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Regular languages, automata, and monads

M. Bojańczyk. Recognisable languages over monads.

M. Bojańczyk, B. Klin, J. Salamanca. Monadic Monadic Second Order Logic. 

M. Bojańczyk. Languages recognised by finite semigroups, and their 
generalisations to objects such as trees and graphs, with an emphasis on 
definability in monadic second-order logic.



Deterministic finite automata

The input word contains an odd number of a's

L ⊆ {a, b}*



Monoids

(A, 1, ⋅ )

a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c

1 ⋅ a = a = a ⋅ 1



(ℤ2, 0, +)

({a, b}*, ϵ, ⋅ )

(ℕ, 0, max)

Monoids
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Finite monoids and regular languages

M h : Σ → M f : M → {Yes, No}

Σ* ⟶ A* ⟶ A
h* : Σ*→A

⟶ {Yes, No}
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Finite monoids and regular languages
The input word contains an odd number of a's

a a b b a b
h(a) = 1
h(b) = 0

{a, b}* ⟶ ℤ*2 ⟶ ℤ2 ⟶ {Yes, No}



Finite monoids and regular languages
The input word contains an odd number of a's

1 a b b a b
h(a) = 1
h(b) = 0h(b) = 0

{a, b}* ⟶ ℤ*2 ⟶ ℤ2 ⟶ {Yes, No}



Finite monoids and regular languages
The input word contains an odd number of a's

1 1 b b a b
h(a) = 1
h(b) = 0h(b) = 0

{a, b}* ⟶ ℤ*2 ⟶ ℤ2 ⟶ {Yes, No}



Finite monoids and regular languages
The input word contains an odd number of a's

1 1 0 b a b
h(a) = 1
h(b) = 0h(b) = 0

{a, b}* ⟶ ℤ*2 ⟶ ℤ2 ⟶ {Yes, No}



Finite monoids and regular languages
The input word contains an odd number of a's

1 1 0 0 1 0

{a, b}* ⟶ ℤ*2 ⟶ ℤ2 ⟶ {Yes, No}



Finite monoids and regular languages
The input word contains an odd number of a's

1100101
f(0) = No
f(1) = Yes

{a, b}* ⟶ ℤ*2 ⟶ ℤ2 ⟶ {Yes, No}



Finite monoids and regular languages
The input word contains an odd number of a's

Yes
f(0) = No
f(1) = Yes

{a, b}* ⟶ ℤ*2 ⟶ ℤ2 ⟶ {Yes, No}



Monoids: alternative defintion

(A, 𝚙𝚛𝚘𝚍 : A* → A)

𝚙𝚛𝚘𝚍([x]) = x



Monoids: alternative defintion

(A, 𝚙𝚛𝚘𝚍 : A* → A)

(A*)* A*

A* A

𝚙𝚛𝚘𝚍

𝚙𝚛𝚘𝚍

𝚏𝚕𝚊𝚝𝚝𝚎𝚗

𝚖𝚊𝚙 𝚙𝚛𝚘𝚍
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(M, ηX : X → MX, μX : MMX → MX)

MMMX MMX

MMX MX

μMX

μXMμX

μX



Monads

(M, ηX : X → MX, μX : MMX → MX)

MX MMX

MMX MX

ηMX

μXMμηX

μX

id
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Finite lists

η(x) = [a]

μ = 𝚏𝚕𝚊𝚝𝚝𝚎𝚗
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Finite lists

Labelled orders

η(a) = [a]

μ = 𝚏𝚕𝚊𝚝𝚝𝚎𝚗
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• Contains all -wordsω
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Finite lists

Labelled orders

• Contains all -wordsω
• Submonads:
• Finite orders e.g. lists
• Countable orders
• Well-founded orders
• ...
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Monoids: alternative defintion

(A, 𝚙𝚛𝚘𝚍 : A* → A)
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Eilenberg-Moore algebras

(A, 𝚙𝚛𝚘𝚍 : MA → A)

MMA MA

MA A

𝚙𝚛𝚘𝚍

𝚙𝚛𝚘𝚍

M 𝚙𝚛𝚘𝚍

μ



Eilenberg-Moore algebras

(A, 𝚙𝚛𝚘𝚍 : MA → A)

η
A MA

A

id 𝚙𝚛𝚘𝚍



Recognisable languages over a monad

A h : Σ → A f : A → {Yes, No}

MΣ ⟶ MA ⟶ A ⟶ {Yes, No}
Mh 𝚙𝚛𝚘𝚍 f

L ⊆ MΣ



Recognisable languages over a monad

A h : Σ → A f : A → {Yes, No}

Mh 𝚙𝚛𝚘𝚍 f
MΣ ⟶ MA ⟶ A

h* : MΣ→A

⟶ {Yes, No}

L ⊆ MΣ
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Finite lists Labelled orders Terms Forests with ports
Regular languages On -words:


-regular languages
ω

ω



Finite lists Labelled orders Terms Forests with ports
Regular languages On -words:


-regular languages
ω

ω
On trees:


Regular tree languages



Mealy machines, monads, and comonads



Mealy machine

Replace every other a with b

t ∈ {a, b}* → {a, b}*
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Mealy machine

a a b b a a
a b b b a b
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Finite monoids and Mealy machines
Replace every other a with b
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Finite monoids and Mealy machines
Replace every other a with b

A = ℤ2 × {a, b}

(p1, l1) ⋅ (p2, l2) = (p1 + p2, l2)

Σ* ⟶ (Σ*)* ⟶ A* ⟶ Γ*
𝚙𝚛𝚎𝚏𝚒𝚡𝚎𝚜 Mh* M λ



Finite monoids and Mealy machines
Replace every other a with b

h(a) = (1, a)
h(b) = (0, b)

Σ* ⟶ (Σ*)* ⟶ A* ⟶ Γ*
𝚙𝚛𝚎𝚏𝚒𝚡𝚎𝚜 Mh* M λ



Finite monoids and Mealy machines
Replace every other a with b

λ(0, a) = b
λ(1, a) = a

λ(0, b) = b
λ(1, b) = b

Σ* ⟶ (Σ*)* ⟶ A* ⟶ Γ*
𝚙𝚛𝚎𝚏𝚒𝚡𝚎𝚜 Mh* M λ



Finite monoids and Mealy machines
Replace every other a with b
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Finite monoids and Mealy machines
Replace every other a with b

(1, b)(1, a)[ ]

Σ* ⟶ (Σ*)* ⟶ A* ⟶ Γ*
𝚙𝚛𝚎𝚏𝚒𝚡𝚎𝚜 Mh* M λ

(0, a) (0, b)



Finite monoids and Mealy machines
Replace every other a with b

(1, b)a[ ]

Σ* ⟶ (Σ*)* ⟶ A* ⟶ Γ*
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Finite monoids and Mealy machines
Replace every other a with b

ba[ ]

Σ* ⟶ (Σ*)* ⟶ A* ⟶ Γ*
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Finite monoids and Mealy machines
Replace every other a with b

ba[ ]

Σ* ⟶ (Σ*)* ⟶ A* ⟶ Γ*
𝚙𝚛𝚎𝚏𝚒𝚡𝚎𝚜 Mh* M λ
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Finite monoids and Mealy machines
Replace every other a with b

ba[ ]

Σ* ⟶ (Σ*)* ⟶ A* ⟶ Γ*
𝚙𝚛𝚎𝚏𝚒𝚡𝚎𝚜 Mh* M λ

b b



Finite monoids and Mealy machines

Σ* ⟶ (Σ*)*𝚙𝚛𝚎𝚏𝚒𝚡𝚎𝚜



Comonads

(M, ϵX : MX → X, δX : MX → MMX)



Comonads

(M, ϵX : MX → X, δX : MX → MMX)

MMMX

MMX

MMX

MX δX

MδXδX

δMX



Comonads

(M, ϵX : MX → X, δX : MX → MMX)

MMXMX

ϵMX

δXMϵX
id

MXMMX

δX
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Monad, comonad, and a transducer

A h : Σ → A λ : A → Γ

MΣ ⟶ MMΣ ⟶ MA ⟶ MΓδ Mh* Mλ

h * = Mh; 𝚙𝚛𝚘𝚍
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Non-empty lists

ϵ([a, b, c, d]) = d

δ([a, b, c, d]) = [[a], [a, b], [a, b, c], [a, b, c, d]]



Non-empty lists

ϵ([a, b, c, d]) = d

δ([a, b, c, d]) = [[a], [a, b], [a, b, c], [a, b, c, d]]
Mealy machines
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Non-empty lists (right-to-left)

ϵ([a, b, c, d]) = a

δ([a, b, c, d]) = [[a, b, c, d], [b, c, d], [c, d], [d]]



Non-empty lists (right-to-left)

ϵ([a, b, c, d]) = a

δ([a, b, c, d]) = [[a, b, c, d], [b, c, d], [c, d], [d]]
right-to-left Mealy machines



Lists with an underlined element



Lists with an underlined element
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Lists with an underlined element

ϵ([a, b, c, d]) = c

δ([a, b, c, d]) = [[a, b, c, d], [a, b, c, d], [a, b, c, d], [a, b, c, d], ]
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Lists with an underlined element (monad)

η(a) = [a]

μ ([[a, b], [c, d, e], [ f, g]]) = [a, b, c, d, e, f, g]



Lists with an underlined element (monad)

η(a) = [a]

μ ([[a, b], [c, d, e], [ f, g]]) = [a, b, c, d, e, f, g]

letter-to-letter rational functions
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Letter to letter rational functions
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Letter to letter rational functions

