
Rafał Stefański, UCL

Monads, comonads, and Mealy machines
Structure and Power workshop 2022

Regular languages, automata, and monads

Regular languages, automata, and monads

M. Bojańczyk. Recognisable languages over monads.

M. Bojańczyk, B. Klin, J. Salamanca. Monadic Monadic Second Order Logic.

M. Bojańczyk. Languages recognised by finite semigroups, and their
generalisations to objects such as trees and graphs, with an emphasis on
definability in monadic second-order logic.

Deterministic finite automata

The input word contains an odd number of a's

L ⊆ {a, b}*

Monoids

(A, 1, ⋅)

a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c

1 ⋅ a = a = a ⋅ 1

(ℤ2, 0, +)

({a, b}*, ϵ, ⋅)

(ℕ, 0, max)

Monoids

Finite monoids and regular languages

A h : Σ → A f : A → {Yes, No}

Finite monoids and regular languages

A h : Σ → A f : A → {Yes, No}

Σ* ⟶ A* ⟶ A ⟶ {Yes, No}

Finite monoids and regular languages

M h : Σ → M f : M → {Yes, No}

Σ* ⟶ A* ⟶ A
h* : Σ*→A

⟶ {Yes, No}

Finite monoids and regular languages
The input word contains an odd number of a's

a a b b a b

Finite monoids and regular languages
The input word contains an odd number of a's

a a b b a b
Σ = {a, b}

A = ℤ2

Finite monoids and regular languages
The input word contains an odd number of a's

a a b b a b
Σ = {a, b}

A = ℤ2

{a, b}* ⟶ ℤ*2 ⟶ ℤ2 ⟶ {Yes, No}

Finite monoids and regular languages
The input word contains an odd number of a's

a a b b a b
h(a) = 1
h(b) = 0

{a, b}* ⟶ ℤ*2 ⟶ ℤ2 ⟶ {Yes, No}

Finite monoids and regular languages
The input word contains an odd number of a's

1 a b b a b
h(a) = 1
h(b) = 0h(b) = 0

{a, b}* ⟶ ℤ*2 ⟶ ℤ2 ⟶ {Yes, No}

Finite monoids and regular languages
The input word contains an odd number of a's

1 1 b b a b
h(a) = 1
h(b) = 0h(b) = 0

{a, b}* ⟶ ℤ*2 ⟶ ℤ2 ⟶ {Yes, No}

Finite monoids and regular languages
The input word contains an odd number of a's

1 1 0 b a b
h(a) = 1
h(b) = 0h(b) = 0

{a, b}* ⟶ ℤ*2 ⟶ ℤ2 ⟶ {Yes, No}

Finite monoids and regular languages
The input word contains an odd number of a's

1 1 0 0 1 0

{a, b}* ⟶ ℤ*2 ⟶ ℤ2 ⟶ {Yes, No}

Finite monoids and regular languages
The input word contains an odd number of a's

1100101
f(0) = No
f(1) = Yes

{a, b}* ⟶ ℤ*2 ⟶ ℤ2 ⟶ {Yes, No}

Finite monoids and regular languages
The input word contains an odd number of a's

Yes
f(0) = No
f(1) = Yes

{a, b}* ⟶ ℤ*2 ⟶ ℤ2 ⟶ {Yes, No}

Monoids: alternative defintion

(A, 𝚙𝚛𝚘𝚍 : A* → A)

𝚙𝚛𝚘𝚍([x]) = x

Monoids: alternative defintion

(A, 𝚙𝚛𝚘𝚍 : A* → A)

(A*)* A*

A* A

𝚙𝚛𝚘𝚍

𝚙𝚛𝚘𝚍

𝚏𝚕𝚊𝚝𝚝𝚎𝚗

𝚖𝚊𝚙 𝚙𝚛𝚘𝚍

Monads

(M, ηX : X → MX, μX : MMX → MX)

Monads

(M, ηX : X → MX, μX : MMX → MX)

MMMX MMX

MMX MX

μMX

μXMμX

μX

Monads

(M, ηX : X → MX, μX : MMX → MX)

MX MMX

MMX MX

ηMX

μXMμηX

μX

id

Finite lists

Finite lists

η(x) = [a]

Finite lists

η(x) = [a]

