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Abstract

The ordinary algebraic structures usually constitute finitary varieties: that is, they are

axiomatisable by means of equations and finitary operations, as in the case of groups

and rings. It was only in the sixties that the algebraic theory of the structures equipped

with infinitary operations — the so-called infinitary varieties — has been developed [64,

48, 49], after the pioneering works of G. Birkhoff dating back to the thirties. Still in the

thirties, M. H. Stone showed in the fundamental work [65] that the dual of the category

of zero-dimensional compact Hausdorff spaces and continuous maps is equivalent to the

finitary variety of Boolean algebras and their homomorphisms. This is the celebrated

Stone duality. If we now lift the zero-dimensionality assumption on spaces, we are left

with the category KHaus of compact Hausdorff spaces. The question arises, is there a

(finitary or infinitary) variety of algebras, providing a generalisation of Boolean algebras,

that is equivalent to the dual category KHausop. The answer is positive, as proved by J.

Duskin in 1969 [27, 5.15.3]. However, subsequent results by B. Banaschewski [9, p. 1116]

entail that every variety that is equivalent to KHausop must use an infinitary operation.

On the other hand, J. Isbell had already shown [42] the existence of an infinitary variety

equivalent to KHausop in which a finite number of finitary operations, together with a

single infinitary operation of countable arity, suffice. Semantically, Isbell’s operation is

the uniformly convergent series
∞∑
i=1

fi
2i
.

The problem of providing an explicit axiomatisation of a variety equivalent to KHausop

has remained open. The main result of the thesis consists in a finite axiomatisation of

such a variety.
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Introduction

The main object of study of this thesis is the dual of the category KHaus of compact

Hausdorff spaces and continuous maps. A celebrated result by Stone [65] shows that

the full subcategory St of the category KHaus, whose objects are Stone spaces (=zero-

dimensional compact Hausdorff spaces), is dually equivalent to the finitary variety of

Boolean algebras. The question arises, is KHaus dually equivalent to a finitary variety.

In view of results by Rosický and Banaschewski [61, 9] not only is the answer known

to be negative, but the dual category KHausop is not axiomatisable by a wide class of

first-order theories. However, Duskin had already proved in 1969 [27, 5.15.3] that the

category KHaus is dually equivalent to a variety of infinitary algebras, i.e. structures

with function symbols of infinite arity. Hence the problem of providing an explicit ax-

iomatisation of an infinitary variety dually equivalent to KHaus arises. In 1982 Isbell

proved [42] that KHausop is equivalent to a variety in which every function symbol has

arity at most countable. More precisely, the signature of the latter variety consists of

finitely many finitary operations, along with exactly one operation of countably infinite

arity. Indeed, Isbell defined an explicit set of operations and showed that it suffices to

generate the algebraic theory of KHausop, in the sense of S lomińsky, Lawvere, and Linton

[64, 48, 49]. The algebraic theory of KHausop had been described by Negrepontis in [58],

by means of Gelfand-Neumark duality between KHaus and the category of commutative

unital C∗-algebras. The problem of axiomatising by equations an infinitary variety du-

ally equivalent to the category KHaus has remained open. The main contribution of the

thesis is to offer a solution. Using as a key tool the theory of MV-algebras — a gen-

eralisation of Boolean algebras that provides the algebraic counterpart to  Lukasiewicz’

many-valued logic — along with Isbell’s basic insight on the semantic nature of the

infinitary operation, in Chapter 4 we provide a finite axiomatisation.

The thesis is organised as follows.

Chapter 1 gives a historical account of the problem of axiomatising the dual of the

category KHaus.

vii



Introduction viii

The first two sections of Chapter 2 provide an introduction to the basic theory of lattice-

ordered groups and MV-algebras. These two classes of algebraic structures are tightly

related via the equivalence Γ. This connection is exploited in the third section of the

chapter. The content of Chapter 2, and its exposition, are standard in the literature.

Historically, an important characterisation of the dual algebra of a compact Hausdorff

space has been provided by Yosida in the language of lattice-ordered vector spaces.

Chapter 3 is devoted to the exposition of the related categorical duality. Here, all the

results are known. However, a detailed account of Yosida duality in the case of `-groups

with a strong order unit cannot be found in the literature.

Chapter 4 is the core of the thesis. Here we present a finite axiomatisation of a variety of

infinitary algebras, and prove that this variety forms a category that is dually equivalent

to the category KHaus. The whole chapter is original, however it relies on the theory of

MV-algebras introduced in Chapter 2. All the MV-algebraic results which are employed

in Chapter 4 are recalled in the first section, so that the latter chapter is self-contained.

In Chapter 5 we study the algebraic theory (in the sense of S lomiński, Lawvere, and

Linton) of the variety introduced in Chapter 4, and show that this variety constitutes

a full reflective subcategory of the category of MV-algebras. Further, some elementary

universal-algebraic properties of the latter variety are proved.

Chapter 6 deals with the basic theory of Banach algebras and C∗-algebras, as can be

found in the literature. The well-known Gelfand-Neumark duality for commutative C∗-

algebras is proved in detail. In the last section of the chapter we draw the connection

between commutative C∗-algebras, lattice-ordered groups, and the infinitary algebras

identified in Chapter 4. This viewpoint is not standard, and is not present in the litera-

ture. Moreover, we give a direct proof of the monadicity of the category of commutative

C∗-algebras with respect to the positive unit ball functor.

Finally, in Chapter 7 we turn back to the topic of the axiomatisability of the dual

category KHausop discussed in Chapter 1. On the one hand, we show that the category

KHausop cannot be axiomatised by a geometric theory of presheaf type. On the other

hand, we give an explicit axiomatisation of the category KHausop in an extension of

first-order logic by means of Alexandroff duality. The former result is original, while the

latter result is an observation — not to be found in the literature — relying on a known

duality for compact Hausdorff spaces.



Chapter 1

Prologue: which language suffices

to capture KHausop?

In 1969 Duskin proved that the category KHausop is monadic over Set [27, 5.15.3]. This

result, from a logical point of view, has two different consequences. On the one hand,

it tells us that the dual category KHausop is axiomatisable in a (possibly infinitary)

algebraic language. On the other hand, that KHausop is axiomatisable in some extension

of ordinary first-order logic. In the following sections we explore these two directions.

1.1 Algebraic

Recall that a one-sorted signature consists in a class F of function symbols and in a

class R of relation symbols. For every function symbol f ∈ F and for every relation

symbol R ∈ R we assume that cardinal numbers λf and λR are given. The numbers λf
and λR are the arity of f and R, respectively. Those function symbols whose arity is 0

are called constant symbols. For every cardinal number λ, we denote by Fλ (respectively

Rλ) the class of function symbols (respectively relation symbols) of arity λ. Throughout

the thesis we assume that, for each cardinal λ, the classes Fλ and Rλ are not proper

classes.

Notation 1.1.1. Many-sorted signatures will not be considered. Therefore, we shall omit

the adjective one-sorted when dealing with signatures. An arbitrary signature is usually

denoted by the symbol Σ. The equality symbol is considered as a logical symbol, as the

propositional connectives and the quantifiers ∃,∀.

By an algebraic signature we mean a signature with no relation symbols, i.e. such that

Rλ = ∅ for all cardinal numbers λ. Recall that a cardinal number λ is regular if there is

no set of cardinality λ that is the union of µ sets of cardinality ν, with µ, ν < λ cardinal

numbers. For instance, 2 is a regular cardinal. Amongst the infinite regular cardinals

are ℵ0 and ℵ1. We agree to say that an algebraic signature is a λ-signature if there

exists an infinite regular cardinal λ such that Fµ = ∅ for every cardinal µ > λ.

1
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Let us consider a λ-signature Σ, together with a set of variables

Var := {xµ}µ<λ.

The set Term of terms for the signature Σ is inductively defined in the following way:

every variable is in Term; if f ∈ Fµ and {tν}ν<µ ⊆ Term, then f(t1, . . . , tν , . . .) ∈
Term. Nothing else is in Term. A Σ-structure is a set U together with an operation

f̂ : Uµ → U for each function symbol f ∈ Fµ. Observe that any function ϕ : Var → U

can be extended to a function ϕ : Term→ U . Indeed, suppose that the map ϕ is defined

on the terms {tν}ν<µ ⊆ Term, and let f ∈ Fµ be a function symbol of arity µ. Then,

we define

ϕ(f(t1, . . . , tν , . . .)) := f̂(ϕ(t1), . . . , ϕ(tν), . . .).

A homomorphism between Σ-structures is a map preserving the operations. Given a

λ-signature Σ, we denote by Str Σ the category that has Σ-structures as objects and

homomorphisms as morphisms.

By an equational theory T over the λ-signature Σ we understand a set of axioms, i.e.

pairs of terms (s, t), s, t ∈ Term, where each such pair can informally be thought of as

the equation s = t. In the following, we use the latter notation whenever convenient.

Definition 1.1.2. A model for an equational theory T is a Σ-structure U such that, for

every function ϕ : Var → U and for every pair (s, t) ∈ T, the condition ϕ(s) = ϕ(t) is

satisfied.

The full subcategory of Str Σ whose objects are the models of T is denoted by ModT.

Definition 1.1.3. If λ is a regular infinite cardinal, a λ-variety is the class of models

for an equational theory over a λ-signature.

We remark that the notion of Σ-structure can be defined more generally for an arbitrary

signature Σ. Likewise, one can consider not only equational theories but also arbitrary

first-order theories over an arbitrary signature, whose axioms are constructed by using

propositional connectives and quantifiers in an appropriate way (see [1, p. 221–222]). If

Σ is an arbitrary signature, and T is an arbitrary first-order theory over the signature

Σ, we continue to denote by Str Σ and ModT the associated categories.

Remark 1.1.4. Let Σ be a λ-signature, and let T be an equational theory over the

signature Σ. For λ = ℵ0, we have that every function symbol in Σ has finite arity, and

ModT is an equationally defined class of finitary algebras, as studied in classical universal

algebra. In this context, a variety of algebras is defined as a class of algebras which is

closed under homomorphic images, subalgebras and products. Birkhoff’s theorem [18,

Theorem 11.9] then states that the notions of equational class of (finitary) algebras and

of variety of (finitary) algebras coincide. This shows that referring to ModT as a λ-

variety makes sense if λ = ℵ0. However, S lomiński showed in [64, 9.6] that the natural

extension of Birkhoff’s theorem to infinitary algebras also holds, so that the terminology

becomes consistent for any infinite regular cardinal λ.
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It is a classical result in category theory, that categories which are monadic over Set

coincide, up to equivalence, with λ-varieties (see [49], or [54, Theorem 5.40 p. 66,

Theorem 5.45 p. 68]). Then, Duskin’s result about the monadicity of the dual category

KHausop [27, 5.15.3] entails that KHausop is equivalent to a λ-variety for some infinite

regular cardinal λ. The question arises, is KHausop equivalent to a finitary variety of

algebras. The answer is no, in view of a much stronger result of Banaschewski (see

Theorem 1.2.11 below).

In 1971 Negrepontis described [58] the algebraic theory of KHausop in the sense of

S lomińsky, Lawvere, and Linton [64, 48, 49]. The dual category of KHaus is known to be

equivalent to the category C∗ of commutative unital C∗-algebras by Gelfand-Neumark

duality (see Section 6.2). Negrepontis showed that the unit ball functor from C∗ to Set

is monadic. In particular, if

I := {z ∈ C | ‖z‖ 6 1}

denotes the complex unit disc, a left adjoint to the unit ball functor maps a set X to the

C∗-algebra C(IX ,C) of all the continuous C-valued functions on the space IX . Hence,

the algebraic theory of KHausop has powers of the space I as objects, and continuous

maps as morphisms (see Chapter 5 for some information about algebraic theories). It is

known that the category C∗ is monadic over Set also with respect to the Hermitian unit

ball functor sending a C∗-algebra to the set of its self-adjoint elements whose norm does

not exceed 1 (see Section 6.3 for details). A left adjoint to the latter functor induces a

monad over Set which maps a set X to the set C([−1, 1]X ,C). The associated algebraic

theory has the cubes [−1, 1]λ as objects, with λ an arbitrary cardinal number, and

continuous maps between the cubes as morphisms. In [42] Isbell gave an explicit set of

operations which suffice to generate the latter algebraic theory. In the intended model

C(X, [−1, 1]), for X a compact Hausdorff space, the identified operations are interpreted

as follows. There are three finitary operations: the constant function of value 1 on X, a

unary operation mapping a continuous function f to the function −f , and the truncated

multiplication by 2 sending f to min (1,max (−1, 2f)). Further, there is an infinitary

operation of countably infinite arity which maps a sequence of continuous functions

{fi}i∈N to the uniformly convergent series

∞∑
i=1

fi
2i
.

In particular, this means that the category KHausop is equivalent to an ℵ1-variety. Ne-

grepontis’ result was then generalised by Van Osdol [66] who proved that the category of

(possibly non-commutative and non-unital) C∗-algebras is monadic over Set with respect

to the unit ball functor. In [59, 60] Pelletier and Rosický gave explicit sets of operations

generating the algebraic theory of all unital C∗-algebras with respect to the unit ball

functor, and of related categories. However, the problem of providing a tractable (i.e.

finite or recursive) set of identities for these theories has remained open. In Chapter 4

we give a finite axiomatisation of an ℵ1-variety that is dually equivalent to the category

KHaus. This can be regarded as an axiomatisation of the class of positive unit balls of

commutative unital C∗-algebras.
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1.2 First-order and extensions

In this section we shall see that every category that is monadic over Set, or equivalently

every λ-variety, can be axiomatised in an appropriate extension of first-order logic.

Let κ, λ be infinite cardinal numbers, and let us consider a set of variables Var =

{xµ}µ<γ of cardinality γ = max (κ, λ). The infinitary language Lκ,λ is described as

follows. On the one hand we consider logical symbols, i.e. the propositional connectives

∧,∨,¬,⇒, the quantifiers ∃, ∀, and the equality symbol =. On the other hand, the non-

logical symbols are provided by a signature Σ containing only finitary function symbols

and finitary relation symbols. In other words, Fµ = ∅ = Rµ for each infinite cardinal

µ. The class Term of terms for the signature Σ is defined as usual: every variable is a

term; if t1, . . . , tn ∈ Term and f ∈ Fn, then f(t1, . . . , tn) ∈ Term. Nothing else is in

Term.

Remark 1.2.1. In the context of infinitary languages, infinitary function symbols and

infinitary relation symbols are not allowed. Therefore, when dealing with a language

Lκ,λ, we implicitly assume that a signature Σ is given, which satisfies Fµ = ∅ = Rµ for

each infinite cardinal µ.

Now, we can define inductively the notion of expression of Lκ,λ.

1. If t1, t2 are terms, then t1 = t2 is an expression.

2. If R ∈ Rn and t1, . . . , tn ∈ Term, then R(t1, . . . , tn) is an expression.

3. If ε is an expression, then ¬ε is an expression.

4. If ε1, ε2 are expressions, then ε1 ⇒ ε2 is an expression.

5. If ρ < κ is a cardinal number and {εµ}µ<ρ is a set of expressions, then∧
ε1ε2 · · · εµ · · · ,

and ∨
ε1ε2 · · · εµ · · ·

are expressions.

