Arboreal categories

Luca Reggio joint work with Samson Abramsky

University College London

Resources in Computation

London, September 23, 2022

- 1. Recap on Game Comonads
- 2. Arboreal Categories
- 3. Homomorphism Preservation Theorems

Recap on Game Comonads

Model comparison games (Ehrenfeucht-Fraïssé, pebble, bisimulation games, etc.) yield semantic characterisations of logical equivalences:

$$\mathcal{A}\equiv^{\mathcal{L}}\mathcal{B}\iff \forall arphi\in\mathcal{L}. \; (\mathcal{A}\modelsarphi\iff\mathcal{B}\modelsarphi)$$

- If L = FO, then ≡^L coincides with elementary equivalence (cf. Keisler-Shelah theorem). In general, we are interested in resource-bounded fragments of FO.
- Game comonads arise from the idea that model comparison games should be seen as semantic constructions in their own right.
- Category theoretic view on resource-sensitive Model Theory. (Or Model Theory without Compactness.)

The Ehrenfeucht-Fraïssé comonad \mathbb{E}_k (see board)

The right adjoint is uniquely determined by the forgetful functor, and the comonad by the adjunction. Moreover, the adjunction is comonadic, hence the category of coalgebras for \mathbb{E}_k is exactly $\mathcal{R}_k^E(\sigma)$.

This gives us:

- The Ehrenfeucht-Fraïssé game
- Equivalences of structures induced by:
 - ► The fragment FO_k of FO consisting of sentences with quantifier rank ≤ k
 - ▶ The existential positive fragment $\exists^+ FO_k$ of FO_k
 - ▶ The extension $FO_k(\#)$ of FO_k with counting quantifiers
- We also recover the combinatorial parameter of tree-depth from the coalgebras of the comonad

This template can be used to give similar analyses of a wealth of other logical and combinatorial notions (e.g. pebble and bisimulation games).

Arboreal categories

Paths

Let \mathcal{C} be a category equipped with a proper factorisation system (Ω, \mathcal{M}) . Arrows in Ω are called quotients and arrows in \mathcal{M} embeddings.

Definition

An object X of C is called a path provided the poset S X of M-subobjects of X is a finite chain. Paths will be denoted by P, Q, \ldots

Example

Paths in $\mathcal{R}_k^E(\sigma)$ are the forest-ordered structures (A, \leq) such that \leq is a linear order of cardinality at most k.

($\Omega =$ surjective morphisms, $\mathcal{M} =$ morphisms that are σ -embeddings)

Arboreal categories defined

Definition

An arboreal category is a category \mathcal{C} , equipped with a stable proper factorisation system, that satisfies the following conditions:

- $1.\ \ \mathcal{C}$ has all coproducts of small families of paths.
- 2. For any paths P, Q, Q' in C, if a composite $P \to Q \to Q'$ is a quotient, then so is $P \to Q$.
- 3. Every object of $\ensuremath{\mathfrak{C}}$ is the colimit of its path embeddings.
- 4. Every path in $\ensuremath{\mathfrak{C}}$ is connected.

Example

 $\mathcal{R}_{k}^{E}(\sigma)$ is arboreal. Similarly, the categories of coalgebras for the game comonads \mathbb{P}_{k} and \mathbb{M}_{k} are arboreal.

The functor of paths

Given any object X of C, we let $\mathbb{P} X$ denote the sub-poset of $\mathbb{S} X$ consisting of the path embeddings.

Theorem

Let \mathcal{C} be an arboreal category. Then the assignment $X \mapsto \mathbb{P} X$ induces a functor $\mathbb{P}: \mathcal{C} \to$ **Trees** into the category of trees.

Some useful properties of paths:

Proposition

The following statements hold in any arboreal category $\ensuremath{\mathbb{C}}$:

- 1. Paths are closed under quotients and embeddings.
- 2. Between any two paths there is at most one embedding.
- 3. $\forall X \in \mathbb{C}$, $\mathbb{S} X$ is isomorphic to the lattice of downsets of $\mathbb{P} X \setminus \{\bot\}$.

Pathwise embeddings and open morphisms

Definition

Let $f: X \to Y$ be a morphism in an arboreal category \mathcal{C} .

- 1. f is a pathwise embedding if, for all path embeddings $m: P \rightarrow X$, the composite $f \circ m: P \rightarrow Y$ is a path embedding.
- 2. f is open if it satisfies the following path-lifting property: Given any commutative square

with P, Q paths, there is Q o X making the two triangles commute.