μ = 𝚏𝚕𝚊𝚝𝚝𝚎𝚗

Finite lists

Labelled orders

Finite lists

Labelled orders

η(a) = [a]

μ = 𝚏𝚕𝚊𝚝𝚝𝚎𝚗

Finite lists

Labelled orders

• Contains all -wordsω

Finite lists

Labelled orders

• Contains all -wordsω
• Submonads:

Finite lists

Labelled orders

• Contains all -wordsω
• Submonads:
• Finite orders e.g. lists

Finite lists

Labelled orders

• Contains all -wordsω
• Submonads:
• Finite orders e.g. lists
• Countable orders

Finite lists

Labelled orders

• Contains all -wordsω
• Submonads:
• Finite orders e.g. lists
• Countable orders
• Well-founded orders

Finite lists

Labelled orders

• Contains all -wordsω
• Submonads:
• Finite orders e.g. lists
• Countable orders
• Well-founded orders
• ...

Finite lists Labelled orders

Terms

Finite lists Labelled orders

Terms

Finite lists Labelled orders

Terms

Finite lists Labelled orders

Terms

Finite lists Labelled orders

Terms

Finite lists Labelled orders Terms

Forests with ports

Finite lists Labelled orders Terms

Forests with ports

Finite lists Labelled orders Terms

Forests with ports

Finite lists Labelled orders Terms

Forests with ports

Finite lists Labelled orders Terms

Forests with ports

Finite lists Labelled orders Terms Forests with ports

Monoids: alternative defintion

(A, 𝚙𝚛𝚘𝚍 : A* → A)

Eilenberg-Moore algebras

(A, 𝚙𝚛𝚘𝚍 : MA → A)

Eilenberg-Moore algebras

(A, 𝚙𝚛𝚘𝚍 : MA → A)

MMA MA

MA A

𝚙𝚛𝚘𝚍

𝚙𝚛𝚘𝚍

M 𝚙𝚛𝚘𝚍

μ

Eilenberg-Moore algebras

(A, 𝚙𝚛𝚘𝚍 : MA → A)

η
A MA

A

id 𝚙𝚛𝚘𝚍

Recognisable languages over a monad

A h : Σ → A f : A → {Yes, No}

MΣ ⟶ MA ⟶ A ⟶ {Yes, No}
Mh 𝚙𝚛𝚘𝚍 f

L ⊆ MΣ

Recognisable languages over a monad

A h : Σ → A f : A → {Yes, No}

Mh 𝚙𝚛𝚘𝚍 f
MΣ ⟶ MA ⟶ A

h* : MΣ→A

⟶ {Yes, No}

L ⊆ MΣ

Finite lists Labelled orders Terms Forests with ports

Finite lists Labelled orders Terms Forests with ports
Regular languages

Finite lists Labelled orders Terms Forests with ports
Regular languages On -words:

-regular languages
ω

ω

Finite lists Labelled orders Terms Forests with ports
Regular languages On -words:

-regular languages
ω

ω
On trees:

Regular tree languages

Mealy machines, monads, and comonads

Mealy machine

Replace every other a with b

t ∈ {a, b}* → {a, b}*

Mealy machine

a a b b a a

Mealy machine

a a b b a a
a

Mealy machine

a a b b a a
a

Mealy machine

a a b b a a
a b

Mealy machine

a a b b a a
a b

Mealy machine

a a b b a a
a b b

Mealy machine

a a b b a a
a b b

Mealy machine

a a b b a a
a b b b

Mealy machine

a a b b a a
a b b b

Mealy machine

a a b b a a
a b b b a

Mealy machine

a a b b a a
a b b b a

Mealy machine

a a b b a a
a b b b a b

Mealy machine

a a b b a a
a b b b a b

Finite monoids and Mealy machines

A h : Σ → A λ : A → Γ

Finite monoids and Mealy machines

A h : Σ → A λ : A → Γ

Σ* ⟶ (Σ*)* ⟶ (A*)* ⟶ A* ⟶ Γ*
𝚙𝚛𝚎𝚏𝚒𝚡𝚎𝚜 MMh M 𝚙𝚛𝚘𝚍 M λ

Finite monoids and Mealy machines

A h : Σ → A λ : A → Γ

Σ* ⟶ (Σ*)* ⟶ (A*)* ⟶ A*

Mh*

⟶ Γ*
𝚙𝚛𝚎𝚏𝚒𝚡𝚎𝚜 MMh M 𝚙𝚛𝚘𝚍 M λ

Finite monoids and Mealy machines

Σ* ⟶ (Σ*)* ⟶ A* ⟶ Γ*
𝚙𝚛𝚎𝚏𝚒𝚡𝚎𝚜 Mh* M λ

Replace every other a with b

Finite monoids and Mealy machines
Replace every other a with b

A = ℤ2 × {a, b}

Σ* ⟶ (Σ*)* ⟶ A* ⟶ Γ*
𝚙𝚛𝚎𝚏𝚒𝚡𝚎𝚜 Mh* M λ

Finite monoids and Mealy machines
Replace every other a with b

A = ℤ2 × {a, b}

(p1, l1) ⋅ (p2, l2) = (p1 + p2, l2)

Σ* ⟶ (Σ*)* ⟶ A* ⟶ Γ*
𝚙𝚛𝚎𝚏𝚒𝚡𝚎𝚜 Mh* M λ

Finite monoids and Mealy machines
Replace every other a with b

h(a) = (1, a)
h(b) = (0, b)

Σ* ⟶ (Σ*)* ⟶ A* ⟶ Γ*
𝚙𝚛𝚎𝚏𝚒𝚡𝚎𝚜 Mh* M λ

Finite monoids and Mealy machines
Replace every other a with b

λ(0, a) = b
λ(1, a) = a

λ(0, b) = b
λ(1, b) = b

Σ* ⟶ (Σ*)* ⟶ A* ⟶ Γ*
𝚙𝚛𝚎𝚏𝚒𝚡𝚎𝚜 Mh* M λ

Finite monoids and Mealy machines
Replace every other a with b

a b ba[]

Σ* ⟶ (Σ*)* ⟶ A* ⟶ Γ*
𝚙𝚛𝚎𝚏𝚒𝚡𝚎𝚜 Mh* M λ

Finite monoids and Mealy machines
Replace every other a with b

a b ba[]a b a[]a b[]a[][]

Σ* ⟶ (Σ*)* ⟶ A* ⟶ Γ*
𝚙𝚛𝚎𝚏𝚒𝚡𝚎𝚜 Mh* M λ

Finite monoids and Mealy machines
Replace every other a with b

(1, b)(1, a)[]

Σ* ⟶ (Σ*)* ⟶ A* ⟶ Γ*
𝚙𝚛𝚎𝚏𝚒𝚡𝚎𝚜 Mh* M λ

(0, a) (0, b)

Finite monoids and Mealy machines
Replace every other a with b

(1, b)a[]

Σ* ⟶ (Σ*)* ⟶ A* ⟶ Γ*
𝚙𝚛𝚎𝚏𝚒𝚡𝚎𝚜 Mh* M λ

(0, a) (0, b)

Finite monoids and Mealy machines
Replace every other a with b

ba[]

Σ* ⟶ (Σ*)* ⟶ A* ⟶ Γ*
𝚙𝚛𝚎𝚏𝚒𝚡𝚎𝚜 Mh* M λ

(0, a) (0, b)

Finite monoids and Mealy machines
Replace every other a with b

ba[]

Σ* ⟶ (Σ*)* ⟶ A* ⟶ Γ*
𝚙𝚛𝚎𝚏𝚒𝚡𝚎𝚜 Mh* M λ

b (0, b)

Finite monoids and Mealy machines
Replace every other a with b

ba[]

Σ* ⟶ (Σ*)* ⟶ A* ⟶ Γ*
𝚙𝚛𝚎𝚏𝚒𝚡𝚎𝚜 Mh* M λ

b b

Finite monoids and Mealy machines

Σ* ⟶ (Σ*)*𝚙𝚛𝚎𝚏𝚒𝚡𝚎𝚜

Comonads

(M, ϵX : MX → X, δX : MX → MMX)

Comonads

(M, ϵX : MX → X, δX : MX → MMX)

MMMX

MMX

MMX

MX δX

MδXδX

δMX

Comonads

(M, ϵX : MX → X, δX : MX → MMX)