6. If ε is an expression, δ < λ is a cardinal number and {xµξ}ξ<δ ⊆ Var (where

µξ < max (κ, λ) for each ξ < δ), then

∃xµ1xµ1 · · ·xµξ · · · ε,

and

∀xµ1xµ1 · · ·xµξ · · · ε

are expressions.

7. Nothing else is an expression.
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In other words, the infinitary language Lκ,λ extends ordinary first-order logic by allowing

conjunctions and disjunctions of sets of formulæ of cardinality strictly smaller than

κ, and quantification over sets of variables of cardinality strictly smaller than λ. If,

moreover, we introduce conjunctions and disjunctions of sets of formulæ of arbitrary

cardinality, we obtain the language usually denoted by L∞,λ (and similarly one could

define the language Lκ,∞). Finally, the infinitary language L∞,∞ allow us to consider

arbitrary conjunctions and disjunctions, and arbitrary quantifications. Observe that the

language Lℵ0,ℵ0 is the ordinary first-order language.

Notation 1.2.2. When κ, λ are amongst the cardinals ℵ0,ℵ1, we write the ordinal ω

(respectively ω1), in place of the cardinal ℵ0 (respectively ℵ1). For instance, the usual

first-order logic is denoted by Lω,ω.

Definition 1.2.3. Let κ, λ be infinite cardinals. A sentence of the language Lκ,λ is an

expression with no free variables. A theory T in the infinitary language Lκ,λ is a set of

sentences of Lκ,λ.

A straightforward generalisation of Tarski’s truth definition employed in ordinary model

theory allows one to define a model for a theory T in an infinitary language Lκ,λ (see

[25, p. 68] for details). A homomorphisms between models is a map preserving the

operations and the relations, and the category of models for a theory T, with their

homomorphisms, is denoted by ModT.

Definition 1.2.4. Let κ, λ be infinite cardinals. A category C is axiomatisable in the

language Lκ,λ if there exists a theory T in the language Lκ,λ such that C ' ModT.

For a thorough treatment of infinitary languages the interested reader is referred to [25].

Now we turn to the connection between infinitary languages and category theory. Recall

that a non-empty partially ordered set is directed provided that each pair of elements has

an upper bound. If λ is an infinite regular cardinal, we can generalise the latter definition

by saying that a partially ordered set is λ-directed if every subset of cardinality strictly

smaller than λ has an upper bound. If D : (I,6) → C is a diagram in the category C,

and (I,6) is a λ-directed partially ordered set (regarded as a category), then D is a

λ-directed diagram and its colimit is a λ-directed colimit .

We remark that there is another construction related to that of directed colimits, namely

that of filtered colimits. Recall that a non-empty category C is filtered if the following

properties are satisfied.

1. For each pair of objects C1, C2 of C there is an object D and morphisms f1 : C1 →
D, f2 : C2 → D in C.

2. For each pair of parallel arrows g1, g2 : C1 → C2 in C there is a morphism f : C2 →
D in C such that f ◦ g1 = f ◦ g2.

It is elementary that every directed partially ordered set, regarded as a category, is a

filtered category. A filtered diagram in a category D is a functor D : C→ D where C is a

filtered category. The colimit of a filtered diagram is called a filtered colimit. Directed

colimits and filtered colimits are equivalent constructions, in the following sense.
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Lemma 1.2.5. A category C has directed colimits if, and only if, it has filtered colimits.

If the category C satisfies one of the latter equivalent conditions, and D is any category,

then a functor F : C→ D preserves directed colimits if, and only if, it preserves filtered

colimits.

Proof. See [1, Corollary p. 15].

The foregoing lemma admits a generalisation to λ-directed colimits. We agree to say that

a non-empty category C is λ-filtered , for λ an infinite regular cardinal, if the following

hold.

1. For each set {Ci}i∈I of objects of C of cardinality strictly smaller than λ there

exists an object D in C and morphisms fi : Ci → D for all i ∈ I.

2. For each collection {gi}i∈I of morphisms gi : C1 → C2 in C of cardinality strictly

smaller then λ there exists a morphism f : C2 → D in C such that f ◦ gi = f ◦ gj
for all i, j ∈ I.

A λ-filtered diagram in a category D is a functor D : C → D where C is a λ-filtered

category. The colimit of a λ-filtered diagram is called a λ-filtered colimit . Again, a

category has λ-directed colimits if, and only if, it has λ-filtered colimits (see [1, Remark

1.21 p. 22]). Therefore, the difference between directed colimits and filtered colimits

is immaterial. Depending on the specific situation, we shall use whichever is more

convenient.

Notation 1.2.6. If C is a category and A is an object of C, we agree to denote by

C(A,−) : C→ Set

the functor mapping an object B of C to the set C(A,B) of morphisms A→ B in C.

Now, let us fix an infinite regular cardinal λ.

Definition 1.2.7. An objectA of a category C is λ-presentable if the functor C(A,−) : C→
Set preserves λ-filtered colimits.

Definition 1.2.8. A category C is λ-accessible provided that it has λ-directed colimits

and a dense subset A of λ-presentable objects, i.e. every object of C is a λ-directed

colimit of objects of A. The category C is locally λ-presentable if it is λ-accessible and

cocomplete.

A great number of examples of locally λ-presentable categories is provided by the fol-

lowing

Theorem 1.2.9. Every λ-variety is a locally λ-presentable category. Equivalently, ev-

ery category that is monadic over Set is locally λ-presentable, for some infinite regular

cardinal λ.
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Proof. See [1, Theorem 3.28].

If λ = ℵ0 we speak of finitely presentable objects and of finitely accessible and locally

finitely presentable categories, respectively. A category is called accessible (respectively

locally presentable) if it is λ-accessible (respectively locally λ-presentable) for some in-

finite regular cardinal λ. The notion of accessible category originates from the work of

Grothendieck [7], and the related theory was further developed by Gabriel and Ulmer

in [30], where locally presentable categories are studied for the first time. Moreover,

accessible categories have been intensively studied by Makkai and Paré [53] in connec-

tion with model theory. In fact, here logic enters the picture: accessible and locally

presentable categories can be characterised, up to equivalence, precisely as categories

of models for certain theories in the infinitary language L∞,∞. We shall be concerned

only with the case of locally presentable categories, for a characterisation of accessible

categories please see [1, pp. 227–229].

Let us fix a signature Σ and an infinite regular cardinal λ. A limit theory in the language

Lλ,λ is a set of sentences, each of them being of the form

∀{xi}i∈I (ϕ ({xi}i∈I)⇒ ∃!{yj}j∈Jψ ({xi}i∈I , {yj}j∈J)) ,

where {xi}i∈I , {yj}j∈J are sets of variables of cardinality strictly smaller than λ, and

ϕ,ψ are conjunctions of less than λ atomic formulæ (=formulæ that do not contain

propositional connectives or quantifiers). Limit theories completely characterise locally

presentable categories:

Theorem 1.2.10. Let λ be an infinite regular cardinal. A category is locally λ-presentable

if, and only if, it is equivalent to ModT for a limit theory T in the language Lλ,λ.

Proof. See [1, Theorem 5.30].

It follows that KHausop, being equivalent to an ℵ1-variety (in view of Isbell’s result), is

axiomatisable in the language Lω1,ω1 . However, this does not mean that KHausop cannot

be axiomatised in a smaller fragment of language, e.g. in ordinary first-order logic Lω,ω.

In the eighties Bankston asked [10] whether KHaus is dually equivalent to any elementary

P-class of finitary algebras. Recall that a subcategory D of a category C is said to be

closed in C under product if the following property is satisfied: the product of objects of

D, computed in C is, in fact, in D. Then a P-class of finitary algebras is a category of the

form ModT, for T a theory in the language Lω,ω over an algebraic signature Σ, such that

ModT is closed under products in Str Σ. A negative answer was given, independently,

by Rosický [61] and Banaschewski [9]. In fact, the latter proved the following stronger

result, where we recall that St denotes the category of Stone spaces (=zero-dimensional

compact Hausdorff spaces).

Theorem 1.2.11. The only full subcategory of KHaus extending St, which is dually

equivalent to an elementary P-class of finitary algebras, is St.

Proof. See [9, p. 1116].
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By a celebrated result of Stone [65], the category St of Stone spaces and continuous

maps is dually equivalent to the category Bool of Boolean algebras an their homomor-

phisms. Hence, Banaschewski’s result shows that Stone duality cannot be extended

further retaining the finitary algebraic nature of the dual category.



Chapter 2

Lattice-ordered groups and

MV-algebras

2.1 Lattice-ordered groups

2.1.1 The variety of `-groups

Recall that a lattice is a partially ordered set (G,6) in which every pair of elements

x, y ∈ G has a greatest lower bound and a least upper bound, denoted by x ∧ y and

x∨y, respectively. Equivalently, it can be described as an (equationally defined) algebra

(G,∧,∨) satisfying the commutative, associative, idempotent and absorption laws [18,

Definition 1.1]. Whenever we are given a lattice in the form (G,∧,∨), we shall denote

by 6 the canonically associated ordering, defined by x 6 y if, and only if, x ∧ y = x.

The language of `-groups is given by L`Grp := {0,+,∧,∨} where 0 is a function symbol

of arity 0, and +,∧,∨ are binary function symbols.

Definition 2.1.1. A lattice-ordered abelian group (abelian `-group for short) is an alge-

bra (G,+, 0,∧,∨) satisfying the following conditions.

1. (G,+, 0) is an abelian group.

2. (G,∧,∨) is a lattice.

3. For all x, y, t ∈ G, if x 6 y, then x+ t 6 y + t.

It is clearly possible to generalise this definition to (possibly non-commutative) `-groups.

However, we will be concerned with commutative `-groups only. For this reason, hence-

forth by an `-group we understand an abelian `-group.

Remark 2.1.2. In item 2 of Definition 2.1.1 we do not require that the lattice (G,∧,∨) is

either distributive or bounded. In particular, we do not require that every finite subset

F ⊆ G admits a greatest lower bound
∧
F and a least upper bound

∨
F , for otherwise

the lattice G would be bounded by > :=
∧
∅ and ⊥ :=

∨
∅ (this definition is adopted

9
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by some authors, see e.g. [44, 1.2, 1.4]). It will soon transpire that the underlying lattice

(G,∧,∨) of any `-group is automatically distributive, and that it is bounded if, and only

if, G is the trivial (singleton) group.

It is not evident by Definition 2.1.1 that the class of `-groups can be defined by equations.

We show that, in fact, this is possible.

Lemma 2.1.3. Let (G,+, 0,∧,∨) be an algebra such that conditions 1 and 2 in Defini-

tion 2.1.1 are satisfied. Then (G,+, 0,∧,∨) is an `-group if, and only if, the following

hold for all x, y, t ∈ G.

t+ (x ∧ y) = (t+ x) ∧ (t+ y).

t+ (x ∨ y) = (t+ x) ∨ (t+ y).

Proof. Observe that, if the condition x 6 y ⇒ x+ t 6 y + t holds, then x+ t 6 y + t

entails x = x + t + (−t) 6 y + t + (−t) = y. Thus x 6 y if, and only if, x + t 6 y + t.

Now, assume that x 6 y ⇒ x+ t 6 y + t. We have

t+ (x ∧ y) 6 t+ x ⇔ x ∧ y 6 x,

t+ (x ∧ y) 6 t+ y ⇔ x ∧ y 6 y.

Hence t+ (x∧ y) 6 (t+ x)∧ (t+ y). If z ∈ G is such that z 6 t+ x and z 6 t+ y, then

z 6 t+ x ⇔ z − t 6 x,

z 6 t+ y ⇔ z − t 6 y.

We conclude that

z − t 6 x ∧ y ⇔ z 6 t+ (x ∧ y).

In other words t + (x ∧ y) = (t + x) ∧ (t + y). Similarly, it is possible to show that

t+ (x ∨ y) = (t+ x) ∨ (t+ y). In the other direction,

x 6 y ⇔ x ∧ y = x ⇔ (x ∧ y) + t = x+ t ⇔

(x+ t) ∧ (y + t) = x+ t ⇔ x+ t 6 y + t.

By Birkhoff’s theorem [18, Theorem 11.9], together with Lemma 2.1.3, the class of `-

groups is a variety of (finitary) algebras, meaning that it is closed under the operators

H (homomorphic images), S (subalgebras) and P (products).

The following fact is a key property.

Lemma 2.1.4. If G is an `-group and x, y ∈ G, then

(x− (x ∧ y)) ∧ (y − (x ∧ y)) = 0.
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Proof. A straightforward computation shows that

(x− (x ∧ y)) ∧ (y − (x ∧ y)) = (x ∧ y)− (x ∧ y) (Lemma 2.1.3)

= 0.

As anticipated above, the lattice reduct of any `-group is distributive:

Proposition 2.1.5. If (G,+, 0,∧,∨) is an `-group, then (G,∧,∨) is a distributive lat-

tice.

Proof. See [13, Proposition 1.2.14].

Definition 2.1.6. Let G,H be `-groups. A function h : G → H is called a homomor-

phism of `-groups (`-homomorphism for short) if it is both a group homomorphism and

a lattice homomorphism.

Remark 2.1.7. An `-homomorphism, being a homomorphism of abelian groups, is linear

with respect to the Z-module structure of the underlying group.

Definition 2.1.8. The positive cone of an `-group G is the set

G+ := {x ∈ G | 0 6 x}.

Remark 2.1.9. The term positive in the preceding definition, instead of the more appro-

priate non-negative, is standard in the literature.

The name cone suggests that the following property holds: if x, y ∈ G+, then x+y ∈ G+.

This is true, indeed

0 6 x ⇒ y 6 x+ y ⇒ 0 6 y 6 x+ y.

Remark 2.1.10. Notice that, if we know the positive cone, we can recover the partial

order of the `-group. Indeed,

x 6 y ⇔ 0 6 y + (−x) ⇔ y + (−x) ∈ G+.

The same observations apply to the negative cone of G, defined by

G− := {x ∈ G | x 6 0}.

Lemma 2.1.11. If h : G→ H is an `-homomorphism, then

1. h is order-preserving.

2. h(G+) ⊆ H+.
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Proof. For item 1, assume that x 6 y, i.e. x ∧ y = x. We find h(x ∧ y) = h(x) if, and

only if, h(x) ∧ h(y) = h(x), that is h(x) 6 h(y). With respect to item 2, pick x ∈ G+,

so that 0 ∧ x = 0. Then

h(0 ∧ x) = h(0) ⇔ h(0) ∧ h(x) = h(0) ⇔ 0 ∧ h(x) = 0 ⇔ h(x) ∈ H+.

Denote by `Grp the category whose objects are `-groups and whose morphisms are

`-homomorphisms. It is a consequence of general results about varieties of finitary

algebras, viewed as categories, that the category `Grp has the following properties.

1. The category `Grp is complete and cocomplete (further, `Grp is locally finitely

presentable [1, Corollary 3.7]). In particular, it has an initial and a terminal

object.

2. The category `Grp has free objects on generating sets of any cardinality: in other

words, there is a functor F : Set → `Grp that is left adjoint to the underlying-set

functor U : `Grp→ Set (see [18, Theorem 10.12] or [54, Theorem 4.15 p. 37]).

