \Rightarrow Q) \times Q \mid f(q_0) = q\}.$$ First, we have $$(i_{(Q\Rightarrow Q)}\circ p,p)\in \llbracket(\mathfrak{o}\Rightarrow \mathfrak{o})\times\cdots\times(\mathfrak{o}\Rightarrow \mathfrak{o})\rrbracket_{R_{q_0}}$$ because for all $a\in \Sigma$, for all $(f,q)\in R$, we have $(i_{(Q\Rightarrow Q)}\circ p)(a)(f)(q_0)=p(a)(f(q_0))=p(a)(q)$ By parametricity of θ , we obtain that $(\theta_{(Q\Rightarrow Q)}(i_{(Q\Rightarrow Q)}\circ p), \theta_Q(p))\in \llbracket \Phi\Rightarrow \Phi\rrbracket_{R_{q_0}}.$ Given the fact that $(\mathrm{Id}_Q,q_0)\in R_{q_0}$ and by definition of $\llbracket \Phi\Rightarrow \Phi\rrbracket_{R_{q_0}}$, we obtain that $$\theta_{(Q\Rightarrow Q)}(i_{(Q\Rightarrow Q)}\circ p)(\mathrm{Id}_Q)(q_0)=\theta_Q(p)(q_0)$$ which concludes the proof.