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Regular languages, automata, and monads

M. Bojanczyk. Recognisable languages over monads.
M. Bojanczyk, B. Klin, J. Salamanca. Monadic Monadic Second Order Logic.

M. Bojanczyk. Languages recognised by finite semigroups, and their
generalisations to objects such as trees and graphs, with an emphasis on
definability in monadic second-order logic.
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Finite monoids and regular languages

M h:X->M f:M- {Yes, No}

2F — A* — A — {Yes, No!

h* : 2*>A
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Finite monoids and regular languages

The input word contains an odd number of a's
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Finite monoids and regular languages

The input word contains an odd number of a's

f(0) = No
f(1) = Yes

ta,b}* — 25 — Z, — {Yes, Noj




Finite monoids and regular languages

The input word contains an odd number of a's

Yes
f(0) = No
f(1) = Yes

ta,b}* — 25 — Z, — {Yes, Noj



Monoids: alternative defintion

(A, prod : A* - A)

prod([x]) = x
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Finite lists

n(x) = lal
u=171latten
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u=171latten
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Monoids: alternative defintion

(A, prod : A* - A)
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Eilenberg-Moore algebras
(A, prod : MA — A)

MMA — MA
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Eilenberg-Moore algebras

(A, prod : MA — A)

> MA
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Recognisable languages over a monad

A h:2X—> A f:A — {Yes, No}

Mh prod f

M2 — MA — A —> {Yes, No}

h* : MX—A

L C M2
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Finite lists Labelled orders Terms Forests with ports

On w-words:

Regular languages
w-regular languages



Finite lists Labelled orders Terms Forests with ports

On w-words: On trees:

Regular languages
9 guag w-regular languages Regular tree languages



Mealy machines, monads, and comonads
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Finite monoids and Mealy machines

Replace every other a with b

A — Zz X {Cl, b}
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Finite monoids and Mealy machines

Replace every other a with b

ha) = (1, a)
h(b) = (0, b)

2F — (2F) — A*F — [



Finite monoids and Mealy machines

Replace every other a with b

A0, a) =b A0, b) = b
AL, a) =a AL, b) =b
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Replace every other a with b
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Finite monoids and Mealy machines

prefixes
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Monad, comonad, and a transducer

A h:2— A A:A-oT

ME =25 MMz M55 A M4 pr

h* = Mh;prod
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Non-empty lists

e(la,b,c,d]) =d
5([a, b, c,d]) = |lal,[a,b],[a,b,c],[a,b,c,d]

Mealy machines
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Non-empty lists (right-to-left)

e(la,b,c,d]) = a



Non-empty lists (right-to-left)

e(la,b,c,d]) = a

o(la, b, c,d]) = [[a, b,c,d],|b,c,d],|c,d], [d]]



Non-empty lists (right-to-left)

e(la,b,c,d]) =a
o(la, b, c,d]) = [[a, b,c,d],|b,c,d],|c,d], [d]]

right-to-left Mealy machines
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Lists with an underlined element
e(la,b,c,d]) = c

o(la,b,c,d]) = [[Q, b,c,d],la,b,c,d],la,b,c,d],|a,b,c,d], ]
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Lists with an underlined element (monad)
n(a) = |4l

H ([[ga b], C, d,_€], [fa g]]) = |a, b, c, da_eaf? g]




Lists with an underlined element (monad)
n(a) = |4l

H ([[ga b], c, d,_€], [fa g]]) = |a, b, c, dv_eaf? g]
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Letter to letter rational functions

Replace the first letter with a copy of the last letter

aabb
babb



Unambiguous (hondeterministic) Mealy machines

Replace the first letter with a copy of the last letter



Unambiguous (hondeterministic) Mealy machines

Replace the first letter with a copy of the last letter
3/3 b/b




Algebras for lists with an underlined element

A=AXAXA

prefix  underlined  suffix

[(pla-xla S1)9 IR (pia xia Si)9 IR (p;/p -xna Si)] & MA




Algebras for lists with an underlined element

A=AXAXA

prefix  underlined  suffix

[(P1,x1,S1), s (PYxXASs), .. (P, X, 8:)] € MA



Algebras for lists with an underlined element

A=AXAXA

prefix  underlined  suffix

[(pla X1 Sl), oo (p)xi,(sl-), e (pn, X, Sz)] e MA
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Transducers for lists with an underlined element

A=AXAXA

prefix  underlined  suffix

h:X— A A:AXAXA ST

E— prefix current suffix
letter

Eillenberg bimachine
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Mealy machines




Three M's for finite words

M Expressive Power

Non-empty lists with Mealy machines

prefixes
Non-empty lists with Right-to-left
suffixes Mealy machines

Lists with an underlined | Rational letter-to-letter
element functions
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Non-empty trees

Bottom up Mealy machines
on trees



Non-empty trees

Bottom up Mealy machines
on trees



Trees with an underlined element
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Trees with an underlined element

Rational functions
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Trees with an underlined element

Rational functions
on trees
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Other examples

e | abelled orders with a maximal element

e | abelled orders with an underlined element



Other examples

e | abelled orders with a maximal element
e | abelled orders with an underlined element

e Terms with an underlined leaf
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Composition
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Composition

» M has to be strong: strenght : X X MY — M(X X Y)

e M hastohave: set : MX X X —> MX

* All those structures have to be compatible



Set structure

set : MX XX — MX

Based on Haskell's lenses:

https://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial
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Set structure

set : MX XX — MX

set(la,b,c,d], f )= la,b, ,d]



Set structure

set : MX XX — MX

set([a,b,c,d], f )= la,b, [ ,d]

Based on Haskell's lenses:

https://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial



Set structure

set : MX XX — MX

MBESMBXB  Moxg-L5us  (MBXB)xB %5 upx
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Based on Haskell's lenses:

https://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial
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Let A be M-algebra:

Every element of MA corresponds to a function A4

d
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Contexts

Let A be M-algebra:

Every element of MA corresponds to a function A4

set prod

z\(ALADKfX——+>A4Ap——+14)

The set of contexts is closed under compositions
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Non empty lists

A4~ A

Every context is of the following form:
X=X

forsometr e A



Non empty lists

If A is finite:

All possible contexts

Aisagroup & permutations



Lists with an underlined element

A=AXAXA
Ad ~ AZ
Every context is of the following form:

(D, x,8) = (t; - p, X, 5 - 1)
forsome t,1, € A
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Wreath product
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Wreath product

A; 4 Ay = A X (AN > Ay

Non-empty lists

A XA = A)



Wreath product

A; 4 Ay = A X (AN > Ay

Non-empty lists Lists with an underline

A X (A = Ay Ay X (A12 — A))



Wreath product

A; 4 Ay = A X (AN > Ay

Non-empty lists Lists with an underline
2
A X (A = Ay A X (A7 = Ay)

Thank you!