MMXMX

ϵMX

δXMϵX
id

MXMMX

δX

Monad, comonad, and a transducer

A h : Σ → A λ : A → Γ

Monad, comonad, and a transducer

A h : Σ → A λ : A → Γ

MΣ ⟶ MMΣ ⟶ MA ⟶ MΓδ Mh* Mλ

Monad, comonad, and a transducer

A h : Σ → A λ : A → Γ

MΣ ⟶ MMΣ ⟶ MA ⟶ MΓδ Mh* Mλ

h * = Mh; 𝚙𝚛𝚘𝚍

Non-empty lists

Non-empty lists

ϵ([a, b, c, d]) = d

Non-empty lists

ϵ([a, b, c, d]) = d

δ([a, b, c, d]) = [[a], [a, b], [a, b, c], [a, b, c, d]]

Non-empty lists

ϵ([a, b, c, d]) = d

δ([a, b, c, d]) = [[a], [a, b], [a, b, c], [a, b, c, d]]
Mealy machines

Non-empty lists (right-to-left)

Non-empty lists (right-to-left)

ϵ([a, b, c, d]) = a

Non-empty lists (right-to-left)

ϵ([a, b, c, d]) = a

δ([a, b, c, d]) = [[a, b, c, d], [b, c, d], [c, d], [d]]

Non-empty lists (right-to-left)

ϵ([a, b, c, d]) = a

δ([a, b, c, d]) = [[a, b, c, d], [b, c, d], [c, d], [d]]
right-to-left Mealy machines

Lists with an underlined element

Lists with an underlined element

ϵ([a, b, c, d]) = c

Lists with an underlined element

ϵ([a, b, c, d]) = c

δ([a, b, c, d]) = [[a, b, c, d], [a, b, c, d], [a, b, c, d], [a, b, c, d],]

Lists with an underlined element (monad)

Lists with an underlined element (monad)

η(a) = [a]

Lists with an underlined element (monad)

η(a) = [a]

μ ([[a, b], [c, d, e], [f, g]]) = [a, b, c, d, e, f, g]

Lists with an underlined element (monad)

η(a) = [a]

μ ([[a, b], [c, d, e], [f, g]]) = [a, b, c, d, e, f, g]

letter-to-letter rational functions

Letter to letter rational functions

Letter to letter rational functions

Replace the first letter with a copy of the last letter

Letter to letter rational functions

Replace the first letter with a copy of the last letter

a a b b

Letter to letter rational functions

Replace the first letter with a copy of the last letter

a a b b
ab b b

Unambiguous (nondeterministic) Mealy machines
Replace the first letter with a copy of the last letter

Unambiguous (nondeterministic) Mealy machines
Replace the first letter with a copy of the last letter

Algebras for lists with an underlined element
A = A × A × A

prefix suffixunderlined

[(p1, x1, s1), …, (pi, xi, si), …, (pn, xn, si)] ∈ MA

Algebras for lists with an underlined element
A = A × A × A

prefix suffixunderlined

[(p1, x1, s1), …, (pi, xi, si), …, (pn, xn, si)] ∈ MA() ()

Algebras for lists with an underlined element
A = A × A × A

prefix suffixunderlined

↦
(a1 ⋅ … ⋅ ai−1 ⋅ pi, xi, si ⋅ ai+1 ⋅ … ⋅ an)

[(p1, x1, s1), …, (pi, xi, si), …, (pn, xn, si)] ∈ MA() ()

where aj = pj ⋅ xj ⋅ sj

Transducers for lists with an underlined element

A = A × A × A
prefix suffixunderlined

h : Σ → A λ : A × A × A → Γ
prefix current

letter
suffix

Transducers for lists with an underlined element

A = A × A × A
prefix suffixunderlined

h : Σ → A λ : A × A × A → Γ
prefix current

letter
suffix

Transducers for lists with an underlined element

A = A × A × A
prefix suffixunderlined

h : Σ → A λ : A × A × A → Γ

Eilenberg bimachine

prefix current
letter

suffix

Three M's for finite words

M Expressive Power

Three M's for finite words

M Expressive Power

Non-empty lists with
prefixes Mealy machines

Three M's for finite words

M Expressive Power

Non-empty lists with
prefixes Mealy machines

Non-empty lists with
suffixes

Right-to-left

Mealy machines

Three M's for finite words

M Expressive Power

Non-empty lists with
prefixes Mealy machines

Non-empty lists with
suffixes

Right-to-left

Mealy machines

Lists with an underlined
element

Rational letter-to-letter

functions

Non-empty trees

Non-empty trees

↦ϵ

Non-empty trees

↦ϵ

Non-empty trees

↦ cϵ

Non-empty trees

↦δ

Non-empty trees

↦δ

Non-empty trees

Non-empty trees

Bottom up Mealy machines

on trees

Non-empty trees

Bottom up Mealy machines

on trees

?

