Structure and Power workshop 2022

Rafał Stefański, UCL

Monads, comonads, and Mealy machines

Regular languages, automata, and monads

Regular languages, automata, and monads

M. Bojańczyk. Recognisable languages over monads.

M. Bojańczyk, B. Klin, J. Salamanca. Monadic Monadic Second Order Logic.

M. Bojańczyk. Languages recognised by finite semigroups, and their generalisations to objects such as trees and graphs, with an emphasis on definability in monadic second-order logic.

Deterministic finite automata

The input word contains an odd number of a's

 $L \subseteq \{a, b\}^*$

Monoids

(A, 1, ·) $a \cdot (b \cdot c) = (a \cdot b) \cdot c$

$1 \cdot a = a = a \cdot 1$

Monoids

 $(\mathbb{N}, 0, \mathbb{max})$

$A \quad h: \Sigma \to A \quad f: A \to \{ \text{Yes, No} \}$

$A \quad h: \Sigma \to A \quad f: A \to \{\text{Yes, No}\}$

$\Sigma^* \longrightarrow A^* \longrightarrow A \longrightarrow \{Yes, No\}$

 $h^*: \Sigma^* \rightarrow A$

$M \quad h: \Sigma \to M \quad f: M \to \{\text{Yes, No}\}$

$\Sigma^* \longrightarrow A^* \longrightarrow A \longrightarrow \{Yes, No\}$

The input word contains an odd number of a's

a a b b a b

The input word contains an odd number of a's

a a b b a b

 $\Sigma = \{a, b\}$ $A = \mathbb{Z}_{2}$

The input word contains an odd number of a's

a a b b a b

 $\Sigma = \{a, b\}$ $A = \mathbb{Z}_{2}$

 $\{a,b\}^* \longrightarrow \mathbb{Z}_2^* \longrightarrow \mathbb{Z}_2 \longrightarrow \{Yes, No\}$

The input word contains an odd number of a's

a a b b a b

h(a) = 1h(b) = 0

 $\{a,b\}^* \xrightarrow{\clubsuit} \mathbb{Z}_2^* \longrightarrow \mathbb{Z}_2 \longrightarrow \{Yes, No\}$

The input word contains an odd number of a's

1 a b b a b

h(a) = 1h(b) = 0

 $\{a,b\}^* \xrightarrow{\clubsuit} \mathbb{Z}_2^* \longrightarrow \mathbb{Z}_2 \longrightarrow \{Yes, No\}$

The input word contains an odd number of a's

11bbbab

h(a) = 1h(b) = 0

 $\{a,b\}^* \xrightarrow{\clubsuit} \mathbb{Z}_2^* \longrightarrow \mathbb{Z}_2 \longrightarrow \{Yes, No\}$

The input word contains an odd number of a's

110bab

h(a) = 1h(b) = 0

The input word contains an odd number of a's

1 1 0 0 1 0

The input word contains an odd number of a's

The input word contains an odd number of a's

Yes f(0) = Nof(1) = Yes $\{a,b\}^* \longrightarrow \mathbb{Z}_2^* \longrightarrow \mathbb{Z}_2 \xrightarrow{\clubsuit} \{Yes, No\}$

Monoids: alternative defintion

$(A, \operatorname{prod} : A^* \to A)$

prod([x]) = x

Monoids: alternative defintion

$(A, \operatorname{prod} : A^* \to A)$

Monads

 $(M, \eta_X : X \to MX, \mu_X : MMX \to MX)$

Monads

 $(M, \eta_X : X \to MX, \mu_X : MMX \to MX)$

Monads

 $(M, \eta_X : X \to MX, \mu_X : MMX \to MX)$

Finite lists

$\eta(x) = [a]$

Finite lists

$\eta(x) = [a]$ $\mu = flatten$

Finite lists

$\eta(a) = [a]$ $\mu = flatten$

Contains all *w*-words

Contains all *w*-words
Submonads:

Contains all *w*-words
Submonads:
Finite orders e.g. lists

- Contains all *w*-words
- Submonads:
 - Finite orders e.g. lists
 - Countable orders

- Contains all *w*-words
- Submonads:
 - Finite orders e.g. lists
 - Countable orders
 - Well-founded orders

- Contains all *w*-words
- Submonads:
 - Finite orders e.g. lists
 - Countable orders
 - Well-founded orders