Lemma 2.1.12. If G is an `-group and x, y ∈ G satisfy x ∧ y = 0, then nx ∧ ny = 0

for all n ∈ N.

Proof. By [13, 1.2.24], for all x, y, z ∈ G, x ∧ y = 0 = x ∧ z ⇒ x ∧ (y + z) = 0. In

particular, x ∧ y = 0 ⇒ x ∧ (y + y) = 0. Reasoning by induction on n ∈ N, it is easy

to see that x ∧ ny = 0 and, consequently, that nx ∧ ny = 0.

Given an `-group G and an element g ∈ G, define the positive part g+ := g ∨ 0 and the

negative part g− := −g ∨ 0 of g.

Lemma 2.1.13. Let G be an `-group. For an arbitrary element g ∈ G, the following

hold.

1. g = g+ − g−.

2. g+ ∧ g− = 0.

3. If a, b ∈ G satisfy g = a− b and a ∧ b = 0, then a = g+ and b = g−.

Proof. Clearly g + g− = g + (−g ∨ 0) = (g − g) ∨ (g + 0) = 0 ∨ g = g+, that is

g = g+ − g−. For the proof of items 2 and 3 the interested reader is referred to [13,

Proposition 1.3.4].

Corollary 2.1.14. Let G be an `-group. For every pair of elements g, h ∈ G, g > h if,

and only if, g+ > h+ and h− > g−.
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Proof. Assume that g > h. Then g+ = g∨0 > h∨0 = h+ and g− = −g∨0 6 −h∨0 = h−.

Conversely, if g+ > h+ and g− 6 h−, then −g− > −h− and g = g+− g− > h+−h− = h

by Lemma 2.1.13.

Definition 2.1.15. An `-group G is totally-ordered (or linearly ordered) if, for all a, b ∈
G, either a 6 b or b 6 a.

Although the variety of `-groups arises from the abstraction of the integers (Z,+, 0,6),

it captures a wider class of structures. We illustrate this comment by giving some

examples of models for the theory of `-groups.

Example 2.1.16. (Z,+, 0,6), (Q,+, 0,6) and (R,+, 0,6) are `-groups. Further, they

are totally-ordered.

Example 2.1.17. (Z × Z,+, (0, 0),6) is an `-group, where sum and order are defined

componentwise, in other words

(a, b) + (a′, b′) := (a+ a′, b+ b′),

(a, b) 6 (a′, b′) ⇔ a 6 a′ and b 6 b′.

This is a partial order, and not a total one. Thus the class of totally-ordered `-groups

cannot be a variety of algebras because it is not closed under products. In fact, the

axiom for a total order fails to be equationally definable.

Example 2.1.18. We consider a different order on the free abelian group of rank 2,

Z× Z. Let ξ ∈ R \Q be any irrational number, and consider the group

G := {z1 + ξz2 | z1, z2 ∈ Z}.

It is easy to see that the map (z1, z2) 7→ z1 + ξz2 is an isomorphism between the groups

Z2 and G. Notice, in particular, that the injectivity is due to the irrationality of ξ:

z1 + ξz2 = z3 + ξz4 ⇔ 1(z1 − z3) + ξ(z2 − z4) = 0 ⇔ z1 = z3 and z2 = z4

for, otherwise, there would exist integers m (= z1 − z3) and n (= z2 − z4) such that

1 ·m+ ξn = 0 ⇔ ξn = −m ⇔ ξ = −m
n
,

which is impossible. The group G, equipped with the order induced by R, is a totally-

ordered group. Moreover,

0 6 z1 + ξz2 ⇔ 0 6 〈(z1, z2), (1, ξ)〉,

where 〈·, ·〉 denotes the standard scalar product of R2. That is,

G+ = {z1 + ξz2 | 〈(z1, z2), (1, ξ)〉 > 0}.
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Geometrically, the positive cone of G, regarded as a subset of Z2 ∼= G, is the halfspace

containing (1, ξ) determined by the line

l := {(x, y) ∈ R2 | 〈(x, y), (1, ξ)〉 = 0}.

The key property of l is that its intersection with Z2 is {(0, 0)}.

Henceforth, we shall write a < b meaning that the two conditions a 6 b and a 6= b are

satisfied.

Definition 2.1.19. An `-group G is archimedean if, for all a, b ∈ G, the following

condition holds.

If 0 < a 6 b, then there exists n ∈ N such that na 
 b.

The examples for the theory of `-groups that we have introduced so far are all archimedean.

In the next example we define an order on the group Z×Z, such that the resulting `-group

is not archimedean.

Example 2.1.20. The lexicographic product of Z with itself is the ordered group Z−→×Z =

(Z×Z,+, (0, 0),6) where the sum is componentwise and the order, called lexicographic

order, is given by

(a′, b′) 6 (a, b) ⇔ (a′ < a) or (a′ = a and b′ 6 b).

It is elementary that Z−→×Z is a totally-ordered `-group, and its positive cone is

(Z−→×Z)+ = {(a, b) ∈ Z2 | (0 < a) or (a = 0 and 0 6 b)}.

However, Z−→×Z is not archimedean: there exist two elements 0 < a, b such that na 6 b

holds for all n ∈ N. For example, take a := (0, 1) and b := (1, 0). We have a 6 b but,

for all n ∈ N, n(0, 1) = (0, n) 6 (1, 0). We say that the element (0, 1) is infinitesimal

with respect to (1, 0), and write (0, 1) � (1, 0). Similarly, the ordered group Z−→×Z−→×Z
is seen to be a non-archimedean `-group. In this case there are infinitesimal elements of

two different ranks:

(0, 0, 1)� (0, 1, 0)� (1, 0, 0).

We conclude with one more example of `-group, which will be central in Chapter 3.

Given a topological space X, the family C(X) of all the continuous functions on X with

values in R (or, more generally, in C) has been extensively studied under different points

of view, depending on which structure one chooses to equip R with. For instance, the

latter could be regarded as a group, a ring, or even a Banach algebra, and this choice

determines a corresponding structure on C(X) (see [62] for a thorough treatment of the

subject).

Example 2.1.21. Let X be a topological space, and consider the euclidean topology

on R. We denote by C(X,R) the set {f : X → R | f is continuous}. Upon considering
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R as an `-group, we can define a structure (C(X,R),+, 0,∧,∨) where the sum is taken

to be pointwise, and for every f, g ∈ C(X,R) and for every x ∈ X,

(f ∧ g)(x) := min (f(x), f(y)),

and

(f ∨ g)(x) := max (f(x), g(x)).

The element 0 of C(X,R) is the constant function of value 0 on X. It is easy to verify

that C(X,R) is an `-group; in fact, it is also archimedean, as we shall now prove.

Lemma 2.1.22. If X is a topological space, then the `-group C(X,R) is archimedean.

Proof. Let f, g ∈ C(X,R) be such that 0 < f 6 g. Since 0 < f , there exists a point

x ∈ X such that 0 < f(x); then 0 < f(x) 6 g(x) because f 6 g. The `-group R is

archimedean, hence there exists n ∈ N satisfying nf(x) 
 g(x), i.e. nf 
 g.

2.1.2 Hölder’s theorem

The following result is fundamental. It was first proved in 1901 by Hölder [39] (for an

English translation please see [40, 41]).

Theorem 2.1.23 (Hölder). Every totally-ordered archimedean `-group G can be embed-

ded in R, i.e. there exists an injective `-homomorphism G→ R.

Remark 2.1.24 (Assumes knowledge in logic). The archimedean property, as stated in

Definition 2.1.19, is not elementary, meaning that it is not expressible in a first-order

language. Indeed, the construction of a non-archimedean structure as an ultrapower

of R, fundamental in non-standard analysis, shows that such a first-order formulation

cannot exist, for otherwise it would contradict  Loś’s theorem. Consistently with the

fact that the hypotheses of the upward Löwenheim-Skolem theorem are not satisfied,

Hölder’s theorem gives an upper bound on the cardinality of any model for the theory

of totally-ordered archimedean `-groups: the cardinality of an infinite model for this

theory is either ℵ0 or ℵ1.

The proof of Hölder’s theorem requires some preliminary results that hold more generally

for partially ordered groups. A partially ordered group is a structure (G,+, 0,6) such

that (G,+, 0) is an abelian group, (G,6) is a partially ordered set, and for all x, y, t ∈ G,

if x 6 y then x+ t 6 y + t. Clearly, a partially ordered group is an `-group if, and only

if, it is lattice-ordered as a partially ordered set. The notion of positive and negative

cone can be extended from `-groups to partially ordered groups in the obvious way. We

continue using the notation G+, G−.

Definition 2.1.25. A partially ordered set is 2-directed if every pair of elements has an

upper bound and a lower bound.

Remark 2.1.26. We reserve the term directed to mean that each pair of elements has an

upper bound. The non-standard terminology 2-directed is only used in this section for

the sake of clarity.
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Lemma 2.1.27. A partially ordered group G is 2-directed if, and only if,

G = G+ +G− := {g1 + g2 | g1 ∈ G+ and g2 ∈ G−}.

Proof. Suppose that G is 2-directed and pick g ∈ G. Upon considering the pair {0, g},
there exists y ∈ G such that g 6 y and 0 6 y. Thus y ∈ G+ and g 6 y ⇔ g − y 6
0 ⇔ g − y ∈ G−. We conclude that g = y + (g − y), so that g ∈ G+ +G−. Conversely,

let g1, g2 ∈ G and assume that there exist x, y, u, v ∈ G+ satisfying g1 = x + (−y) and

g2 = u+ (−v). It follows

g1 = x+ (−y) ⇔ x− g1 ∈ G+ ⇔ g1 6 x,

g2 = u+ (−v) ⇔ u− g2 ∈ G+ ⇔ g2 6 u.

Hence g1 6 x 6 x + u and g2 6 u 6 x + u, because x, u ∈ G+. This shows that x + u

is an upper bound for the pair g1, g2. Similarly, one can prove that −y − v is a lower

bound for the pair.

Lemma 2.1.28. Let G and H be partially ordered set, and let f : G+ → H+ be a

function satisfying f(a+ b) = f(a)+f(b) for all a, b ∈ G+. If G is 2-directed, then there

exists a unique monotonic group homomorphism f̄ : G→ H extending f .

Proof. Consider an element g ∈ G. By Lemma 2.1.27 there exist a, b ∈ G+ such that

g = a+ (−b). Define the function f̄ : G→ H as

f̄(g) := f(a) + (−f(b)).

This function is well-defined: if c, d ∈ G+ satisfy g = c+ (−d), then

a+ (−b) = c+ (−d) ⇔ a+ d = c+ b ⇒ f(a+ d) = f(c+ b) ⇔

f(a) + f(d) = f(c) + f(b) ⇔ f(a) + (−f(b)) = f(c) + (−f(d)).

We show that f̄ is a group homomorphism. Let g1, g2 ∈ G and a, b, c, d ∈ G+ be such

that g1 = a+ (−b) and g2 = c+ (−d). Since

g1 + g2 = a+ (−b) + c+ (−d) = (a+ c) + (−(b+ d)),

we have

f̄(g1 + g2) = f(a+ c) + (−f(b+ d))

= f(a) + f(c) + (−f(b)) + (−(f(d))

= f(a) + (−f(b)) + f(c) + (−f(d))

= f̄(g1) + f̄(g2).

Moreover,

f̄(−g1) = f̄(b+ (−a)) = f(b)− f(a) = −(f(a)− f(b)) = −f̄(g1).
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Now, suppose that g1 6 g2, i.e. g2 − g1 ∈ G+. Then

f(g2)− f(g1) = f(g2 − g1) = f(g2 − g1) > 0,

that is f(g1) 6 f(g2). Finally, suppose that f ′ is another group homomorphism extend-

ing f . Upon considering an arbitrary element g ∈ G and elements a, b ∈ G+ such that

g = a+ (−b) (their existence is assured by Lemma 2.1.27), the map f ′ will satisfy

f ′(g) = f ′(a+ (−b)) = f ′(a) + (−f ′(b)) = f(a) + (−f(b)) = f̄(g).

Corollary 2.1.29. If G,H are `-groups and f : G+ → H+ is a function preserving

sums and joins, then there exists a unique `-homomorphism f̄ : G→ H extending f .

Proof. Clearly, every lattice is a 2-directed partially ordered set, so that every `-group

is 2-directed. By Lemma 2.1.28 there exists a unique monotonic group homomorphism

f̄ which extends f . We prove that f̄ preserves the lattice structure. If g1, g2 ∈ G, then

f̄(g1 ∨ g2)− f̄(g1 ∧ g2) = f((g1 ∨ g2)− (g1 ∧ g2))

= f((g1 − (g1 ∧ g2)) ∨ (g2 − (g1 ∧ g2)))

= f(g1 − (g1 ∧ g2)) ∨ f(g2 − (g1 ∧ g2))

= f̄(g1 − (g1 ∧ g2)) ∨ f̄(g2 − (g1 ∧ g2))

= (f̄(g1)− f̄(g1 ∧ g2)) ∨ (f̄(g2)− f̄(g1 ∧ g2))

= (f̄(g1) ∨ f̄(g2))− f̄(g1 ∧ g2).

We conclude that f̄(g1 ∨ g2) = f̄(g1) ∨ f̄(g2). Furthermore,

f̄(g1 ∧ g2) = f̄(−(−g1 ∨ −g2)) = −(f̄(−g1) ∨ f̄(−g2)) = f̄(g1) ∧ f̄(g2).

We can finally prove Hölder’s theorem:

Proof of Theorem 2.1.23. If G = {0} the proof is trivial. Let us fix an arbitrary element

a ∈ G such that a > 0. For each b ∈ G+ define the set

I(b) :=
{
m
n ∈ Q | m > 0, n > 0 and ma 6 nb

}
,

where m,n are integers and the notation ma, nb refers to the Z-module structure of the

group (e.g. ma represents the iterated sum of a with itself m times). The set I(b) is

non-empty because 0 ∈ I(b), indeed for all n > 0 the condition 0 6 nb holds. Observe

that, if r
s 6

m
n and m

n ∈ I(b), then r
s ∈ I(b). Assuming by contradiction that r

s /∈ I(b),

we have ra > sb because G is totally-ordered. It follows

s(ma) 6 s(nb) = n(sb) < n(ra) = (nr)a 6 (ms)a = s(ma),
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a contradiction. Further, the set I(b) ⊆ R is bounded: G is archimedean, thus there

exists k ∈ N such that ka 
 b, hence ka > b. This means that k = k
1 /∈ I(b) and k

1 >
m
n

for every m
n ∈ I(b), i.e. k is an upper bound for I(b). Clearly, a lower bound for I(b) is

given by 0. Define the function f : G+ → R+ which maps b ∈ G+ to

f(b) := sup I(b).

The map f is well-defined because R is totally-ordered, hence lattice ordered. We show

that f(b1 + b2) = f(b1) + f(b2) for all b1, b2 ∈ G+. Consider m
n ∈ I(b1) and r

s ∈ I(b2).