Replace the first letter with a copy of the last letter

a a b b



Letter to letter rational functions

Replace the first letter with a copy of the last letter

a a b b
ab b b



Unambiguous (nondeterministic) Mealy machines
Replace the first letter with a copy of the last letter



Unambiguous (nondeterministic) Mealy machines
Replace the first letter with a copy of the last letter



Algebras for lists with an underlined element
A = A × A × A

prefix suffixunderlined

[(p1, x1, s1), …, (pi, xi, si), …, (pn, xn, si)] ∈ MA
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Algebras for lists with an underlined element
A = A × A × A

prefix suffixunderlined

↦
(a1 ⋅ … ⋅ ai−1 ⋅ pi, xi, si ⋅ ai+1 ⋅ … ⋅ an)

[(p1, x1, s1), …, (pi, xi, si), …, (pn, xn, si)] ∈ MA( ) ( )

where aj = pj ⋅ xj ⋅ sj



Transducers for lists with an underlined element

A = A × A × A
prefix suffixunderlined

h : Σ → A λ : A × A × A → Γ
prefix current

letter
suffix
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Transducers for lists with an underlined element

A = A × A × A
prefix suffixunderlined

h : Σ → A λ : A × A × A → Γ

Eilenberg bimachine

prefix current
letter

suffix
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Three M's for finite words

M Expressive Power

Non-empty lists with 
prefixes Mealy machines

Non-empty lists with 
suffixes

Right-to-left

Mealy machines

Lists with an underlined 
element

Rational letter-to-letter

functions
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Non-empty trees

↦ cϵ



Non-empty trees
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Non-empty trees

↦δ



Non-empty trees



Non-empty trees

Bottom up Mealy machines

on trees



Non-empty trees

Bottom up Mealy machines

on trees

?



Trees with an underlined element



Trees with an underlined element

↦ϵ



Trees with an underlined element

↦ϵ
b



Trees with an underlined element

↦δ



Trees with an underlined element
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Trees with an underlined element

Rational functions

on trees



Trees with an underlined element

Rational functions

on trees

?
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Other examples

• Labelled orders with a maximal element

• Labelled orders with an underlined element



Other examples

• Labelled orders with a maximal element

• Labelled orders with an underlined element

• Terms with an underlined leaf
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Composition

S3, h3, λ3
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Composition

•  has to be strong: M 𝚜𝚝𝚛𝚎𝚗𝚐𝚑𝚝 : X × MY → M(X × Y)

•  has to have: M 𝚜𝚎𝚝 : MX × X → MX

• All those structures have to be compatible



Set structure

𝚜𝚎𝚝 : MX × X → MX

https://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial
Based on Haskell's lenses:



Set structure

𝚜𝚎𝚝 : MX × X → MX

set([a, b, c, d], ) =ff



Set structure

𝚜𝚎𝚝 : MX × X → MX

[a, b, , d]set([a, b, c, d], ) =ff



Set structure

𝚜𝚎𝚝 : MX × X → MX

f[a, b, , d]set([a, b, c, d], ) =f

https://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial
Based on Haskell's lenses:



Set structure

𝚜𝚎𝚝 : MX × X → MX

https://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial
Based on Haskell's lenses:
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Contexts

Every element of  corresponds to a function  MA AA
Let  be -algebra: A M
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Contexts

Every element of  corresponds to a function  MA AA
Let  be -algebra: A M

Λ (MA × A ⟶ MA ⟶ A)𝚜𝚎𝚝 𝚙𝚛𝚘𝚍

The set of contexts is closed under compositions



Non empty lists

  AA ≃ A



Non empty lists

  AA ≃ A

 Every context is of the following form:

  x ↦ t ⋅ x
for some  t ∈ A



Non empty lists

If  is finite:A

 is a group A ⇔ All possible contexts

are permutations 



Lists with an underlined element

  AA ≃ A2

 Every context is of the following form:

  (p, x, s) ↦ (t1 ⋅ p, x, s ⋅ t2)
for some  t1, t2 ∈ A

A = A × A × A



M-wreath product

A1 A2
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Wreath product

A1 A2 = A1 × (AA1
1 → A2)≀M



Wreath product

A1 A2≀M = A1 × (AA1
1 → A2)

Non-empty lists
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Wreath product

A1 A2≀M = A1 × (AA1
1 → A2)

Non-empty lists

A1 × (A1 → A2)

= A1 × (AA1
1 → A2)

Lists with an underline

A1 × (A2
1 → A2)



Wreath product

A1 A2≀M = A1 × (AA1
1 → A2)

Non-empty lists

A1 × (A1 → A2)

= A1 × (AA1
1 → A2)

Lists with an underline

A1 × (A2
1 → A2)

Thank you!


