Monads, comonads, and Mealy machines

Structure and Power workshop 2022

Rafat Stefanski, UCL

Regular languages, automata, and monads

Regular languages, automata, and monads

M. Bojanczyk. Recognisable languages over monads.
M. Bojanczyk, B. Klin, J. Salamanca. Monadic Monadic Second Order Logic.

M. Bojanczyk. Languages recognised by finite semigroups, and their
generalisations to objects such as trees and graphs, with an emphasis on
definability in monadic second-order logic.

Deterministic finite automata

N

LC{a,b}*

The input word contains an odd number of a's

Monoids

(Aa 19 ')

a-(b-c)=(@-b)-c

l-a=a=a-1

Monoids

(Z29 ()9 +)

({Cl,b}*, €, -)

(N, 0, max)

Finite monoids and regular languages

A h:2X—> A f:A — {Yes, No}

Finite monoids and regular languages

A h:2X—> A f:A — {Yes, No}

2F — A* — A —> {Yes, No!

Finite monoids and regular languages

M h:X->M f:M- {Yes, No}

2F — A* — A — {Yes, No!

h* : 2*>A

Finite monoids and regular languages

The input word contains an odd number of a's

aabbab

Finite monoids and regular languages

The input word contains an odd number of a's

aabbab

> =1{a,b}

Finite monoids and regular languages

The input word contains an odd number of a's

aabbab

> =1{a,b}

ta,b}* — 25 — Z, —> {Yes, Noj

Finite monoids and regular languages

The input word contains an odd number of a's

aabbab
hia) =1
h(b) =0
v

ta,b}* — 25 — Z, —> {Yes, Noj

Finite monoids and regular languages

The input word contains an odd number of a's

1labbab
hia) = 1
h(b) =0
v

ta,b}* — 25 — Z, —> {Yes, Noj

Finite monoids and regular languages

The input word contains an odd number of a's

11bbab
hia) = 1
h(b) =0
4

ta,b}* — 25 — Z, —> {Yes, Noj

Finite monoids and regular languages

The input word contains an odd number of a's

110bab
hia) = 1
h(b) =0
4

ta,b}* — 25 — Z, —> {Yes, Noj

Finite monoids and regular languages

The input word contains an odd number of a's

110010

{aab}>I< — Zik

Finite monoids and regular languages

The input word contains an odd number of a's

f(0) = No
f(1) = Yes

ta,b}* — 25 — Z, — {Yes, Noj

Finite monoids and regular languages

The input word contains an odd number of a's

Yes
f(0) = No
f(1) = Yes

ta,b}* — 25 — Z, — {Yes, Noj

Monoids: alternative defintion

(A, prod : A* - A)

prod([x]) = x

M
OoNnol
IdS:
- alte
rnative d
efinti
tio
n

(A
prod : A®
_)
A)

(A*)* fl
A

ma
1%
prodJ
J pro
d

A * >
prod

Monads
(M, Ny - X = MX, uy : MMX — MX)

Monads
(M, Ny - X = MX, uy : MMX — MX)

MMMX —%—— MMX

Monads
(M, Ny - X = MX, uy : MMX — MX)

MX —2 s MMX

Finite lists

Finite lists

nx) = lal

Finite lists

n(x) = lal
u=171latten

Labelled orders

Finite lists

Labelled orders

n(a) = lal
u=171latten

Finite lists

Labelled orders

e Contains all w-words

Finite lists

Labelled orders

e Contains all w-words
e Submonads:

Finite lists

Labelled orders

e Contains all w-words
e Submonads:
* Finite orders e.q. lists

Finite lists

Labelled orders

e Contains all -words
e Submonads:
* Finite orders e.q. lists
 Countable orders

Finite lists

Labelled orders

e Contains all -words
e Submonads:
* Finite orders e.q. lists
 Countable orders
e Well-founded orders

Finite lists

Labelled orders

e Contains all -words
e Submonads:
* Finite orders e.q. lists
 Countable orders
e Well-founded orders

Finite lists

¢ O E

Finite lists Labelled orders

Finite lists Labelled orders

%

Finite lists Labelled orders

Finite lists Labelled orders

OO0

Finite lists Labelled orders

Forests with ports

(@) (©)

/ @/ E
S
O | ©

Finite lists Labelled orders Terms

Forests with ports

9 5 (3)

Finite lists Labelled orders Terms

Forests with ports

AP

Finite lists Labelled orders Terms

Forests with ports

/ /1

Y

Finite lists Labelled orders Terms

Forests with ports

l

|

!