We can assume without loss of generality that n = s. By the inequalities ma 6 nb1 and

ra 6 nb2 we obtain

(m+ r)a = ma+ ra 6 nb1 + nb2 = n(b1 + b2),

that is m+r
n ∈ I(b1 + b2). In other words, f(b1) + f(b2) 6 f(b1 + b2). Conversely, if

m
n > sup I(b1) and r

n > sup I(b2), then ma > nb1 and ra > nb2, so that (m + r)a >

n(b1 + b2). This shows that m+r
n > sup I(b1 + b2), that is

f(b1) + f(b2) > f(b1 + b2).

If b1 6 b2, then I(b1) ⊆ I(b2) by definition. Hence, sinceG is totally-ordered, f(b1∨b2) =

f(b1) ∨ f(b2). By Corollary 2.1.29 there exists a unique `-homomorphism f̄ : G → R
extending f . We shall prove that f̄ is an embedding. On the one hand, if b > 0 there

exists k ∈ N such that a < kb, since G is archimedean and totally-ordered. In this case
1
k ∈ I(b), whence f̄(b) = f(b) = sup I(b) > 1

k > 0. On the other hand, if b < 0 we have

f̄(b) = −f̄(−b) = −f(−b) < 0. This means that f̄(b) = 0 ⇒ b = 0, i.e. f̄ is an injective

`-homomorphism.

Remark 2.1.30. We will see in Theorem 2.1.57, after introducing strong order units, that

Hölder’s theorem holds in a stronger form for unital `-groups.

2.1.3 Subobjects and Quotients

It is elementary that in every variety of (finitary) algebras, the monomorphisms coincide

with the injective homomorphisms. In the case of `-groups, the following definition

describes precisely the subobjects in the category `Grp.

Definition 2.1.31. An `-group (H,+, 0,∧,∨) is said to be an `-subgroup of (G,+, 0,∧,∨)

if (H,+, 0) is a subgroup of (G,+, 0), and (H,∧,∨) is a sublattice of (G,∧,∨).

It is easy to see that (as in any variety of algebras), given an `-group G, a subset H ⊆ G
is an `-subgroup if, and only if, H is (non-empty and) closed under the operations

+,−,∧,∨.

Example 2.1.32. Z is an `-subgroup of R and Z×Z is an `-subgroup of R×R, where

sum and order are defined componentwise (see Example 2.1.17).
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However, while monomorphisms coincide with injective homomorphisms in a variety of

algebras, epimorphisms do not correspond to surjective homomorphisms in general. For

this reason, the notion of epimorphism is not suitable to describe the quotient objects

in the variety. The following standard example shows that the category of commutative

unital rings admits morphisms which are both mono and epi, but not surjective.

Example 2.1.33. For an arbitrary commutative unital ring R, let us consider homo-

morphisms of (commutative unital) rings

Z Q Rh
ϕ

ψ

satisfying ϕ ◦ h = ψ ◦ h, where h is the inclusion of the ring of integers in the ring of

rationals. For all m
n ∈ Q, with m,n ∈ Z, we have

ϕ
(
m
n

)
= ϕ(m · n−1) = ϕ(m) · ϕ(n−1) = ϕ(m) · ϕ(n)−1

= ψ(m) · ψ(n)−1 = ψ(m) · ψ(n−1) = ψ(m · n−1) = ψ
(
m
n

)
.

The morphism h is an epi, however it is clearly not surjective.

The categorical notion which allows to define quotient objects is that of regular epi-

morphism, that is, a coequalizer of a pair of parallel arrows. For a variety of algebras,

quotients are in bijective correspondence with congruences which, in turn, correspond to

kernels of homomorphisms, defined as the sets of pairs of elements identified by the ho-

momorphism. In many notable instances, kernels can be defined more simply as subsets

of the domain. For example, in the theory of groups, the quotient groups are defined by

means of normal subgroups, that are precisely the kernels of group homomorphisms in

the usual sense.

If h : G→ H is an `-homomorphism, we shall find those properties which characterise the

group-theoretic kernel h−1(0) = {g ∈ G | h(g) = 0}. Notice that h−1(0) is a subgroup

of G, automatically normal, due to commutativity, since h is a group homomorphism.

Also, h is a lattice homomorphism, whence h−1(0) is a sublattice of G. Furthermore, if

g1 > g2 > g3 are elements of G, then

h(g1) = h(g3) = 0 ⇒ h(g2) = 0

because h is order-preserving by Lemma 2.1.11. In other words, if g1, g3 ∈ h−1(0) and

g1 > g2 > g3, then g2 ∈ h−1(0). Given a partially ordered set G and a subset I ⊆ G, we

say that I is order-convex (convex, for short) if, given arbitrary elements x, z ∈ I and

y ∈ G, y ∈ I holds whenever x 6 y 6 z.

Definition 2.1.34. Let G be an `-group. A subset I ⊆ G is called an `-ideal of G if it

is a convex `-subgroup.

If no confusion arises, we write ideal meaning `-ideal. Every `-group G 6= {0} contains

at least two distinct ideals: namely, the trivial ideal {0} and the improper ideal G. It

is elementary that arbitrary intersections of ideals are ideals. One therefore defines the
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ideal 〈S〉 generated by a subset S ⊆ G as the intersection of all the ideals extending S.

If g ∈ G is an element of the `-group, we denote by 〈g〉 the principal ideal generated by

g, that is the smallest ideal of G containing g. One can prove that such an ideal can be

explicitly described as

〈g〉 = {x ∈ G | ∃n ∈ N such that − n|g| 6 x 6 n|g|},

where |g| := g ∨ (−g) is the absolute value of g [34, Lemma 1.1.6].

Example 2.1.35. Consider the `-group Z× Z, where sum and order are defined com-

ponentwise as in Example 2.1.17. The set G := {(2x, 2y) ∈ Z × Z | x, y ∈ Z} is both

a subgroup and a sublattice of Z × Z. However, G is not convex since (2, 0), (4, 2) ∈ G
and (2, 0) 6 (4, 1) 6 (4, 2), but (4, 1) /∈ G. A similar argument shows that the subset

H := {(x, x) ∈ Z×Z | x ∈ Z} is a non-convex `-subgroup of Z×Z. The ideal generated

by H, i.e. the smallest convex `-subgroup of Z × Z containing H, is the whole Z × Z.

The only non-trivial proper ideals of Z× Z are

I1 := {(x, 0) ∈ Z× Z | x ∈ Z} and I2 := {(0, y) ∈ Z× Z | y ∈ Z}.

Definition 2.1.36. If I ⊆ G is an ideal of the `-group G, we define an equivalence

relation ≡I on G in the following way: for all x, y ∈ G,

x ≡I y if, and only if, x− y ∈ I.

Lemma 2.1.37. The equivalence relation ≡I is a congruence on G.

Proof. An elementary verification.

As a consequence of the previous lemma, the set of equivalence classes

G

≡I
:= {[g]≡I | g ∈ G}

is naturally endowed with the structure of an `-group. By abuse of notation, we will

denote this `-group by G
I . There is a surjective `-homomorphism which is naturally

associated to the congruence ≡I : this is the map qI : G� G
I sending g to [g]≡I .

Starting from an ideal in G, we have constructed a surjective homomorphism qI with

domain G. The following proposition says that the converse is possible as well, and

that I ⊆ G is an ideal if, and only if, I = h−1(0) for some `-group H and some `-

homomorphism h : G→ H.

Proposition 2.1.38. If h : G → H is an `-homomorphism, then h−1(0) is an ideal of

G. If, in addition, h is surjective, then

G H ∼=
G

h−1(0)
G.h q
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Further, if I ⊆ G is an ideal, and qI : G� G
I is the natural quotient map, then

q−1
I ([0]≡I ) = I.

Proof. It is elementary that h−1(0) is an ideal of G. The second part of the statement

is a particular case of the first isomorphism theorem [18, Theorem 6.12]. Finally

q−1
I ([0]≡I ) = {g ∈ G | [g]≡I = [0]≡I} = {g ∈ G | g − 0 ∈ I} = I.

From what we have seen so far, given an ideal I of an `-group G, it makes sense to

ask what the associated quotient map is. For example, if I := {0} is the trivial ideal,

then the associated map is essentially the identity G → G. If I := G is the improper

ideal, the associated map is the unique `-homomorphism onto the terminal object of the

variety, that is G
!−→ {0}. Observe that the category `Grp of `-groups, as the category of

groups, has a zero object, namely {0}, which is both initial and terminal.

Example 2.1.39. Let I1, I2 be the two ideals of Z×Z defined in Example 2.1.35. The

quotient map associated to the ideal I1 sends a pair (x, y) ∈ Z× Z to [(x, y)]≡I1 , where

[(x, y)]≡I1 = {(z1, z2) ∈ Z× Z | (x− z1, y − z2) ∈ I1}

= {(z1, z2) ∈ Z× Z | y − z2 = 0}
= {(z1, y) ∈ Z× Z | z1 ∈ Z}
= [(0, y)]≡I1 .

Upon identifying [(0, y)]≡I1 with its canonical representative (0, y), we see that

q1 : Z× Z� Z× Z
I1

∼= Z.

Similarly, for the ideal I2, q2 : (x, y) 7→ [(x, 0)]≡I2 and
Z× Z
I2

∼= Z.

Example 2.1.40. The lexicographic product Z−→×Z (see Example 2.1.20) has only one

non-trivial proper ideal, hence it admits only one non-trivial quotient. Assume that

J ⊆ Z−→×Z is an ideal. Observe that, if J contains a non-zero element z, then it contains

all the elements between z and (0, 0) by convexity. For example, if (1, 0) ∈ J , then J

contains all the infinitesimal elements of the form (0, z2). On the other hand J is a

group, so it is closed under sums and inverses, so that {(z1, 0) ∈ Z × Z | z1 ∈ Z} ⊆ J .

It follows that J = Z−→×Z. Therefore, the only non-trivial proper ideal is the ideal of

infinitesimal elements I := {(0, z2) ∈ Z×Z | z2 ∈ Z} corresponding to the quotient map

q : Z−→×Z� Z−→×Z
I
∼= Z

which sends every infinitesimal element to 0.
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2.1.4 Maximal ideals

Definition 2.1.41. Let G be an `-group. An ideal I ⊆ G is said to be maximal if it is

proper and for every ideal J ⊆ G, if J 6= G and I ⊆ J , then I = J .

Notation 2.1.42. A maximal ideal of an `-group is usually denoted by m.

Remark 2.1.43 (For logicians). In the variety of Boolean algebras a congruence can be

represented by an ideal, or by its dual concept: a filter. Maximal filters are usually called

ultrafilters. The reason why the language of filters is used in logic, rather than that of

ideals, is due to the study of the Lindenbaum algebra of classical propositional logic. In

this context, a filter F in the algebra corresponds to a deductively closed theory, and the

property x ∈ F, x 6 y ⇒ y ∈ F coincides with the rule of inference known as modus

ponens. Furthermore, ultrafilters represent those deductively closed theories which are

consistent and maximal. The latter are central in logic, since they are the syntactic

counterpart of the semantic notion of logical evaluation, in the following sense. Denote

by FORM the set of all well-formed formulæ over a (countable) set of propositional

variables. If µ : FORM→ {0, 1} is an evaluation, then

Θµ := {α ∈ FORM | µ |= α}

is a consistent maximal (deductively closed) theory. Conversely, if Θ is a (deductively

closed) consistent and maximal theory, the map µΘ : FORM→ {0, 1} defined by

µΘ(α) = 1 ⇔ α ∈ Θ

is an evaluation. Therefore, we can identify the ultrafilters of the Lindenbaum alge-

bra (the consistent maximal theories) with the models of the theory (the evaluations).

This correspondence between maximal consistent deductively closed theories and logical

evaluations generalises: since every Boolean algebra is the Lindenbaum algebra of some

classical propositional theory, we can think of the dual Stone space of a Boolean algebra

as the space of models for the associated theory.

The study of quotients of `-groups by maximal ideals is of particular interest. Specifically,

the next result will be fundamental in the development of Yosida duality in Chapter 3.

Lemma 2.1.44. Let G be an `-group. The following are equivalent, for any ideal m ⊆ G.

1. The ideal m is either maximal or improper.

2. There exists an `-embedding G
m → R.

3. The `-group G
m is totally-ordered and archimedean.

Before proving the previous result, we shall introduce the concept of simple `-group.

In a variety of algebras, if h : A � B is a surjective homomorphism, the congruences

on B are in bijective correspondence, via h, with the congruences on A that extend

kerh = {(a1, a2) ∈ A × A | h(a1) = h(a2)}. Furthermore, this bijection is order-

preserving with respect to set-theoretic inclusion. We say that the algebra B is simple

if there are no non-trivial congruences on B.
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Corollary 2.1.45. If h : A � B is a surjective homomorphism of algebras, then kerh

is maximal (with respect to inclusion of congruences) if, and only if, B is simple.

In the case of the variety of `-groups, the notion of simple algebra can be rephrased in

the following way.

Definition 2.1.46. An `-group G is simple if its only ideals are {0} and G, or equiva-

lently if its only quotients are the identity G→ G and G
!−→ {0}.

Clearly, simple `-groups can be characterised as those `-groups for which the trivial ideal

{0} is either maximal or improper.

Remark 2.1.47. For the variety of `-groups, Corollary 2.1.45 states that, given a surjec-

tive `-homomorphism h : G� H, the ideal h−1(0) is maximal if, and only if, H is simple

and non-trivial.

Example 2.1.48. It is easy to show that the `-group Z is simple, since the convex

closure of an arbitrary non-trivial `-subgroup is the whole Z.

Corollary 2.1.49. Let G be a non-trivial `-group, and let m ⊆ G be an ideal of G.

Then m is maximal if, and only if, G
m is a simple non-trivial `-group.

Proof. Denote by q : G� G
m the quotient map sending g to [g]≡m . By Proposition 2.1.38

we have q−1([0]≡m) = m, hence by Remark 2.1.47 m is a maximal ideal if, and only if,
G
m is simple and non-trivial.

Lemma 2.1.50. Every simple `-group is totally-ordered and archimedean.

Proof. LetG be a simple `-group and assume, by contradiction, that it is not archimedean

(hence, in particular, non-trivial). Then there exist g, g′ ∈ G such that g is non-zero

and infinitesimal with respect to g′, i.e. 0 < ng 6 g′ for all n ∈ N. If 〈g〉 is the ideal

generated by g, then g′ /∈ 〈g〉, i.e. 〈g〉 is a proper non-trivial ideal of G. However, this

is a contradiction because G is simple. Suppose now that G is simple, but not totally-

ordered: there exist x, y ∈ G satisfying x 
 y, y 
 x. We can assume, without loss of

generality, that x, y > 0. Then x 6= x ∧ y 6= y, and

(x− (x ∧ y)) ∧ (y − (x ∧ y)) = 0

by Lemma 2.1.4. Set x̄ := x− (x∧y) and ȳ := y− (x∧y), so that x̄, ȳ > 0 and x̄∧ ȳ = 0.