Finite lists Labelled orders

Terms

Forests with ports

Forests with ports

Forests with ports

Monoids: alternative defintion

$(A, \operatorname{prod} : A^* \to A)$

Eilenberg-Moore algebras

$(A, \operatorname{prod}: MA \to A)$

Eilenberg-Moore algebras

$(A, \operatorname{prod}: MA \to A)$

Eilenberg-Moore algebras

$(A, \operatorname{prod}: MA \to A)$

Recognisable languages over a monad

$A \quad h: \Sigma \to A \quad f: A \to \{ \text{Yes, No} \}$

 $Mh \qquad \text{prod} \qquad f \\ M\Sigma \longrightarrow MA \longrightarrow A \longrightarrow \{Yes, No\}$

 $L \subseteq M\Sigma$

Recognisable languages over a monad

 $h^*: M\Sigma \rightarrow A$

$A \quad h: \Sigma \to A \quad f: A \to \{ \text{Yes, No} \}$

 $Mh \qquad \text{prod} \qquad f \\ M\Sigma \longrightarrow MA \longrightarrow A \longrightarrow \{Yes, No\}$

 $L \subseteq M\Sigma$

Regular languages

Regular languages

On ω -words: ω -regular languages

Regular languages

On ω -words: ω -regular languages

On trees: Regular tree languages

Mealy machines, monads, and comonads

Mealy machine

 $t \in \{a, b\}^* \to \{a, b\}^*$

Replace every other a with b

Finite monoids and Mealy machines

$A \qquad h: \Sigma \to A \qquad \lambda: A \to \Gamma$

 $\Sigma^* \xrightarrow{\text{prefixes}} (\Sigma^*)^* \xrightarrow{MMh} (A^*)^* \xrightarrow{M \text{ prod}} A^* \xrightarrow{M\lambda} \Gamma^*$

$A \qquad h: \Sigma \to A \qquad \lambda: A \to \Gamma$

 $\Sigma^* \xrightarrow{\text{prefixes}} (\Sigma^*)^* \xrightarrow{MMh} (A^*)^* \xrightarrow{M \text{ prod}} A^* \xrightarrow{M\lambda} \Gamma^*$

Mh*

Replace every other a with b

 $\Sigma^* \xrightarrow{\text{prefixes}} (\Sigma^*)^* \xrightarrow{Mh^*} A^* \xrightarrow{M\lambda} \Gamma^*$

 $A = \mathbb{Z}_2 \times \{a, b\}$

 $\Sigma^* \xrightarrow{\text{prefixes}} (\Sigma^*)^* \xrightarrow{Mh^*} A^* \xrightarrow{M\lambda} \Gamma^*$

 $\Sigma^* \xrightarrow{\text{prefixes}} (\Sigma^*)^* \xrightarrow{Mh^*} A^* \xrightarrow{M\lambda} \Gamma^*$

 $A = \mathbb{Z}_{2} \times \{a, b\}$ $(p_1, l_1) \cdot (p_2, l_2) = (p_1 + p_2, l_2)$

Replace every other a with b

h(a) = (1, a)h(b) = (0, b)

 $\Sigma^* \xrightarrow{\text{prefixes}} (\Sigma^*)^* \xrightarrow{Mh^*} A^* \xrightarrow{M\lambda} \Gamma^*$

$\lambda(0, a) = b$ $\lambda(1, a) = a$

 $\Sigma^* \xrightarrow{\text{prefixes}} (\Sigma^*)^* \xrightarrow{Mh^*} A^* \xrightarrow{M\lambda} \Gamma^*$

Replace every other a with b

$\lambda(0, b) = b$ $\lambda(1, b) = b$

Replace every other a with b

[abab]

 $\Sigma^* \xrightarrow{\text{prefixes}} (\Sigma^*)^* \xrightarrow{Mh^*} A^* \xrightarrow{M\lambda} \Gamma^*$

[[a] [ab] [aba] [abab]]

 $\Sigma^* \xrightarrow{\text{prefixes}} (\Sigma^*)^* \xrightarrow{Mh^*} A^* \xrightarrow{M\lambda} \Gamma^*$

[(1, a)(1, b)(0, a)(0, b)]

 $\Sigma^* \xrightarrow{\text{prefixes}} (\Sigma^*)^* \xrightarrow{Mh^*} A^* \xrightarrow{M\lambda} \Gamma^*$

[(1, b)(0, a)(0, b)]

 $\Sigma^* \xrightarrow{\text{prefixes}} (\Sigma^*)^* \xrightarrow{Mh^*} A^* \xrightarrow{M\lambda} \Gamma^*$

Replace every other a with b

a b (0, a)(0, b)]

 $\Sigma^* \xrightarrow{\text{prefixes}} (\Sigma^*)^* \xrightarrow{Mh^*} A^* \xrightarrow{M\lambda} \Gamma^*$

Replace every other a with b

b (0, b)]