Joyal, Nielson, and Winskel. *Bisimulation and open maps*. LiCS'93.

Bisimilarity

Definition

Objects X, Y of an arboreal category C are bisimilar is there exists a span of open pathwise embeddings connecting them:

Using the functor $\mathbb{P}: \mathbb{C} \to \text{Trees}$ we can define a back-and-forth game $\mathcal{G}(X, Y)$ that captures bisimilarity:

Theorem

Suppose that X and Y admit a product in \mathbb{C} . Then they are bisimilar if, and only if, Duplicator has a winning strategy in the game $\mathcal{G}(X, Y)$.

Games in arboreal categories

The back-and-forth game $\mathcal{G}(X, Y)$ is played by Spoiler and Duplicator on the trees $\mathbb{P}X$ and $\mathbb{P}Y$ as follows:

- Positions in the game are pairs $(m, n) \in \mathbb{P}X \times \mathbb{P}Y$.
- ▶ The winning relation $W(X, Y) \subseteq \mathbb{P} X \times \mathbb{P} Y$ consists of the pairs (m, n) such that dom $(m) \cong$ dom(n).
- Let ⊥_X: P → X and ⊥_Y: Q → Y be the roots of ℙX and ℙY, respectively. If P ≇ Q, then Duplicator loses the game. Otherwise, the initial position is (⊥_X, ⊥_Y).
- At the start of each round, the position is specified by a pair (m, n) ∈ ℙX × ℙY, and the round proceeds as follows: Either Spoiler chooses some m' ≻ m and Duplicator must respond with some n' ≻ n, or Spoiler chooses some n'' ≻ n and Duplicator must respond with m'' ≻ m.
- Duplicator wins the round if they are able to respond and the new position is in W(X, Y). Duplicator wins the game if they win the k-round game for every k ≥ 0.

Resource indexing

Let \mathcal{C} be an arboreal category, with full subcategory of paths \mathcal{C}_p . \mathcal{C} is resource-indexed by a resource parameter k if for all k > 0, there is a full subcategory \mathcal{C}_p^k of \mathcal{C}_p closed under embeddings with

$$\mathcal{C}^1_p \hookrightarrow \mathcal{C}^2_p \hookrightarrow \mathcal{C}^3_p \hookrightarrow \cdots$$

This induces a corresponding tower of full subcategories \mathcal{C}_k of \mathcal{C} , with the objects of \mathcal{C}_k those generated by the paths in \mathcal{C}_p^k .

Definition

Let $\{\mathcal{C}_k\}$ be a resource-indexed arboreal category. A resource-indexed arboreal adjunction between \mathcal{E} and \mathcal{C} is a family of adjunctions

$$\mathcal{C}_k \xrightarrow[]{L_k} \mathcal{E}_k$$

Resource-indexed relations

Every resource-indexed arboreal adjunction between \mathcal{E} and \mathcal{C} induces resource-indexed relations $\rightarrow_{k}^{\mathcal{C}}$, $\leftrightarrow_{k}^{\mathcal{C}}$ and $\cong_{k}^{\mathcal{C}}$ on \mathcal{E} .

- $a \rightarrow_k^{\mathbb{C}} b$ if there exists a morphism $R_k a \rightarrow R_k b$ in \mathbb{C}_k .
- ▶ $a \leftrightarrow_k^{\mathbb{C}} b$ if $R_k a$ and $R_k b$ are bisimilar in \mathbb{C}_k .
- ▶ $a \cong_k^{\mathbb{C}} b$ if $R_k a$ and $R_k b$ are isomorphic in \mathbb{C}_k .

Example

For the Ehrenfeucht-Fraïssé resource-indexed arboreal adjunction,

•
$$\rightarrow^{\mathbb{C}}_{k}$$
 coincides with $\Rrightarrow^{\exists^{+}\mathrm{FO}_{k}}$

•
$$\leftrightarrow_k^{\mathbb{C}}$$
 coincides with \equiv^{FO_k}

▶ $\cong_k^{\mathbb{C}}$ coincides with $\equiv^{\mathrm{FO}_k(\#)}$.

(FO_k is first-order logic with quantifier rank at most k.)

And similarly for pebble, bisimulation games, etc.

Homomorphism Preservation Theorems

Abramsky and Reggio. Arboreal categories and homomorphism preservation theorems. In preparation.