Consider the ideal 〈x̄〉 generated by x̄, and suppose that ȳ ∈ 〈x̄〉. This means that there

exists n ∈ N such that nx̄ > ȳ. However nȳ > ȳ implies nx̄∧nȳ > ȳ > 0 and, by Lemma

2.1.12, it follows that x̄ ∧ ȳ 6= 0 which is not the case. Whence ȳ /∈ 〈x̄〉 and 〈x̄〉 is a

non-trivial proper ideal of G, that is a contradiction.

The converse of Lemma 2.1.50 holds:

Corollary 2.1.51. Every totally-ordered archimedean `-group is simple.
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Proof. Suppose that G is a totally-ordered archimedean `-group, and let I ⊆ G be a

non-trivial ideal of G. In particular, there exists a non-zero positive element y ∈ I. Since

G is archimedean, for every element x ∈ G+ with 0 < y 6 x there exists n ∈ N such that

ny 
 x, which is equivalent to x < ny because G is totally-ordered. Now, ny ∈ I since

the latter is a group, and from the convexity of I we conclude that x ∈ I. It follows

that −x ∈ I as well, so that G+ ∪ G− ⊆ I. However G = G+ ∪ G− for totally-ordered

groups, whence I must be the improper ideal.

Proof of Lemma 2.1.44. The equivalence between items 2 and 3 is exactly Hölder’s The-

orem 2.1.23. We prove that item 1 is equivalent to item 2. If we assume that m ⊆ G is

either a maximal ideal or the improper ideal, then G
m is a simple `-group by Corollary

2.1.49, hence it is totally-ordered and archimedean by Lemma 2.1.50. The existence of

an `-embedding G
m → R is deduced by Hölder’s theorem. Conversely, suppose that there

exists an `-embedding ι : G
m → R. If G

m is trivial there is nothing to prove. By Corollary

2.1.49 it therefore suffices to show that G
m is simple. If I ⊆ G

m is a non-trivial ideal,

then ι(I) is a subgroup and sublattice of R, but it is not necessarily convex. Consider

the ideal 〈ι(I)〉 obtained as the convex closure of ι(I); this is a non-trivial ideal since

it contains I, whence 〈ι(I)〉 = R by Corollary 2.1.4. We shall prove, by contradiction,

that I = G
m . Pick an element x ∈ G

m \ I; we can suppose, without loss of generality,

that x > 0. We have ι(x) /∈ ι(I), but ι(x) ∈ 〈ι(I)〉 = R, i.e. there exist elements

ι(a), ι(b) ∈ ι(I) such that ι(a) 6 ι(x) 6 ι(b). The injectivity of ι implies a 6 x 6 b,

indeed e.g. ι(a) 6 ι(x) ⇔ ι(a)∧ ι(x) = ι(a) ⇔ ι(a∧x) = ι(a) ⇒ a∧x = a ⇔ a 6 x.

The ideal I is convex in G
m and a, b ∈ I, whence x ∈ I which is a contradiction. Therefore

G
m \ I = ∅ and I is the improper ideal.

2.1.5 Strong order units

Definition 2.1.52. Let G be an `-group. An element u ∈ G+ is a strong order unit for

G if, for each g ∈ G, there exists n ∈ N such that g 6 nu.

If u is a strong order unit for the `-group G, we say that (G, u) is a unital `-group. An `-

homomorphism h : (G, u)→ (H, v) between unital `-groups is a unital `-homomorphism

if h(u) = v. We denote by `Grpu the category whose objects are unital `-groups and

whose morphisms are unital `-homomorphisms.

Remark 2.1.53. If G is an archimedean totally-ordered `-group, then any strictly positive

element of G is a strong order unit. Moreover, unless G is the trivial `-group, each strong

order unit is a strictly positive element. This is the case, for example, for the `-group

R. We agree to fix the real number 1 as strong order unit: when referring to the unital

`-group of the reals, we understand the pair (R, 1).

Lemma 2.1.54. Let (G, u) be a unital `-group and let I ⊆ G be an ideal. Then I is

proper if, and only if, u /∈ I.

Proof. Suppose that u ∈ I. For all g ∈ G there exists n ∈ N such that −nu 6 g 6 nu.

Since I is a convex group, g ∈ I, that is I = G. The other direction is trivial.
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Lemma 2.1.55. Let (G, u) be a unital `-group and let m ⊆ G be a proper ideal of G.

The following are equivalent.

1. The ideal m is maximal.

2. For all x ∈ G, x /∈ m if, and only if, there exists n ∈ N such that u− nx ∈ m.

Proof. This is a straightforward translation of the analogue statement for MV-algebras,

proved in [21, Proposition 1.2.2].

Remark 2.1.56. With the same notation of the proof of Hölder’s Theorem 2.1.23, we

observe that there exists a unique element x ∈ G such that f̄(x) = 1. In fact, x = a

because

I(a) =
{
m
n ∈ Q | m > 0, n > 0 and ma 6 na

}
=
{
m
n ∈ Q | m > 0, n > 0 and m

n 6 1
}

which shows that f̄(a) = sup I(a) = 1. The uniqueness is a consequence of the injectivity

of the `-homomorphism f̄ . Now, let (G, u) be a unital totally-ordered `-group. By

Remark 2.1.53, u is an arbitrary strictly positive element of G, unless G = {0}, in which

case u = 0. But if G = {0} and therefore u = 0, there is no unital `-homomorphism

(G, u) → (R, 1). Hence, let us assume that G 6= {0} and u > 0. By repeating the

construction in the proof of Hölder’s theorem, with a = u, we see that there exists a

unital injective `-homomorphism (G, u)→ (R, 1). It is possible to prove that this unital

embedding is unique: the `-homomorphism is completely determined, once a strong

order unit has been fixed. This is the content of the following

Theorem 2.1.57 (Hölder, unital version). If (G, u) is a non-trivial totally-ordered

archimedean unital `-group, then there exists a unique unital `-embedding

(G, u)→ (R, 1).

Proof. In light of Remark 2.1.56, it suffices to prove the uniqueness. Suppose that

φ, ψ : (G, u) → (R, 1) are unital injective `-homomorphisms. The map φ provides a

unital `-isomorphism between (G, u) and (A, 1) := φ(G, u), while ψ provides a unital

`-isomorphism between (G, u) and (B, 1) := ψ(G, u). Then f := ψ◦φ−1 : (A, 1)→ (B, 1)

is a unital `-isomorphism. We claim that f is the identity map. For an arbitrary element

x ∈ R, define

I(x) :=
{
m
n ∈ Q | m > 0, n > 0 and m · 1 6 nx

}
.

If x ∈ A and m
n ∈ I(x), we have mf(1) = m · 1 6 nf(x), that is m

n ∈ I(f(x)).

The converse is analogous, hence I(x) = I(f(x)) and sup I(x) = sup I(f(x)). It is

elementary that, for all x ∈ R, x = sup I(x). We conclude that f(x) = x for all x ∈ A,

i.e. ψ ◦ φ−1 is the identity map. Upon considering the inverse map f−1, it is clear that

also φ ◦ ψ−1 is the identity map, therefore φ = ψ.

Example 2.1.58. Recall by Lemma 2.1.22 that C(X,R) is an archimedean `-group, for

any topological space X. Assume now that X is a compact Hausdorff space. The com-

pactness of the space implies that every function f ∈ C(X,R) is bounded, in particular
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there exists α ∈ R satisfying f(x) 6 α for every x ∈ X. Since 1 is a strong order unit

for the `-group R, there exists n ∈ N such that α 6 n · 1; this shows that the constant

function of value 1 on X, denoted by 1X ∈ C(X,R), is a strong order unit for C(X,R).

Henceforth, when dealing with the `-group C(X,R), we assume that X is a compact

Hausdorff space. Although every `-group of the kind C(X,R) is unital and archimedean,

we shall see in the next example that not every archimedean unital `-group is of this

kind. A characterisation of those unital `-groups of the form C(X,R), for some compact

Hausdorff space X, is given by Yosida’s representation Theorem 3.2.18.

Example 2.1.59. Consider the unital `-group (Z, 1), and suppose that there exists a

compact Hausdorff space X such that (Z, 1) ∼= (C(X,R), 1X). If X = ∅, then C(X,R) =

C(∅,R) = {?} = {0 = u} is the terminal object of the category `Grpu. In the `-group

{0 = u} the strong order unit coincides with the identity element of the group. However

Z 6∼= {?}, thus X 6= ∅. If the underlying set of the space X has cardinality at least 2,

then there exist distinct points p1, p2 ∈ X. Observe that {p1}, {p2} are closed sets since

X is a T1-space. Every compact Hausdorff space is normal [28, Theorem 3.1.9], so that

Urysohn’s lemma [28, Theorem 1.5.11] applies: there exist two functions f, g ∈ C(X,R)

satisfying f(p1) = 0, f(p2) = 1 and g(p1) = 1, g(p2) = 0. The elements f, g do not satisfy

either f 6 g or g 6 f , therefore C(X,R) is not totally-ordered, while Z is. The two

`-groups cannot be isomorphic, for an arbitrary `-isomorphism is both order-preserving

and order-reflecting. We are left with one possibility, that is X = {p}. But this cannot

be the case because C({p},R) ∼= R and Z 6∼= R. In conclusion, the unital `-group (Z, 1)

is not of the form (C(X,R), 1X) for any compact Hausdorff space X.

2.2 MV-algebras

2.2.1 Basic theory

Let LMV := {⊕,¬, 0} be a language formed by a binary function symbol ⊕, a unary

function symbol ¬ and a constant 0.

Definition 2.2.1. An MV-algebra is an algebra (A,⊕,¬, 0) satisfying the following

identities.

MV1 x⊕ (y ⊕ z) = (x⊕ y)⊕ z.

MV2 x⊕ y = y ⊕ x.

MV3 x⊕ 0 = x.

MV4 ¬¬x = x.

MV5 x⊕ ¬0 = ¬0.

MV6 ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x.
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Observe that the first three axioms give to an arbitrary MV-algebra the structure of a

commutative monoid. In other words, if (A,⊕,¬, 0) is an MV-algebra, then (A,⊕, 0) is

a commutative monoid.

Example 2.2.2. Note that {0} is an MV-algebra, called the trivial MV-algebra. A

class of examples is given by Boolean algebras: it is easy to see that, if (A,∧,∨,¬, 0, 1)

is a Boolean algebra, then (A,∨,¬, 0) is an MV-algebra. It can be shown that the

variety of Boolean algebras coincides with the subvariety of idempotent MV-algebras,

i.e. MV-algebras satisfying the axiom x⊕ x = x [21, Corollary 1.5.5].

Example 2.2.3. The real interval [0, 1] is an MV-algebra with respect to the follow-

ing operations: for all x, y ∈ [0, 1], x ⊕ y := min (1, x+ y) and ¬x := 1 − x. Then

([0, 1],⊕,¬, 0) is an MV-algebra, called the standard MV-algebra.

Example 2.2.4. In Example 2.1.21, given a topological space X, we defined the `-group

of all the continuous functions on X with values in R. Likewise, let C(X, [0, 1]) denote

the set

{f : X → [0, 1] | f is continuous}.

Equipping this set with the pointwise operations inherited from the standard MV-algebra

[0, 1], it is elementary that C(X, [0, 1]) is an MV-algebra.

In an arbitrary MV-algebra we can define the following derived operations.

1 := ¬0,

x� y := ¬(¬x⊕ ¬y),

x	 y := x� ¬y.

In the standard MV-algebra [0, 1], where ⊕ represents the truncated sum, the derived

operation 	 represents the truncated difference given by x	 y = max (0, x− y).

Remark 2.2.5. If we set y = 1 in Axiom MV6, we see that

¬(¬x⊕ 1)⊕ 1 = ¬(0⊕ x)⊕ x,

and therefore

¬1⊕ 1 = ¬x⊕ x,

that is x⊕ ¬x = 1.

The monoidal operation ⊕ is not cancellative. However:

Lemma 2.2.6. For arbitrary elements x, y, z in an MV-algebra A,

if x⊕ z = y ⊕ z and x� z = 0 = y � z, then x = y.

In particular, if y = x⊕ y and x� y = 0, then x = 0.

Proof. See [57, p. 106].
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Lemma 2.2.7. Let A be an MV-algebra and let x, y ∈ A. The following are equivalent.

1. ¬x⊕ y = 1.

2. x� ¬y = 0, i.e. x	 y = 0.

3. y = x⊕ (y 	 x).

4. There exists z ∈ A such that x⊕ z = y.

Proof. See [21, Lemma 1.1.2].

The previous result allows us to introduce a natural partial order on every MV-algebra.

Definition 2.2.8. If A is an MV-algebra and x, y ∈ A, then x 6 y if, and only if, x, y

satisfy the equivalent conditions of Lemma 2.2.7. If the order is total, we say that A is

an MV-chain.

Lemma 2.2.9. The natural order of an arbitrary MV-algebra has the following proper-

ties.

1. x 6 y if, and only if, ¬y 6 ¬x.

2. If x 6 y, then, for all z ∈ A, x⊕ z 6 y ⊕ z and x� z 6 y � z.

Proof. See [21, Lemma 1.1.4].

Remark 2.2.10. The partial order of Definition 2.2.8 induces a lattice structure [21,

Proposition 1.1.5]. Specifically, if (A,⊕,¬, 0) is an MV-algebra, then (A,6) is a lattice,

where least upper bounds and greatest lower bounds are given by

x ∨ y := (x	 y)⊕ y,
x ∧ y := ¬(¬x ∨ ¬y) = x� (¬x⊕ y).

Distributivity of � (respectively ⊕) with respect to ∨ (respectively ∧) holds:

Proposition 2.2.11. The following identities hold in every MV-algebra.

1. x� (y ∨ z) = (x� y) ∨ (x� z).

2. x⊕ (y ∧ z) = (x⊕ y) ∧ (x⊕ z).

Proof. See [21, Proposition 1.1.6].

Notation 2.2.12. If x is an element of an MV-algebra and n ∈ N, by nx we understand

x⊕ · · · ⊕ x︸ ︷︷ ︸
n times

.
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Lemma 2.2.13. Let A be an MV-algebra and let x, y ∈ A. If x∧y = 0, then nx∧ny = 0

for all n ∈ N.

Proof. See [21, Lemma 1.1.8].

We conclude with some properties enjoyed by totally-ordered MV-algebras.

Proposition 2.2.14. Suppose that A is an MV-chain. For all x, y ∈ A, the following

hold.

1. If x⊕ y < 1, then x� y = 0.

2. x⊕ y = x if, and only if, either x = 1 or y = 0.

3. x⊕ y ⊕ (x� y) = x⊕ y.

4. (x	 y)⊕ ((x⊕ ¬y)� y) = x.

Proof. See [21, Lemma 1.6.1, Proposition 1.6.2].

2.2.2 Ideals and congruences

Definition 2.2.15. Let (A,⊕A,¬A, 0A) and (B,⊕B,¬B, 0B) be MV-algebras. An MV-

homomorphism is a function h : A→ B such that, for all x, y ∈ A, the following condi-

tions hold.

1. h(0A) = 0B.

2. h(x⊕A y) = h(x)⊕B h(y).

3. h(¬Ax) = ¬Bh(x).

In the following we shall omit the subscripts when referring to operations belonging to

different MV-algebras, as long as the context avoids confusion.