©)
4

0

|

™~
@——®\ :

Finite lists Labelled orders Terms

Finite lists Labelled orders Terms Forests with ports

Monoids: alternative defintion

(A, prod : A* - A)

Eilenberg-Moore algebras

(A, prod : MA — A)

Eilenberg-Moore algebras
(A, prod : MA — A)

MMA — MA

MprodJ J prod

1»[}& prod

Eilenberg-Moore algebras

(A, prod : MA — A)

> MA

\ Jprod

A

A

Recognisable languages over a monad

A h:2X—> A f:A — {Yes, No}

Mh prod f

M2 — MA — A —> {Yes, No}

L CMX

Recognisable languages over a monad

A h:2X—> A f:A — {Yes, No}

Mh prod f

M2 — MA — A —> {Yes, No}

h* : MX—A

L C M2

Finite lists Labelled orders Terms Forests with ports

Finite lists Labelled orders Terms Forests with ports

Regular languages

Finite lists Labelled orders Terms Forests with ports

On w-words:

Regular languages
w-regular languages

Finite lists Labelled orders Terms Forests with ports

On w-words: On trees:

Regular languages
9 guag w-regular languages Regular tree languages

Mealy machines, monads, and comonads

Mealy machine

%j 3/3 Q
O, >0

te {a,bl* - {a,b}*

N

Replace every other a with b

Mealy machine
b/b

Mealy machine
b/b

Mealy machine
b/b

Mealy machine
b/b

Mealy machine
b/b

Mealy machine

Mealy machine

Mealy machine

Mealy machine

Mealy machine
b/b b/b

\\8 a/b Q

aabbaa
abbba

Mealy machine

Mealy machine
b/b b/b

Q 3/3 Q

OM/b y

N

aabbaa
abbbab

Mealy machine

Finite monoids and Mealy machines

A h:2— A A:A-oT

Finite monoids and Mealy machines

A h:2— A A:A-oT

S) 2 Ayt S A 2 s

Finite monoids and Mealy machines

A h:2— A A:A-oT

oL gy 3 WYL C e iy L AN

Mh*

Finite monoids and Mealy machines

Replace every other a with b

prefixes %k Mh* M A
gy 3o WYL IGENS ot

Finite monoids and Mealy machines

Replace every other a with b

A —_ sz {Cl,b}

prefixes %k Mh* M A
gy 3o WYL IGENS ot

Finite monoids and Mealy machines

Replace every other a with b

A — Zz X {Cl, b}
(P1> L) - (P, L) = (py + P)

gt S (Z*) Ak A

Finite monoids and Mealy machines

Replace every other a with b

ha) = (1, a)
h(b) = (0, b)

2F — (2F) — A*F — [

Finite monoids and Mealy machines

Replace every other a with b

A0, a) =b A0, b) = b
AL, a) =a AL, b) =b

yHE (227) LAY L

Finite monoids and Mealy machines

Replace every other a with b

labab]

prefixes %k Mh* M A
gy 3o WYL IGENS ot

Finite monoids and Mealy machines

Replace every other a with b

| [a] [ab] [aba] [abab]]

(et S Ak L T

Finite monoids and Mealy machines

Replace every other a with b

[(1,a)(1, b)(0,) (0, b)]

(et S Ak L T

Finite monoids and Mealy machines

Replace every other a with b

[a (1,b)(0, a)(0, b)]

(et S Ak L T

Finite monoids and Mealy machines

Replace every other a with b

| a b (0, a)(0, b)]

prefixes %k Mh* M A
gy 3o WYL IGENS ot

Finite monoids and Mealy machines

Replace every other a with b

'a b b (0,b)]

prefixes %k Mh* M A
gy 3o WYL IGENS ot

Finite monoids and Mealy machines

Replace every other a with b

prefixes %k Mh* M A
gy 3o WYL IGENS ot

|

Finite monoids and Mealy machines

prefixes

2 — (Z*)*

Comonads
M, ey : MX — X, 0y : MX — MMX)