Łoś, Lyndon and Tarski

- Homomorphism preservation theorems relate the syntactic shape of a sentence with the semantic property of being preserved under (various classes of) homomorphisms between structures.
- A first-order sentence φ in a (relational) vocabulary σ is said to be preserved under homomorphisms if, whenever there is a homomorphism of σ-structures A → B, A ⊨ φ entails B ⊨ φ.

Theorem (Łoś, Lyndon and Tarski, 1950s)

A first-order sentence φ is preserved under homomorphisms if, and only if, it is equivalent to an existential positive sentence ψ .

The Equirank HPT

- The HPT is a fairly straightforward consequence of the compactness theorem for first-order logic.
- Ineffective approach if we want to determine to which extent the passage from φ to ψ increases the "complexity" of the former.
- One way to measure the complexity of a formula is in terms of its quantifier rank, *i.e.* the maximum number of nested quantifiers appearing in the formula.

Theorem (Rossman, 2007)

A first-order sentence of quantifier rank $\leq k$ is preserved under homomorphisms if, and only if, it is equivalent to an existential positive sentence of quantifier rank $\leq k$. The Equirank HPT is the "first step" in the proof of Rossman's celebrated Finite HPT:

Theorem (Rossman, 2007)

A first-order sentence is preserved under homomorphisms between finite structures if, and only if, it is equivalent over finite structures to an existential positive sentence.

Model classes

Fix a resource-indexed arboreal adjunction between $\Re(\sigma)$ and \mathcal{C} .

Lemma

Let \mathcal{L}_k be a finite Boolean subalgebra of FO such that $\Leftrightarrow_k^{\mathbb{C}} \equiv \equiv^{\mathcal{L}_k}$. The following are equivalent for any full subcategory \mathcal{D} of $\Re(\sigma)$:

- 1. $\mathcal{D} = \mathsf{Mod}(\varphi)$ for some $\varphi \in \mathcal{L}_k$.
- 2. \mathcal{D} is saturated under $\leftrightarrow_k^{\mathcal{C}}$, i.e. for all σ -structures \mathcal{A}, \mathcal{B} , if $\mathcal{A} \in \mathcal{D}$ and $\mathcal{A} \leftrightarrow_k^{\mathcal{C}} \mathcal{B}$, then $\mathcal{B} \in \mathcal{D}$.

Lemma

Let \mathcal{L}_k be a finite sublattice of FO such that $\rightarrow_k^{\mathbb{C}} = \Longrightarrow^{\mathcal{L}_k}$. The following are equivalent for any full subcategory \mathcal{D} of $\mathcal{R}(\sigma)$:

- 1. $\mathcal{D} = \mathsf{Mod}(\psi)$ for some $\psi \in \mathcal{L}_k$.
- 2. \mathcal{D} is upwards closed with respect to $\rightarrow_{k}^{\mathcal{C}}$, i.e. for all σ -structures \mathcal{A}, \mathcal{B} , if $\mathcal{A} \in \mathcal{D}$ and $\mathcal{A} \rightarrow_{k}^{\mathcal{C}} \mathcal{B}$, then $\mathcal{B} \in \mathcal{D}$.

(HP) and (HP $^{\#}$)

Fix an arbitrary resource-indexed arboreal adjunction between an extensional category \mathcal{E} and a resource-indexed arboreal category \mathcal{C} . For all k > 0, consider the following statement:

(HP) For any full subcategory \mathcal{D} of \mathcal{E} saturated under $\leftrightarrow_k^{\mathcal{C}}$, \mathcal{D} is closed under morphisms iff it is upwards closed with respect to $\rightarrow_k^{\mathcal{C}}$.

Example

For the Ehrenfeucht-Fraïssé resource-indexed arboreal adjunction, (HP) is precisely Rossman's equirank HPT.

Replacing $\leftrightarrow_k^{\mathcal{C}}$ with $\cong_k^{\mathcal{C}}$, we obtain a strengthening of (HP):

(HP[#]) For any full subcategory \mathcal{D} of \mathcal{E} saturated under $\cong_{k}^{\mathcal{C}}$, \mathcal{D} is closed under morphisms iff it is upwards closed with respect to $\rightarrow_{k}^{\mathcal{C}}$.

Note: the "if" parts of (HP) and (HP $^{\#}$) always hold.

The bisimilar companion property

Definition

A resource-indexed arboreal adjunction between \mathcal{E} and \mathcal{C} , with induced comonads G_k on \mathcal{E} , has the bisimilar companion property if $a \leftrightarrow_k^{\mathcal{C}} G_k a$ for all $a \in \mathcal{E}$ and all k > 0.