Remark 2.2.16. It is elementary that any MV-homomorphism preserves the derived

operations 1,�,	, e.g. if h : A→ B is an MV-homomorphism and x, y ∈ A, then

h(x� y) = h(¬(¬x⊕ ¬y)) = ¬(h(¬x⊕ ¬y))

= ¬(h(¬x)⊕ h(¬y)) = ¬(¬h(x)⊕ ¬h(y))

= h(x)� h(y).

Remark 2.2.17. Every MV-homomorphism h : A → B is order-preserving. Indeed, let

x, y ∈ A be such that x 6 y, or equivalently such that x = x∧y. Then h(x) = h(x∧y) =

h(x) ∧ h(y), that is h(x) 6 h(y).
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Given an MV-homomorphism h : A→ B, we define the kernel of h as

kerh := h−1(0) = {x ∈ A | h(x) = 0}.

The kernel of an MV-homomorphism is not only a set, it has more structure:

Definition 2.2.18. A subset I of an MV-algebra A is an ideal if it satisfies the following

properties.

1. 0 ∈ I.

2. If x ∈ I, and y ∈ A is such that y 6 x, then y ∈ I.

3. If x, y ∈ I, then x⊕ y ∈ I.

For an arbitrary MV-homomorphism h, kerh is an ideal: condition 1 is satisfied by

definition, while condition 2 holds because MV-homomorphisms are order-preserving.

Lastly, condition 3 is easily proved since x, y ∈ kerh implies h(x ⊕ y) = h(x) ⊕ h(y) =

0⊕ 0 = 0, which shows that x⊕ y ∈ kerh.

The intersection of an arbitrary family of ideals is again an ideal, hence we can define

the ideal 〈V 〉 generated by a subset V as the intersection of all the ideals containing V .

It is easy to show that (see [21, Lemma 1.2.1])

〈V 〉 = {x ∈ A | ∃v1, . . . , vk ∈ V such that x 6 v1 ⊕ · · · ⊕ vk}.

In the particular case in which V = {z} for some z ∈ A, this reduces to

〈{z}〉 = {x ∈ A | ∃n ∈ N such that x 6 nz}.

The ideal 〈{z}〉 is denoted just with 〈z〉, and it is called the principal ideal generated

by z. Further, if I is an ideal and z ∈ A, it is elementary that

〈I ∪ z〉 = {x ∈ A | ∃n ∈ N, ∃a ∈ I such that x 6 nz ⊕ a}.

Remark 2.2.19. Every non-trivial MV-algebra A contains two distinct ideals: the trivial

ideal {0} and the improper ideal A.

Definition 2.2.20. A proper ideal I of an MV-algebra A is said to be prime if, for all

x, y ∈ A, either x 	 y ∈ I or y 	 x ∈ I. Moreover, I is maximal if, for every ideal J of

A, I ⊂ J implies J = A.

Notation 2.2.21. A prime ideal of an MV-algebra is usually denoted by p, while a max-

imal ideal is denoted by m.

Prime ideals can be characterised as follows.

Lemma 2.2.22. Let p be a proper ideal of the MV-algebra A. The following are equiv-

alent.
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1. The ideal p is prime.

2. For all x, y ∈ A, x ∧ y ∈ p if, and only if, either x ∈ p or y ∈ p.

Proof. See [57, Proposition 4.13].

Proposition 2.2.23. Every proper ideal of an MV-chain is a prime ideal.

Proof. Let I be a proper ideal of an MV-chain A, and consider x, y ∈ A. Since A is

totally-ordered, we have either x 6 y or y 6 x, that is either x 	 y = 0 or y 	 x = 0.

Every ideal, by definition, contains the element 0, thus we must have either x 	 y ∈ I
or y 	 x ∈ I. We conclude that I is a prime ideal.

Lemma 2.2.24. Let h : A→ B be an MV-homomorphism. The following hold.

1. If J ⊆ B is an ideal of B, then h−1(J) is an ideal of A.

2. For all x, y ∈ A, h(x) 6 h(y) if, and only if, x	 y ∈ kerh.

3. h is injective if, and only if, kerh = {0}.

4. kerh is a prime ideal of A if, and only if, B is non-trivial and h(A) is an MV-

chain.

Proof. 1. Let J be an ideal of B and let x, y ∈ A. We prove that h−1(J) contains

the element 0, is downward closed, and closed under finite ⊕-sums. Clearly 0 ∈ h−1(J)

because h(0) = 0 ∈ J . If x ∈ h−1(J) and y ∈ A satisfies y 6 x, then h(y) 6 h(x) ∈ J
because any MV-homomorphism is order-preserving. Since J is downward closed, we

have h(y) ∈ J , i.e. y ∈ h−1(J). Finally, suppose that x, y ∈ h−1(J). Then h(x ⊕ y) =

h(x)⊕ h(y) ∈ J because J is closed under sums, whence x⊕ y ∈ h−1(J).

2. Let x, y ∈ A; by Lemma 2.2.7, h(x) 6 h(y) if, and only if, h(x)	h(y) = 0. Moreover

h(x)	 h(y) = 0 ⇔ h(x	 y) = 0 ⇔ x	 y ∈ kerh.

3. If h is injective, then h(x) = 0 = h(0) implies x = 0, that is kerh = {0}. On the

other hand, assume that kerh = {0}. If h(x) = h(y), then h(x)	h(y) = 0 = h(y)	h(x).

It follows that h(x 	 y) = 0, so that x 	 y = 0. Therefore x 6 y. In a similar fashion,

y 6 x since h(y 	 x) = 0. We conclude that x = y.

4. We remark that the hypothesis of B being non-trivial is necessary: if B is trivial,

then the unique MV-homomorphism A→ B is the trivial one, and its kernel is improper.

Now, kerh is prime if, and only if, for every x, y ∈ A we have either x 	 y ∈ kerh or

y 	 x ∈ kerh, if, and only if, h(x) 6 h(y) or h(y) 6 h(x), by item 2. In turn, this is

equivalent to saying that h(A) is totally-ordered.

Lemma 2.2.25. Given an arbitrary MV-homomorphism h : A→ B, if m is a maximal

ideal of B, then h−1(m) is a maximal ideal of A.
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Proof. See [21, Proposition 1.2.16].

In the variety of MV-algebras congruences, i.e. quotient objects, can be studied by

means of ideals, just like quotient objects in the variety of `-groups are studied through

`-ideals. With the aim of proving the existence of a bijection between congruences on an

MV-algebra A and ideals of A, we introduce an A-valued distance on the MV-algebra

A.

Definition 2.2.26. Let A be an MV-algebra. The Chang distance on A is the function

d : A×A→ A defined by

d(x, y) := (x	 y)⊕ (y 	 x).

Example 2.2.27. In the standard MV-algebra [0, 1] the Chang distance coincides with

the absolute value function. Indeed, for every x, y ∈ [0, 1],

d(x, y) = min(1,max(0, x− y) + max(0, y − x))

= min(1, |x− y|)
= |x− y|.

Proposition 2.2.28. In an arbitrary MV-algebra A, the following hold.

1. d(x, y) = 0 if, and only if, x = y.

2. d(x, y) = d(y, x).

3. d(x, z) 6 d(x, y)⊕ d(y, z).

4. d(x, y) = d(¬x,¬y).

5. d(x⊕ s, y ⊕ t) 6 d(x, y)⊕ d(s, t).

Proof. See [21, Proposition 1.2.5].

Definition 2.2.29. Let I be an ideal of the MV-algebra A. The relation ≡I on A is

defined by

x ≡I y if, and only if, d(x, y) ∈ I.

Proposition 2.2.30. For every ideal I of A, the relation ≡I is a congruence on A and

I = {x ∈ A | x ≡I 0}. Conversely, if ≡ is a congruence on A, then {x ∈ A | x ≡ 0} is

an ideal, and x ≡ y if, and only if, d(x, y) ≡ 0.

Proof. See [21, Proposition 1.2.6].

This shows that the correspondence I 7→≡I is a bijection between the ideals of the MV-

algebra A and the congruences on A. We shall denote the set A/ ≡I of equivalence
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classes by the symbol A/I; the equivalence class of an element x ∈ A is x/I. Since ≡I
is a congruence, upon endowing A/ ≡I with operations

¬(x/I) := (¬x)/I, x/I ⊕ y/I := (x⊕ y)/I,

the algebra (A/I,⊕,¬, 0/I) is an MV-algebra, called quotient MV-algebra. Clearly, the

quotient map x 7→ x/I is a surjective MV-homomorphism whose kernel is precisely the

ideal I.

Remark 2.2.31. We have shown that the kernel of an MV-homomorphism A → B is

always an ideal of A. On the other hand, every ideal I of A arises as the kernel of an

MV-homomorphism with domain A, namely the kernel of the quotient map A → A/I.

Now, let us assume that A is a non-trivial MV-algebra and I ⊆ A is a proper ideal

of A. The MV-homomorphism q : A → A/I satisfies ker q = I. By Lemma 2.2.24.(4),

I is a prime ideal if, and only if, A/I is totally-ordered. In other words, every prime

ideal of A arises as the kernel of an MV-homomorphism with domain A and codomain

a totally-ordered MV-algebra.

Proposition 2.2.32. If A is an MV-chain, the set of all the ideals of A is totally-ordered

(with respect to set-theoretic inclusion).

Proof. Suppose, by contradiction, that I, J ⊆ A are two ideals of A satisfying I * J and

J * I. Then there exist elements x ∈ I \ J and y ∈ J \ I. Now, A is totally-ordered, so

that x, y satisfy either x 6 y or y 6 x. Assume without loss of generality that x 6 y;

since J is an ideal and x 6 y ∈ J , x must belong to J , and this is a contradiction. In

the case y 6 x, a similar argument applies.

Lemma 2.2.33. Every prime ideal of an MV-algebra is contained in a unique maximal

ideal.

Proof. Let A be an MV-algebra, and let p ⊆ A be a prime ideal of A. Consider the

family A of all proper ideals of A extending p. Then A is totally-ordered by [21, Theorem

1.2.11]. Hence m :=
⋃
J∈A J is an ideal of A. The element 1 does not belong to any

ideal J ∈ A, hence m is proper because 1 /∈ m. We prove that m is maximal. Suppose

that N is a proper ideal such that m ⊆ N . In particular p ⊆ m ⊆ N , which implies that

N ∈ A, that is m = N . The uniqueness follows easily: if m′ is a maximal (hence proper)

ideal extending p, then m′ ∈ A. This shows that m′ ⊆ m; from the maximality of m′ we

conclude that m′ = m.

We next prove an MV-algebraic version of Stone’s Lemma.

Proposition 2.2.34. If I is an ideal of the MV-algebra A, and a ∈ A \ I, there exists

a prime ideal p such that I ⊆ p e a /∈ p.

Proof. Denote by F the family of all the ideals of A that contain I, but do not contain

a. The latter family is non-empty because I ∈ F ; moreover F is partially ordered by

set-theoretic inclusion. We show that the hypotheses of Zorn’s Lemma are satisfied,
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i.e. that every totally-ordered subset {Fι}ι of F has an upper bound in F . The upper

bound is given by
⋃
ι Fι. To prove this claim, observe that

⋃
ι Fι is an ideal: 0 ∈

⋃
ι Fι

since 0 belongs to each Fι; if x ∈
⋃
ι Fι and y 6 x, then there exists Fῑ such that x ∈ Fῑ

and therefore y ∈ Fῑ ⊆
⋃
ι Fι. Lastly, if x, y ∈

⋃
ι Fι and Fι1 , Fι2 ⊆

⋃
ι Fι are such that

x ∈ Fι1 and y ∈ Fι2 , since {Fι}ι is totally-ordered we have either Fι1 ⊆ Fι2 or Fι1 ⊇ Fι2 .

In the first case, x ∈ Fι1 ⊆ Fι2 3 y and then x⊕y ∈ Fι2 ⊆
⋃
ι Fι; the other case is proved

in a similar fashion. This shows that
⋃
ι Fι is an ideal. Furthermore,

⋃
ι Fι ∈ F . Indeed,

if I ⊆ Fι for all ι, then I ⊆
⋃
ι Fι, and if a /∈ Fι for all ι, then a /∈

⋃
ι Fι. Clearly,

⋃
ι Fι is

an upper bound for {Fι}ι. By Zorn’s Lemma F has a maximal element, in other words

there exists an ideal p of A which is maximal with respect to the properties I ⊆ p and

a /∈ p. We prove that p is prime. Suppose by contradiction that there exist x, y ∈ A such

that x	 y /∈ p and y 	 x /∈ p. Since J ⊆ p ⊂ 〈p ∪ x	 y〉, and p is maximal between the

ideals satisfying J ⊆ p and a /∈ p, we conclude that a ∈ 〈p ∪ x	 y〉. That is, there exist

m ∈ N and p ∈ p such that a 6 m(x 	 y) ⊕ p. For the same reason, upon considering

the ideal 〈p ∪ y 	 x〉, we can find n ∈ N and q ∈ p satisfying a 6 n(y 	 x) ⊕ q. Set

t := max(m,n) and u := p⊕ q ∈ p. Then a 6 t(x	 y)⊕ u and a 6 t(y	 x)⊕ u, whence

by Proposition 2.2.11

a 6 (t(x	 y)⊕ u) ∧ (t(y 	 x)⊕ u) = (t(x	 y) ∧ t(y 	 x))⊕ u.

However (x 	 y) ∧ (y 	 x) = 0 by [21, Proposition 1.1.7], and Lemma 2.2.13 implies

(t(x 	 y) ∧ t(y 	 x)) = 0. It follows that a 6 0 ⊕ u = u, but u ∈ p and a 6 u, so that

a ∈ p that is a contradiction.

Corollary 2.2.35. Every proper ideal of an MV-algebra is the intersection of prime

ideals.

Proof. Let I be a proper ideal of an MV-algebra A. By Proposition 2.2.34, for each

a ∈ A\J there exists a prime ideal pa such that J ⊆ pa and a /∈ pa. Consider the family

{pa}a∈A\J . We shall prove that
⋂
a∈A\J pa = J . Clearly

⋂
a∈A\J pa ⊇ J , because pa ⊇ J

for every a ∈ A \ J . To prove the other inclusion, assume by contradiction that there is

x ∈ (
⋂
a∈A\J pa) \ J . In particular x ∈ A \ J , whence there exists a prime ideal p such

that J ⊆ p and x /∈ p. Then p ∈ {pa}a∈A\J , but this is absurd since x ∈
⋂
a∈A\J pa

entails x ∈ p.

Corollary 2.2.36. Every non-trivial MV-algebra has a maximal ideal.

Proof. In any non-trivial MV-algebra A, {0} is a proper ideal; by Proposition 2.2.34,

there is a prime ideal p of A extending {0}. Lemma 2.2.33 implies that there exists a

unique maximal ideal extending p, so that A has a maximal ideal.