Trees with an underlined element

Trees with an underlined element

↦ϵ

Trees with an underlined element

↦ϵ
b

Trees with an underlined element

↦δ

Trees with an underlined element

Trees with an underlined element

Trees with an underlined element

Rational functions

on trees

Trees with an underlined element

Rational functions

on trees

?

Other examples

Other examples

• Labelled orders with a maximal element

Other examples

• Labelled orders with a maximal element

• Labelled orders with an underlined element

Other examples

• Labelled orders with a maximal element

• Labelled orders with an underlined element

• Terms with an underlined leaf

Compositions

Composition

Composition

S3, h3, λ3

Composition

Composition

• has to be strong: M 𝚜𝚝𝚛𝚎𝚗𝚐𝚑𝚝 : X × MY → M(X × Y)

Composition

• has to be strong: M 𝚜𝚝𝚛𝚎𝚗𝚐𝚑𝚝 : X × MY → M(X × Y)

• has to have: M 𝚜𝚎𝚝 : MX × X → MX

Composition

• has to be strong: M 𝚜𝚝𝚛𝚎𝚗𝚐𝚑𝚝 : X × MY → M(X × Y)

• has to have: M 𝚜𝚎𝚝 : MX × X → MX

• All those structures have to be compatible

Set structure

𝚜𝚎𝚝 : MX × X → MX

https://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial
Based on Haskell's lenses:

Set structure

𝚜𝚎𝚝 : MX × X → MX

set([a, b, c, d],) =ff

Set structure

𝚜𝚎𝚝 : MX × X → MX

[a, b, , d]set([a, b, c, d],) =ff

Set structure

𝚜𝚎𝚝 : MX × X → MX

f[a, b, , d]set([a, b, c, d],) =f

https://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial
Based on Haskell's lenses:

Set structure

𝚜𝚎𝚝 : MX × X → MX

https://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial
Based on Haskell's lenses:

Contexts

Let be -algebra: A M

Contexts

Every element of corresponds to a function MA AA
Let be -algebra: A M

Contexts

Every element of corresponds to a function MA AA
Let be -algebra: A M

MA × A ⟶ MA ⟶ A𝚜𝚎𝚝 𝚙𝚛𝚘𝚍

Contexts

Every element of corresponds to a function MA AA
Let be -algebra: A M

Λ (MA × A ⟶ MA ⟶ A)𝚜𝚎𝚝 𝚙𝚛𝚘𝚍

Contexts

Every element of corresponds to a function MA AA
Let be -algebra: A M

Λ (MA × A ⟶ MA ⟶ A)𝚜𝚎𝚝 𝚙𝚛𝚘𝚍

The set of contexts is closed under compositions

Non empty lists

 AA ≃ A

Non empty lists

 AA ≃ A

 Every context is of the following form:

 x ↦ t ⋅ x
for some t ∈ A

Non empty lists

If is finite:A

 is a group A ⇔ All possible contexts

are permutations

Lists with an underlined element

 AA ≃ A2

 Every context is of the following form:

 (p, x, s) ↦ (t1 ⋅ p, x, s ⋅ t2)
for some t1, t2 ∈ A

A = A × A × A

M-wreath product

A1 A2

Wreath product

A1 A2≀M

Wreath product

A1 A2 = A1 × (AA1
1 → A2)≀M

Wreath product

A1 A2≀M = A1 × (AA1
1 → A2)

Non-empty lists

A1 × (A1 → A2)

Wreath product

A1 A2≀M = A1 × (AA1
1 → A2)

Non-empty lists

A1 × (A1 → A2)

= A1 × (AA1
1 → A2)

Lists with an underline

A1 × (A2
1 → A2)

Wreath product

A1 A2≀M = A1 × (AA1
1 → A2)

Non-empty lists

A1 × (A1 → A2)

= A1 × (AA1
1 → A2)

Lists with an underline

A1 × (A2
1 → A2)

Thank you!