Proposition

Consider any resource-indexed arboreal adjunction between & and & with the bisimilar companion property. Then (HP) holds.

Proof.

Let \mathcal{D} be a full subcategory of \mathcal{E} saturated under $\leftrightarrow_k^{\mathcal{C}}$ and closed under morphisms. We must prove that, if $a \rightarrow_k^{\mathcal{C}} b$ and $a \in \mathcal{D}$, then also $b \in \mathcal{D}$. See whiteboard.

Example

The guarded comonads \mathbb{G}_k , introduced in

 S. Abramsky and D. Marsden, Comonadic semantics for guarded fragments, LiCS 2021

have the bisimilar companion property. So, we get an "equi-resource" homomorphism preservation theorem for guarded logics.

Next, we look at a strengthening of the bisimilar companion property.

Idempotency

Definition

A resource-indexed arboreal adjunction between \mathcal{E} and \mathcal{C} is idempotent if so are the induced comonads G_k , *i.e.* $\delta_a \colon G_k a \to G_k G_k a$ is an isomorphism for all $a \in \mathcal{E}$ and all k > 0.

Proposition

Consider any idempotent resource-indexed arboreal adjunction between ϵ and c. Then (HP^{\#}) holds.

Proof.

If G_k is idempotent then, for all $a \in \mathcal{E}$, we have $a \cong_k^{\mathcal{C}} G_k a$. The statement follows by reasoning as in the previous proposition.

Example

The modal comonads \mathbb{M}_k on pointed Kripke structures are idempotent. Thus, we obtain the following "equidepth" homomorphism preservation theorem for (graded) modal logic:

Theorem

A graded modal formula $\varphi \in ML_k(\#)$ is preserved under homomorphisms between pointed Kripke structures iff it is equivalent to an existential positive modal formula $\psi \in \exists^+ ML_k$.

"Forcing" the bisimilar companion property

Tame vs wild

- ▶ Tame (bisimilar companion property): guarded and modal logics.
- Wild (no bisimilar companion property): bounded quantifier rank, finite variable logics, hybrid logic, etc.

Rossman's equirank homomorphism preservation theorem essentially forces the bisimilar companion property:

 a^* and $(G_k a)^*$ are k-extendable covers of a and $G_k a$, respectively.

Axioms for the extensional category

We require that the category $\boldsymbol{\mathcal{E}}$ have the following properties:

- (E1) \mathcal{E} has all finite limits and small colimits.
- (E2) \mathcal{E} is equipped with a proper factorisation system such that:
 - Embeddings are stable under pushouts along embeddings.
 - Pushout squares of embeddings are also pullbacks.
 - Pushout squares of embeddings are stable under pullbacks along embeddings.

Remark

These are essentially the axioms for adhesive categories.

Example

 $\Re(\sigma)$ satisfies (E1)–(E2). Pointed σ -structures also satisfy (E1)–(E2). In fact, these axioms are stable under coslices.

Axioms for the resource-indexed adjunctions

We now assume that the extensional category \mathcal{E} satisfies (E1)–(E2), and introduce conditions on the resource-indexed arboreal adjunction between \mathcal{E} and \mathcal{C} . We require the following properties for all k > 0:

(A1) C_p^k is locally finite and has finitely many objects up to isomorphism.

(A2) For all paths $P \in \mathbb{C}_p^k$, $L_k P$ is finitely presentable in \mathcal{E} .

(A3) The path restriction property is satisfied.

(A4) An arrow $m: P \to R_k a$, with $P \in \mathbb{C}_p^k$, is an embedding in \mathbb{C}_k precisely when $m^{\#}: L_k P \to a$ is an embedding in \mathcal{E} .

Theorem

Consider a resource-indexed arboreal adjunction between \mathcal{E} and \mathcal{C} satisfying (E1)–(E2) and (A1)–(A4). For all $a \in \mathcal{E}$ and all k > 0, there exists a k-extendable cover of a.

Corollary

(HP) holds for all resource-indexed arboreal adjunctions satisfying (E1)–(E2) and (A1)–(A4).

Applying the corollary to the Ehrenfeucht-Fraïssé resource-indexed arboreal adjunction, we recover the equirank HPT.

Relativisations to full subcategories are also available.

Remark

The hybrid comonads \mathbb{H}_k do not seem to have the path restriction property, i.e. (A3) fails. Also, $\mathbb{P}_{n,k}$ does not satisfy (A4).

Thank you for your attention!