Comonads
M, ey : MX — X, 0y : MX — MMX)

MY — MMX

J‘Sx JM(SX
0

MMX —=—» MMMX

Comonads
M, ey : MX — X, 0y : MX — MMX)

MMX —2% s px

JM\ K

MX —— MMX
5X

Monad, comonad, and a transducer

A h:2— A A:A-oT

Monad, comonad, and a transducer

A h:2— A A:A-oT

ME =25 MMz M55 A M4 pr

Monad, comonad, and a transducer

A h:2— A A:A-oT

ME =25 MMz M55 A M4 pr

h* = Mh;prod

Non-empty lists

Non-empty lists

e(la,b,c,d]) =d

Non-empty lists

e(la,b,c,d]) =d

5([a, b, c,d]) = |lal,[a,b],[a,b,c],[a,b,c,d]

Non-empty lists

e(la,b,c,d]) =d
5([a, b, c,d]) = |lal,[a,b],[a,b,c],[a,b,c,d]

Mealy machines

Non-empty lists (right-to-left)

Non-empty lists (right-to-left)

e(la,b,c,d]) = a

Non-empty lists (right-to-left)

e(la,b,c,d]) = a

o(la, b, c,d]) = [[a, b,c,d],|b,c,d],|c,d], [d]]

Non-empty lists (right-to-left)

e(la,b,c,d]) =a
o(la, b, c,d]) = [[a, b,c,d],|b,c,d],|c,d], [d]]

right-to-left Mealy machines

Lists with an underlined element

Lists with an underlined element

e(la,b,c,d]) =c

Lists with an underlined element
e(la,b,c,d]) = c

o(la,b,c,d]) = [[Q, b,c,d],la,b,c,d],la,b,c,d],|a,b,c,d],]

Lists with an underlined element (monad)

Lists with an underlined element (monad)

n(a) = lal

Lists with an underlined element (monad)
n(a) = |4l

H ([[ga b], C, d,_€], [fa g]]) = |a, b, c, da_eaf? g]

Lists with an underlined element (monad)
n(a) = |4l

H ([[ga b], c, d,_€], [fa g]]) = |a, b, c, dv_eaf? g]

letter-to-letter rational functions

Letter to letter rational functions

Letter to letter rational functions

Replace the first letter with a copy of the last letter

Letter to letter rational functions

Replace the first letter with a copy of the last letter

aabb

Letter to letter rational functions

Replace the first letter with a copy of the last letter

aabb
babb

Unambiguous (hondeterministic) Mealy machines

Replace the first letter with a copy of the last letter

Unambiguous (hondeterministic) Mealy machines

Replace the first letter with a copy of the last letter
3/3 b/b

Algebras for lists with an underlined element

A=AXAXA

prefix underlined suffix

[(pla-xla S1)9 IR (pia xia Si)9 IR (p;/p -xna Si)] & MA

Algebras for lists with an underlined element

A=AXAXA

prefix underlined suffix

[(P1,x1,S1), s (PYxXASs), .. (P, X, 8:)] € MA

Algebras for lists with an underlined element

A=AXAXA

prefix underlined suffix

[(pla X1 Sl), oo (p)xi,(sl-), e (pn, X, Sz)] e MA

!

@y ... a_1"p; Xy S;*Qiyq-...-a,)

Transducers for lists with an underlined element

A=AXAXA

prefix underlined suffix

h:X— A A:AXAXA ST

E— prefix current suffix
letter

Transducers for lists with an underlined element

A=AXAXA

prefix underlined suffix

h:X— A A:AXAXA ST

E— prefix current suffix
letter

Transducers for lists with an underlined element

A=AXAXA

prefix underlined suffix

h:X— A A:AXAXA ST

E— prefix current suffix
letter

Eillenberg bimachine

Three M's for finite words

M Expressive Power

Three M's for finite words

M

Expressive Power

Non-empty lists with
prefixes

Mealy machines

Three M's for finite words

M

Expressive Power

Non-empty lists with
prefixes

Mealy machines

Non-empty lists with
suffixes

Right-to-left
Mealy machines

Three M's for finite words

M Expressive Power

Non-empty lists with Mealy machines

prefixes
Non-empty lists with Right-to-left
suffixes Mealy machines

Lists with an underlined | Rational letter-to-letter
element functions

Non-empty trees

(3 (&)