 $\Sigma^* \xrightarrow{\text{prefixes}} (\Sigma^*)^* \xrightarrow{Mh^*} A^* \xrightarrow{M\lambda} \Gamma^*$

 $\Sigma^* \xrightarrow{\text{prefixes}} (\Sigma^*)^* \xrightarrow{Mh^*} A^* \xrightarrow{M\lambda} \Gamma^*$

 $\Sigma^* \xrightarrow{\text{prefixes}} (\Sigma^*)^*$

Comonads $(M, \epsilon_X : MX \rightarrow$

 $(M, \epsilon_X : MX \to X, \delta_X : MX \to MMX)$

Comonads $(M, \epsilon_X : MX \rightarrow$

 $(M, \epsilon_X : MX \to X, \delta_X : MX \to MMX)$

Comonads $(M, \epsilon_X : MX \rightarrow$

 $(M, \epsilon_X : MX \to X, \delta_X : MX \to MMX)$

Monad, comonad, and a transducer

Monad, comonad, and a transducer

$A \qquad h: \Sigma \to A \qquad \lambda: A \to \Gamma$

$M\Sigma \xrightarrow{\delta} MM\Sigma \xrightarrow{Mh^*} MA \xrightarrow{M\lambda} M\Gamma$

Monad, comonad, and a transducer

$A \qquad h: \Sigma \to A \qquad \lambda: A \to \Gamma$

$M\Sigma \xrightarrow{\delta} MM\Sigma \xrightarrow{Mh^*} MA \xrightarrow{M\lambda} M\Gamma$

 $h^* = Mh; prod$

$\epsilon([a, b, c, d]) = d$

$\delta([a, b, c, d]) = [a], [a, b], [a, b, c], [a, b, c, d]$

$\epsilon([a, b, c, d]) = d$

$\delta([a, b, c, d]) = [a], [a, b], [a, b, c], [a, b, c, d]$

$\epsilon([a, b, c, d]) = d$

Mealy machines

Non-empty lists (right-to-left)

Non-empty lists (right-to-left)

$\epsilon([a, b, c, d]) = a$

Non-empty lists (right-to-left)

$\epsilon([a, b, c, d]) = a$

$\delta([a, b, c, d]) = [[a, b, c, d], [b, c, d], [c, d], [d]]$

Non-empty lists (right-to-left) $\epsilon(|a, b, c, d|) = a$

$\delta([a, b, c, d]) = |[a, b, c, d], [b, c, d], [c, d], [d]|$

right-to-left Mealy machines

Lists with an underlined element

Lists with an underlined element

 $\epsilon([a, b, c, d]) = c$

Lists with an underlined element

$\epsilon([a, b, c, d]) = c$

$\delta([a, b, \underline{c}, d]) = \left[[\underline{a}, b, c, d], [a, \underline{b}, c, d], [\underline{a}, \underline{b}, \underline{c}, d], [a, b, \underline{c}, \underline{d}], [a, b, c, \underline{d}], [a, b$

 $\eta(a) = [a]$

$\mu\left(\left[[\underline{a},b],[\underline{c},d,\underline{e}],[\underline{f},g]\right]\right) = [a,b,c,d,\underline{e},f,g]$

 $\eta(a) = \lceil a \rceil$

$\mu\left(\left[[\underline{a},b],[\underline{c},d,\underline{e}],[\underline{f},g]\right]\right) = [a,b,c,d,\underline{e},f,g]$

$\eta(a) = \lceil a \rceil$

letter-to-letter rational functions
Replace the first letter with a copy of the last letter

Replace the first letter with a copy of the last letter

a a b b

Replace the first letter with a copy of the last letter

a a b b

b a b b

Unambiguous (nondeterministic) Mealy machines

Replace the first letter with a copy of the last letter

Unambiguous (nondeterministic) Mealy machines

Replace the first letter with a copy of the last letter

Algebras for lists with an underlined element $A = A \times A \times A$

prefix underlined suffix

$[(p_1, x_1, s_1), \dots, (p_i, x_i, s_i), \dots, (p_n, x_n, s_i)] \in M\underline{A}$

Algebras for lists with an underlined element $A = A \times A \times A$

 $[(p_1, x_1, s_1), \dots, (p_i, x_i, (s_i), \dots, (p_n, x_n, s_i)] \in M\underline{A}$

prefix underlined suffix

Algebras for lists with an underlined element $A = A \times A \times A$ prefix underlined