2.2.3 Subdirect representation

Let {Ai}i∈I be a family of MV-algebras, where I is an arbitrary set. The class of MV-

algebras is equationally defined, thus Birkhoff’s theorem [18, Theorem 11.9] entails that,

in particular, an arbitrary product of MV-algebras is again an MV-algebra. Explicitly,
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the cartesian products of the sets Ai, denoted by
∏
i∈I Ai, can be endowed with (point-

wise) operations in the following way. If we think of an element f ∈
∏
i∈I Ai as a function

f : I →
⋃
i∈I Ai such that f(i) ∈ Ai for every i ∈ I, then we can define

(¬f)(i) := ¬f(i) and (f ⊕ g)(i) := f(i)⊕ g(i),

and 0̄ is the function 0̄ : i 7→ 0i, for all i ∈ I. The algebra (
∏
i∈I Ai,⊕,¬, 0̄) is an MV-

algebra, and it is called the direct product of the family {Ai}i∈I . Further, the function

πj :
∏
i∈I Ai → Aj given by f 7→ f(j) is an MV-homomorphism, called jth projection.

Definition 2.2.37. We say that the MV-algebra A is a subdirect product of the family

of MV-algebras {Ai}i∈I if, and only if, there exists an injective MV-homomorphism

h : A→
∏
i∈I Ai such that, for each j ∈ I, the composition πj ◦ h : A→ Aj is surjective.

Remark 2.2.38. If A is a subdirect product of {Ai}i∈I , then A is isomorphic to the

subalgebra h(A) of the product
∏
i∈I Ai; furthermore, for every j ∈ I the restriction

πj|h(A)
: h(A)→ Aj is surjective. Saying that the MV-homomorphism πj ◦h is surjective,

means that for every ai ∈ Ai there exists an element of the subalgebra h(A) whose ith

component is ai; in other words, there is f ∈ h(A) such that f(i) = ai.

Theorem 2.2.39. An MV-algebra A is a subdirect product of the family {Ai}i∈I if, and

only if, there exists a family {Ji}i∈I of ideals of A such that Ai ∼= A/Ji for each i ∈ I,

and
⋂
i∈I Ji = {0}.

Proof. Suppose that A is a subdirect product of the family {Ai}i∈I , so that there exists

an injective MV-homomorphism h : A →
∏
i∈I Ai such that, for every j ∈ I, the MV-

homomorphism πj ◦ h : A → Aj is surjective. If j ∈ I, define Jj := kerπj ◦ h. By the

first isomorphism theorem [18, Theorem 6.12] we have A
kerπj◦h = A

Jj
∼= Aj . It suffices to

prove that
⋂
i∈I Ji = {0}. One of the two inclusions is trivial. For the other inclusion,

assume that x ∈
⋂
i∈I Ji; this means that, for all i ∈ I, x ∈ Ji = kerπj ◦ h if, and only

if, πj ◦ h(x) = 0. Then h(x) = 0 ∈
∏
i∈I Ai, whence x = 0 because h is injective. We

conclude that
⋂
i∈I Ji = {0}. Conversely, let {Ji}i∈I be a family of ideals of A such that

Ai ∼= A/Ji for each i ∈ I, and
⋂
i∈I Ji = {0}. Fix an isomorphism εi : A/Ji ∼= Ai for

every i ∈ I, and define an MV-homomorphism h : A →
∏
i∈I Ai as (h(x))(i) := εi(

x
Ji

).

We have

x ∈ kerh ⇔ (h(x))(i) = 0 ∀i ∈ I ⇔ εi(
x

Ji
) = 0 ∀i ∈ I ⇔

x

Ji
= 0 ∀i ∈ I ⇔ x ∈ Ji ∀i ∈ I ⇔ x ∈

⋂
i∈I

Ji = {0}

so that, by Lemma 2.2.24.(3), h is injective. To conclude, it is enough to show that,

for every j ∈ I, the MV-homomorphism πj ◦ h : A → Aj is surjective. If y ∈ Aj , since

the map εj : A/Jj → Aj is surjective, there exists a
Jj
∈ A/Jj satisfying εj(

a
Jj

) = y.

Therefore πj ◦ h(a) = (h(a))(j) = εj(
a
Jj

) = y.

Remark 2.2.40. We have just seen that any family of ideals {Ji}i∈I of A, whose intersec-

tion is trivial, gives a representation of A as a subdirect product of the family {A/Ji}i∈I .
More generally ([15, Corollary 1, p. 140]) the (isomorphic) representations of a finitary

algebra A as a subdirect product are in bijective correspondence with the families of
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congruences {θi}i∈I on A such that
⋂
i∈I θi = 0, where 0 := {(x, y) ∈ A× A | x = y} is

the trivial congruence.

The following is known as Chang’s subdirect representation theorem:

Theorem 2.2.41. Every MV-algebra is a subdirect product of MV-chains.

Proof. If the MV-algebra is trivial, it is a chain and there is nothing to prove. By

Theorem 2.2.39, together with Remark 2.2.31, it suffices to show that the intersection

of all prime ideals of a non-trivial MV-algebra A is {0}. But {0} is itself an ideal, and

by Corollary 2.2.35 the theorem is proved.

2.2.4 Radical and infinitesimal elements

Definition 2.2.42. An MV-algebra A is simple if its only ideals are the trivial ideal

{0} and the improper ideal A.

Remark 2.2.43. In every simple non-trivial MV-algebra, the ideal {0} is maximal. There-

fore it is the unique maximal ideal, since any other ideal extends it.

Theorem 2.2.44. Let A be an MV-algebra. The following are equivalent.

1. A is simple and non-trivial.

2. A is isomorphic to a subalgebra of the standard MV-algebra [0, 1].

Proof. See [21, Theorem 3.5.1].

Remark 2.2.45. By Theorem 2.2.44, it follows that every simple MV-algebra is totally-

ordered. Moreover, the cardinality of a simple MV-algebra is not greater than ℵ1, since

it can be embedded in the MV-algebra [0, 1].

Proposition 2.2.46. If A is an MV-algebra and J is an ideal of A, there is a bijective

order-preserving correspondence between ideals of A extending J , and ideals of A/J .

Proof. Denote by q the map which sends an ideal I ⊆ A such that J ⊆ I, to the set

q(I) := I/J ⊆ A/J . We shall prove that q is a bijective order-preserving correspondence.

First, we check that q is well-defined, i.e. that I/J is an ideal of A/J . The element 0

is in I/J since ker q = J ⊆ I; if x
J ,

y
J ∈ I/J , then x, y ∈ I implies x ⊕ y ∈ I because I

is closed under finite ⊕-sums, whence x
J ⊕

y
J = x⊕y

J ∈ I/J . If x
J ∈ I/J,

y
J ∈ A/J satisfy

y
J 6

x
J , it follows that y

J 6
x
J if, and only if, y

J 	
x
J = 0 if, and only if, y 	 x ∈ J ⊆ I.

Thus x⊕ (y 	 x) ∈ I if, and only if, y ⊕ (x	 y) ∈ I by Axiom MV6. This shows that

y 6 y ⊕ (x 	 y) ∈ I, so that y ∈ I, i.e. y
J ∈ I/J . We conclude that I/J is an ideal.

Regarding the bijectivity of q, for every ideal I extending J , we have

q−1(q(I)) = {x ∈ A | q(x) ∈ qJ(I)} = {x ∈ A | xJ ∈ I/J} = {x ∈ A | x ∈ I} = I.
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By Lemma 2.2.24.(1), if K ⊆ A/J is an ideal, then q−1(K) is an ideal of A; consequently

J = ker q = q−1(0) ⊆ q−1(K) because 0 ∈ K, and lastly

q(q−1(K)) = {q(x) | x ∈ q−1(K)} = {q(x) | q(x) ∈ K} = K.

Finally, we show that q is order-preserving. If I1, I2 are ideals of A extending J , and

I1 ⊆ I2, then I1/J = q(I1) ⊆ q(I2) = I2/J . On the other hand, if K1,K2 are ideals of

A/J satisfying K1 ⊆ K2, it follows

q−1(K1) = {x ∈ A | xJ ∈ K1} ⊆ {x ∈ A | xJ ∈ K2} = q−1(K2).

Corollary 2.2.47. An ideal m ⊆ A is maximal if, and only if, the quotient MV-algebra

A/m is simple and non-trivial.

Proof. This follows at once from Proposition 2.2.46.

Definition 2.2.48. For an arbitrary MV-algebra A, the radical ideal of A, denoted by

RadA, is the intersection of all the maximal ideals of A. An MV-algebra is semisimple

if its radical is trivial.

In the following proof we use the fact that all subalgebras of [0, 1] are simple.

Theorem 2.2.49. Let A be an MV-algebra. The following are equivalent.

1. A is semisimple and non-trivial.

2. A is a subdirect product of subalgebras of [0, 1].

Proof. By Theorem 2.2.39, A is a subdirect product of the family {Ai}i∈I of subalgebras

of [0, 1] if, and only if, there exists a family {Ji}i∈I of ideals of A such that Ai ∼= A/Ji
for every i ∈ I, and

⋂
i∈I Ji = {0}. By Corollary 2.2.47, this happens precisely when the

family {Ji}i∈I is a family of maximal ideals of A whose intersection is trivial; in turn,

this is equivalent to asking that RadA = {0}, i.e. that A is semisimple.

The following statement, dealing with semisimple quotients, should be compared with

Corollary 2.2.47.

Lemma 2.2.50. Let A be a non-trivial MV-algebra, and let J be an ideal of A. Then

J is an intersection of maximal ideals if, and only if, A/J is semisimple.

Proof. Let q : A → A/J be the quotient map, and suppose that A/J is a semisimple

MV-algebra. Upon denoting with {mi}i∈I the family of all the maximal ideals of A/J ,

we have
⋂
i∈I mi = {0}, and

J = ker q = q−1(0) = q−1
(⋂
i∈I

mi

)
=
⋂
i∈I

q−1(mi).
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It suffices to show that each ideal q−1(mi) is maximal. If I ⊆ A is an ideal of A such

that q−1(mi) ⊂ I, then Proposition 2.2.46 entails that mi = q(q−1(mi)) ⊂ q(I) = I/J .

Since mi is maximal, we deduce that I/J = A/J , hence I = q−1(q(I)) = q−1(q(A)) = A.

We have proved that J is the intersection of maximal ideals of A. In the other direction,

assume that J is the intersection of a family {mi}i∈I of maximal ideals of A, and let

{mJ
ι }ι∈I′ be the family of all the maximal ideals of A containing J . Clearly {mi}i∈I ⊆

{mJ
ι }ι∈I′ , whence

⋂
ι∈I′ m

J
ι ⊆

⋂
i∈I mi = J . On the other hand, J ⊆

⋂
ι∈I′ m

J
ι , so that

J coincides with the intersection of all maximal ideals extending J . Applying the same

argument as above, along with Proposition 2.2.46, we have that {q(mJ
ι )}ι∈I′ is the family

of all maximal ideals of A/J , and

RadA/J =
⋂
ι∈I′

q(mJ
ι ) = q

( ⋂
ι∈I′

mJ
ι

)
= q(J) = {0}.

The elements of the radical ideal of an MV-algebra can be characterised as infinitely

small elements, in the following sense.

Definition 2.2.51. Let A be an MV-algebra. An element a ∈ A is infinitesimal if, and

only if, a 6= 0 and na 6 ¬a for every n ∈ N. The set of infinitesimal elements of A is

denoted by infinitA.

Proposition 2.2.52. In an arbitrary MV-algebra A, RadA = infinitA ∪ {0}.

Proof. We begin showing that infinitA∪{0} ⊆ RadA. It is elementary that 0 ∈ RadA,

therefore we prove that infinitA ⊆ RadA. Let a ∈ infinitA be an infinitesimal element

and assume, by contradiction, that a /∈ RadA; in other words, there exists a maximal

ideal m of A such that a /∈ m. The ideal 〈m∪{a}〉 strictly contains m, and m is maximal,

hence 〈m ∪ {a}〉 is improper. In particular, 1 ∈ 〈m ∪ {a}〉, so that there exist n ∈ N
and z ∈ m satisfying 1 = na ⊕ z. The element a is infinitesimal, thus na 6 ¬a and,

by Lemma 2.2.9.(1), a 6 ¬na. Lemma 2.2.7.(1) implies that 1 = na⊕ z if, and only if,

¬na 6 z, whence a 6 ¬na 6 z ∈ m and a ∈ m because m is downward closed. This is

a contradiction. In order to prove the other inclusion, namely RadA ⊆ infinitA ∪ {0},
let us suppose by contradiction that a ∈ RadA is a non-zero element which is not

infinitesimal. This means that there exists m ∈ N such that ma 
 ¬a, or equivalently,

ma	¬a 6= 0. By Proposition 2.2.34 there is a prime ideal p (extending the trivial ideal

{0}, and) which does not contain the element ma 	 ¬a. Since p is a prime ideal, we

have ¬a	ma ∈ p. By Lemma 2.2.33 there exists a maximal ideal m ⊆ A extending p,

that is ¬a	ma ∈ p ⊆ m. Observe that

¬a	ma = ¬a� ¬ma = ¬(¬¬a⊕ ¬¬ma) = ¬(a⊕ma) = ¬(m+ 1)a.

Consequently (m+ 1)a /∈ m, for otherwise we would have, by Remark 2.2.5,

1 = (m+ 1)a⊕ ¬(m+ 1)a ∈ m
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and therefore m = A which is not possible. The ideal m is closed under finite ⊕-sums

and (m+ 1)a /∈ m, hence a /∈ m. Then a /∈ RadA, a contradiction.

In view of the characterisation of the radical ideal provided by Proposition 2.2.52, an

MV-algebra is seen to be semisimple if, ad only if, it does not contain any infinitesimal

element. The next result is stated for later use.

Lemma 2.2.53. If A is an MV-algebra and x, y ∈ RadA, then x� y = 0.

Proof. Let x, y ∈ RadA be elements of the radical ideal. By Proposition 2.2.14 and

Chang’s subdirect representation Theorem 2.2.41, one can show that

x⊕ y ⊕ (x� y) = x⊕ y.

Hence, by Lemma 2.2.6 it suffices to prove (x⊕ y)� (x� y) = 0. Notice that

(x⊕ y)� (x� y) = (x⊕ y)� ¬(¬x⊕ ¬y)

= ¬(¬(x⊕ y)⊕ (¬x⊕ ¬y)).

This means that

(x⊕ y)� (x� y) = 0⇔
¬(¬(x⊕ y)⊕ (¬x⊕ ¬y)) = 0⇔
¬(x⊕ y)⊕ (¬x⊕ ¬y) = 1⇔

x⊕ y 6 ¬x⊕ ¬y. (Lemma 2.2.7)

Proposition 2.2.52 entails x 6 ¬x and y 6 ¬y, in other words there are z1, z2 ∈ A such

that x⊕ z1 = ¬x and y ⊕ z2 = ¬y. Then

(x⊕ y)⊕ (z1 ⊕ z2) = (x⊕ z1)⊕ (y ⊕ z2) = ¬x⊕ ¬y,

that is equivalent, by Lemma 2.2.7, to x⊕ y 6 ¬x⊕ ¬y.