O ©

Non-empty trees

c

O 2
OG ©

Non-empty trees

o Ii) ©
OG ©

Non-empty trees

GO ©

S
e
e
tr
ty

P

m

e

n_

o,

N

N

©
(3
O,

Non-empty trees

Non-empty trees

Non-empty trees

Bottom up Mealy machines
on trees

Non-empty trees

Bottom up Mealy machines
on trees

Trees with an underlined element

(5 by

OE O

Trees with an underlined element

e
d v >
O ©

Trees with an underlined element

Trees with an underlined element

Trees with an underlined element

Trees with an underlined element

Trees with an underlined element

Rational functions
on trees

Trees with an underlined element

Rational functions
on trees

Other examples

Other examples

e | abelled orders with a maximal element

Other examples

e | abelled orders with a maximal element

e | abelled orders with an underlined element

Other examples

e | abelled orders with a maximal element
e | abelled orders with an underlined element

e Terms with an underlined leaf

Compositions

Composition

M Z — MMZ ”“"‘7HMA o, MA, e M,I"

MAT

N Ly,
. MMA

\\ IMWDJ
N A,

S | lml

= MA

Composition

o, MX
Mz <5 YMZ LoMMA, 1% MA, —S M,P

MAT

- | i
S HP;IA
S3, h3, A’B\\\ . erw[

S lml

= MA

Composition

Composition

» M has to be strong: strenght : X X MY — M(X X Y)

Composition

» M has to be strong: strenght : X X MY — M(X X Y)

e M hastohave: set : MX X X —> MX

Composition

» M has to be strong: strenght : X X MY — M(X X Y)

e M hastohave: set : MX X X —> MX

* All those structures have to be compatible

Set structure

set : MX XX — MX

Based on Haskell's lenses:

https://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial

Set structure

set : MX XX — MX

set(la,b,c,d], f) =

Set structure

set : MX XX — MX

set(la,b,c,d], f)= la,b, ,d]

Set structure

set : MX XX — MX

set([a,b,c,d], f)= la,b, [,d]

Based on Haskell's lenses:

https://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial

Set structure

set : MX XX — MX

MBESMBXB Moxg-L5us (MBXB)xB %5 upx

\ l%f K o - il et
\R/B 1/3 l/wr

V
3 MBXx B ——7 MB

Based on Haskell's lenses:

https://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial

Contexts

Let A be M-algebra:

Contexts

Let A be M-algebra:

Every element of MA corresponds to a function A4

Contexts

Let A be M-algebra:

Every element of MA corresponds to a function A4

d
MA x A S5 maPi25 A

Contexts

Let A be M-algebra:

Every element of MA corresponds to a function A4

set prod

z\(AﬂAJK/&——+>A4Ap——+14)

Contexts

Let A be M-algebra:

Every element of MA corresponds to a function A4

set prod

z\(ALADKfX——+>A4Ap——+14)

The set of contexts is closed under compositions

Non empty lists

Non empty lists

A4~ A

Every context is of the following form:
X=X

forsometr e A

Non empty lists

If A is finite:

All possible contexts

Aisagroup & permutations

Lists with an underlined element

A=AXAXA
Ad ~ AZ
Every context is of the following form:

(D, x,8) = (t; - p, X, 5 - 1)
forsome t,1, € A

M-wreath product

A Ay

Wreath product

A Gy Ay

Wreath product

Ay Ay = A X (AN > Ay

Wreath product

A; 4 Ay = A X (AN > Ay

Non-empty lists

A XA = A)

Wreath product

A; 4 Ay = A X (AN > Ay

Non-empty lists Lists with an underline

A X (A = Ay Ay X (A12 — A))

Wreath product

A; 4 Ay = A X (AN > Ay

Non-empty lists Lists with an underline
2
A X (A = Ay A X (A7 = Ay)

Thank you!