 $[(p_1, x_1, s_1), \dots, (p_i, x_i, (s_i), \dots, (p_n, x_n, s_i)] \in M\underline{A}$ $(a_1 \cdot \ldots \cdot a_{i-1} \cdot p_i, x_i, s_i \cdot a_{i+1} \cdot \ldots \cdot a_n)$

suffix

where $a_j = p_j \cdot x_j \cdot s_j$

Transducers for lists with an underlined element

$A = A \times A \times A$ underlined suffix prefix

$h: \Sigma \to A$

 $\lambda: A \times A \times A \to \Gamma$ prefix current letter suffix

Transducers for lists with an underlined element

$A = A \times A \times A$ underlined suffix prefix

$h: \Sigma \to A$

 $\lambda: A \times A \times A \to \Gamma$ prefix current letter suffix

Transducers for lists with an underlined element

prefix

$h: \Sigma \to A$

Eilenberg bimachine

 $A = A \times A \times A$

underlined suffix

 $\lambda: A \times A \times A \to \Gamma$ prefix current letter suffix

Expressive Power

Μ

Non-empty lists with prefixes

Non-empty lists with prefixes

Non-empty lists with suffixes

Non-empty lists with prefixes

Non-empty lists with suffixes

Lists with an underline element

	Expressive Power
	Mealy machines
	Right-to-left Mealy machines
d	Rational letter-to-letter functions

e

Bottom up Mealy machines on trees

Bottom up Mealy machines on trees

?

Rational functions on trees

Rational functions on trees

?

Other examples

Other examples

Labelled orders with a maximal element

Other examples

Labelled orders with a maximal element

Labelled orders with an underlined element
Other examples

- Labelled orders with a maximal element
- Labelled orders with an underlined element
- Terms with an underlined leaf

Composition MZ ~> MMZ MMA_ Mprod MA_ MX MT S_3, h_3, λ_3

• M has to be strong: strenght : $X \times MY \to M(X \times Y)$

- M has to have: set : $MX \times X \to MX$

• *M* has to be strong: strenght : $X \times MY \to M(X \times Y)$

- M has to have: set : $MX \times X \to MX$
- All those structures have to be compatible

• *M* has to be strong: strenght : $X \times MY \to M(X \times Y)$

set : $MX \times X \rightarrow MX$

Based on Haskell's lenses:

https://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial

set : $MX \times X \rightarrow MX$

set([a, b, c, d], f) =

set : $MX \times X \rightarrow MX$

$set([a, b, c, d], f) = [a, b, _, d]$

set : $MX \times X \rightarrow MX$

set([a, b, c, d], f) = [a, b, f, d]

Based on Haskell's lenses:

https://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial

set: $MX \times X \rightarrow MX$

Based on Haskell's lenses:

https://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial

Let A be M-algebra:

Let *A* be *M*-algebra: Every element of *MA* corresponds to a function A^A

Let A be M-algebra: Every element of MA corresponds to a function A^A

 $MA \times A \xrightarrow{\text{set}} MA \xrightarrow{\text{prod}} A$

Let A be M-algebra: Every element of MA corresponds to a function A^A

 $\Lambda(MA \times A \xrightarrow{\text{set}} MA \xrightarrow{\text{prod}} A)$

Let A be M-algebra: Every element of MA corresponds to a function A^A

The set of contexts is closed under compositions

$\Lambda(MA \times A \xrightarrow{\text{set}} MA \xrightarrow{\text{prod}} A)$

Non empty lists

$A^A \simeq A$

Non empty lists

Every context is of the following form:

$A^A \simeq A$

$x \mapsto t \cdot x$

for some $t \in A$

Non empty lists

A is a group \Leftrightarrow

If A is finite:

All possible contexts are permutations

Lists with an underlined element

$A = A \times A \times A$ $A^A \simeq A^2$

Every context is of the following form:

 $(p, x, s) \mapsto (t_1 \cdot p, x, s \cdot t_2)$

for some $t_1, t_2 \in A$

M-wreath product

$A_1 \ \mathcal{X}_M \ A_2$

 $A_1 \wr_M A_2 = A_1 \times (A_1^{A_1} \to A_2)$

Non-empty lists $A_1 \times (A_1 \to A_2)$

 $A_1 \ \mathcal{X}_M \ A_2 = A_1 \times (A_1^{A_1} \to A_2)$

Non-empty lists $A_1 \times (A_1 \to A_2)$

 $A_1 \wr_M A_2 = A_1 \times (A_1^{A_1} \to A_2)$

Lists with an underline $A_1 \times (A_1^2 \to A_2)$

Non-empty lists $A_1 \times (A_1 \to A_2)$

 $A_1 \ \mathcal{X}_M \ A_2 = A_1 \times (A_1^{A_1} \to A_2)$

Lists with an underline $A_1 \times (A_1^2 \to A_2)$