2.2.5 Representing semisimple and free MV-algebras

Semisimple MV-algebras admit a sharp characterisation: they can be represented as

algebras of continuous functions on some compact Hausdorff space, as stated below in

Proposition 2.2.69. It turns out that this representation of semisimple MV-algebras can

be deduced by the representation of a proper subfamily, that of free MV-algebras, since

every MV-algebra is a quotient of a free one. For this reason, the fundamental result in

this connection is McNaughton’s Theorem 2.2.64 which identifies the free MV-algebra

over κ generators with the algebra of all continuous piecewise linear functions, with

integer coefficients, on the Tychonoff cube [0, 1]κ (which is a compact Hausdorff space,

with respect to the product topology).
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We briefly recall the general (category-theoretic) notion of free object. Let (C, U) be a

concrete category, i.e. C is a category and U : C → Set is a faithful functor. Given an

object X of Set and an object A of C, we say that A is a free object over X with respect

to U , if there exists a function i : X → U(A) satisfying the following universal property :

for all objects B of C and all functions f : X → U(B), there exists a unique morphism

g : A→ B in C such that the following diagram commutes.

X U(A)

U(B)

f

i

U(g)

If the previous conditions are satisfied, X is called a set of generators for A, and the

function i is thought of as the insertion of generators. Free objects, when they exist, are

unique up to isomorphism and only depend on the cardinality of the generating set:

Proposition 2.2.54. Let X,Y be sets, and assume that there exists a bijection between

X and Y . If (C, U) is a concrete category and FX,FY are objects of C which are free

on X and Y , respectively, then FX ∼= FY .

Proof. We first prove the case X = Y , i.e. we prove that FX, if it exists, is unique to

within a unique isomorphism. By definition, there are two functions i : X → U(FX)

and ī : X → U(FY ) with the universal property; since FX is free on X, there exists a

unique morphism φ : FX → FY such that U(φ)◦ i = ī. But FY is also free on X, hence

there is a unique morphism ψ : FY → FX satisfying the condition U(ψ) ◦ ī = i.

U(FX)

X

U(FY )

U(φ)

i

ī

U(ψ)

It is clear that the identity morphisms 1FX , 1FY are the unique morphisms satisfying

U(1FX)◦i = i and U(1FY )◦̄i = ī, respectively. However U(ψ◦φ)◦i = i and U(φ◦ψ)◦̄i = ī;

we conclude that ψ ◦ φ = 1FX and φ ◦ ψ = 1FY , that is FX ∼= FY . Assume now that

σ : X → Y is a bijection. We shall prove that the object FY , along with the function

ī ◦ σ : X → U(FY ), is free on X; the argument above will imply that FX and FY are

isomorphic objects. Suppose we are given an object A of C, and a function f : X → U(A).

X Y U(FY )

U(A)

σ

f

f◦σ−1

ī

U(g)
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Since FY is free on Y , there exists a unique morphism g : FY → A such that U(g) ◦ ī =

f ◦ σ−1, which is equivalent to U(g) ◦ ī ◦ σ = f . In other words, FY is free on X.

In most cases, for example when the category C is a variety of algebras (with homo-

morphisms as morphisms), the faithful functor U : C → Set is defined to be the usual

underlying-set functor. Free objects in finitary varieties of algebras always exist by a

theorem of Birkhoff [18, Theorem 10.12]. Specifically, they are constructed as algebras

of terms for the language (see Lemma 5.1.1). Another way of representing free algebras

is through term functions, as we shall see in Proposition 2.2.60 below, in the case of

MV-algebras.

Remark 2.2.55. More generally, it is known that (possibly non-finitary) varieties of

algebras correspond exactly, up to equivalence, to categories which are monadic over Set

(see [49], or [54, Theorem 5.40 p. 66, Theorem 5.45 p. 68]). In particular, in the latter

categories the underlying-set functor U admits a left adjoint functor F a U : C → Set

mapping a set X to the free object F (X) on X. Therefore, free objects exist also in

infinitary varieties of algebras.

Given an arbitrary cardinal κ, the free MV-algebra over a set of κ generators will be

denoted by Freeκ. It is clear, from the previous discussion, that the algebra Freeκ always

exists and it is unique up to isomorphism.

Remark 2.2.56. Every MV-algebra is isomorphic to a quotient of some free MV-algebra.

Assume that the MV-algebra A is generated by no more than κ elements, and consider

a function X → U(A), where X is a set of cardinality κ. The universal property of the

free MV-algebra Freeκ provides a (clearly surjective) MV-homomorphism f : Freeκ → A.

By the first isomorphism theorem [18, Theorem 6.12] A is isomorphic to the quotient

Freeκ / ker f where ker f is, by Lemma 2.2.24.(1), an ideal of Freeκ. More generally, it

is clear that the argument has nothing to do with MV-algebras specifically, and thus

applies to all varieties of (possibly infinitary) algebras.

The first step toward a representation of free MV-algebras consists in showing that Freeκ
can be identified with the algebra of term functions on the MV-algebra [0, 1]κ.

Definition 2.2.57. Fix a cardinal κ and consider a set {xα}α<κ of propositional vari-

ables (i.e. there are distinct variables x1, x2, . . . , xα, . . . for every ordinal number α < κ).

The set of MV-terms is defined inductively as follows.

1. The constant 0 and the variables xα are MV-terms, for every ordinal α < κ.

2. If τ is an MV-term, then ¬τ is an MV-term.

3. If σ, τ are MV-terms, then (σ ⊕ τ) is an MV-term.

Given an MV-algebra A, every term τ for the language of MV-algebras gives rise to a

function τA : Aκ → A as follows.

Definition 2.2.58. Let τ be an MV-term in the variables {xα}α<κ. The term function

τA : Aκ → A is defined inductively on the number of connectives of τ as:
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1. xAα := πα (i.e., variables are interpreted as projections).

2. 0A := constant function of value 0 on Aκ.

3. (¬τ)A := ¬(τA).

4. (σ ⊕ τ)A := σA ⊕ τA.

We write TermA
κ for the set of all term functions on Aκ.

Remark 2.2.59. Every term function is, by construction, a function on Aκ depending

on a finite number of variables. Upon equipping TermA
κ with pointwise operations, it is

easily seen that it is an MV-algebra. Specifically, it is a subalgebra of the MV-algebra

AA
κ

of all the functions from Aκ to A.

Denote by ProjAκ the set of projections {πα : Aκ → A}α<κ. Then

Proposition 2.2.60. For each cardinal κ, Term
[0,1]
κ is the free MV-algebra over the

generating set Proj
[0,1]
κ , in other words Term

[0,1]
κ
∼= Freeκ. Moreover, there is a unique

such isomorphism that extends the bijection Proj
[0,1]
κ → {xα}α<κ given by πα 7→ xα.

Proof. See [21, Proposition 3.1.4].

Remark 2.2.61. Proposition 2.2.60 is a non-trivial result. In particular it amounts essen-

tially to Chang’s Completeness Theorem that [0, 1] generates the variety of MV-algebras,

i.e. that HSP([0, 1]) is the entire variety of MV-algebras.

A concrete representation of the MV-algebra Freeκ can be obtained by characterising,

intrinsically, those functions [0, 1]κ → [0, 1] that arise as term functions.

Definition 2.2.62. Let n > 1 be an arbitrary fixed integer. A function f : [0, 1]n → [0, 1]

is a McNaughton function if the following conditions hold.

1. f is continuous.

2. f is piecewise linear with integer coefficients; in other words, there are finitely many

linear polynomials with integer coefficients p1, . . . , pk (the linear constituents of f)

such that, for all y ∈ [0, 1]n, there exists j ∈ {1, . . . , k} such that f(y) = pj(y).

This definition can be generalised by considering an arbitrary cardinal number κ. A

function g : [0, 1]κ → [0, 1] is a McNaughton function if there exist ordinal numbers

α1, . . . , αn < κ and a McNaughton function f : [0, 1]n → [0, 1] such that, for all y =

(y1, y2, . . .) ∈ [0, 1]κ, g(y) = f(yα1 , . . . , yαn). The set of all McNaughton functions on

the Tychonoff cube [0, 1]κ, endowed with pointwise operations, is an MV-algebra. In

fact, it is a subalgebra of the MV-algebra [0, 1][0,1]κ .

Proposition 2.2.63. For every cardinal number κ, the term functions f ∈ Term
[0,1]
κ

are McNaughton functions.
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Proof. Clearly projections are McNaughton functions, and so is the constant function of

value 0 on [0, 1]κ. Let (¬τ)[0,1] be a term function. By the inductive hypothesis, τ [0,1] has

linear constituents p1, . . . , pk; it is easy to show that (¬τ)[0,1] is a McNaughton function

with linear constituents 1− p1, . . . , 1− pk. Finally, if σ[0,1], τ [0,1] are term functions with

linear constituents p1, . . . , pk and q1, . . . , ql respectively, then (σ⊕τ)[0,1] is a McNaughton

function whose linear constituents are among the polynomials {1, pi + qj}, for 1 6 i 6 k
and 1 6 j 6 l.

The converse, namely that for every continuous piecewise linear function with integer

coefficients f : [0, 1]n → [0, 1] there exists an MV-term τ over the variables x1, . . . , xn
such that τ [0,1] = f , was proved in 1951 by McNaughton [55, Theorem 2]. This re-

sults gives an MV-isomorphism between Term
[0,1]
κ and the MV-algebra of McNaughton

functions on [0, 1]κ. By applying Proposition 2.2.60, we conclude that

Theorem 2.2.64 (McNaughton). For every cardinal κ, the free MV-algebra Freeκ is

isomorphic to the MV-algebra of McNaughton functions on [0, 1]κ. Moreover, there is a

unique such isomorphism that sends xα to πα, for all α < κ.

Proof. See [21, Theorem 9.1.5].

Remark 2.2.65. Henceforth, we identify Freeκ with its image under the isomorphism of

Theorem 2.2.64.

Recall that, if X is a topological space, then C(X, [0, 1]) is an MV-algebra (see Example

2.2.4). Moreover, it is easy to see that, as a subalgebra of [0, 1]X , it is a subdirect

product of subalgebras of [0, 1]. Thus, by Theorem 2.2.49, C(X, [0, 1]) is a semisimple

MV-algebra.

Definition 2.2.66. Let X be a topological space. An MV-subalgebra A of [0, 1]X is

said to be separating if, for every pair of distinct points y, z ∈ X, there exists f ∈ A
such that f(y) = 0 and f(z) 6= 0.

Separating algebras of functions enjoy the following property.

Lemma 2.2.67. Let X be a compact Hausdorff space, let A be a separating subalgebra of

the MV-algebra C(X, [0, 1]), and let J be an ideal of A. The ideal J is an intersection of

maximal ideals if, and only if, the quotient A/J is isomorphic to the MV-algebra whose

elements are restrictions of functions of A to the closed set
⋂
f∈J f

−1(0), and whose

operations are defined pointwise from those of the standard MV-algebra [0, 1].

Proof. See [21, Proposition 3.4.5].

Proposition 2.2.68. Let κ be a cardinal number. The MV-algebra Freeκ is a separating

subalgebra of C([0, 1]κ, [0, 1]).
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Proof. As stated in Remark 2.2.65, we regard Freeκ as the algebra of McNaughton

functions on [0, 1]κ. In particular, it is a subalgebra of C([0, 1]κ, [0, 1]). We prove that

it is separating. Let y = (y1, y2, . . .) and z = (z1, z2, . . .) be distinct points of [0, 1]κ and

let α < κ be an ordinal number such that yα 6= zα. Assuming without loss of generality

that yα < zα, pick a rational number r such that yα < r < zα and define the polynomial

p(xα) := axα − ar, where a is a positive integer such that ar is also an integer. It is

easy to see that the truncation (p ∨ 0) ∧ 1 is a McNaughton function, hence an element

of Freeκ, and that it takes value 0 in y, but not in z.

Proposition 2.2.69. An MV-algebra A is semisimple if, and only if, it is isomorphic

to a separating subalgebra of C(X, [0, 1]) for some compact Hausdorff space X.

Proof. By Remark 2.2.56 there exist a cardinal number κ and an ideal J of Freeκ such

that A is isomorphic to the quotient MV-algebra Freeκ /J . Proposition 2.2.68 states

that Freeκ is a separating subalgebra of C([0, 1]κ, [0, 1]), where [0, 1]κ, equipped with

the product topology, is a compact Hausdorff space. By Lemma 2.2.50 and Lemma

2.2.67, Freeκ /J is semisimple if, and only if, it is isomorphic to the MV-algebra B

whose elements are McNaughton functions restricted to the closed set
⋂
f∈J f

−1(0).

Define X :=
⋂
f∈J f

−1(0). This is a closed set in a compact space, hence it is compact.

Moreover B is a separating subalgebra of C(X, [0, 1]), because Freeκ is separating by

Proposition 2.2.68.

We conclude this section by showing that, for a semisimple MV-algebra A, the com-

pact Hausdorff space in the statement of Proposition 2.2.69 can be recovered (up to

homeomorphism) from the MV-algebra A. In fact, the connection is deeper: for every

MV-algebra there is a naturally associated compact Hausdorff space, unique to within

a homeomorphism.

Consider an arbitrary MV-algebra A, and let MaxA denote the set of all maximal ideals

of A, i.e.

MaxA := {m ⊆ A | m is a maximal ideal of A}.

We define the spectral topology on MaxA (sometimes called hull-kernel, or Stone-Zariski

topology) by giving, as a subbasis of closed sets, the family of all subsets of the form

Fa := {m ∈ MaxA | a ∈ m} ⊆ MaxA

for all a ∈ A. The topological space MaxA is called the maximal spectrum of the

MV-algebra A.

Remark 2.2.70. Since every maximal ideal is prime, the family {Fa}a∈A is closed under

finite unions by Lemma 2.2.22. Indeed, Fa ∪ Fb = Fa∧b for all a, b ∈ A. Hence this

subbasis is, in fact, a basis for the topology of MaxA. Moreover, the basis of closed sets

is closed under finite intersections because, for all a, b ∈ A, Fa ∩ Fb = Fa⊕b. Finally, we

remark that F0 = MaxA and F1 = ∅.

Lemma 2.2.71. For every MV-algebra A, MaxA is a compact Hausdorff space.
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Proof. If A is the trivial MV-algebra, then MaxA is the empty space, which is a compact

Hausdorff space. On the other hand, if A is non-trivial, then MaxA is non-empty by

Corollary 2.2.36. Every two distinct maximal ideals m, n ∈ MaxA are incomparable,

meaning that there exist elements a, b ∈ A such that a ∈ m \ n and b ∈ n \ m. It is

possible to show that, for all x, y ∈ A,

(x	 (x ∧ y)) ∧ (y 	 (x ∧ y)) = 0. (2.1)

Indeed, it is elementary that (2.1) holds for MV-chains, and the general case follows by

Theorem 2.2.41. Then every maximal ideal of A contains the element (a	 (a∧ b))∧ (b	
(a ∧ b)), and Lemma 2.2.22 entails

Fa	(a∧b) ∪ Fb	(a∧b) = MaxA.

Since a	 (a ∧ b) 6 a ∈ m and b	 (a ∧ b) 6 b ∈ n, it is clear that MaxA \ Fa	(a∧b) and

MaxA\Fb	(a∧b) are disjoint open sets separating the points m, n ∈ MaxA. To show that

MaxA is compact, we shall prove that every family of closed sets with the finite inter-

section property (i.e. every finite subfamily has non-empty intersection) has non-empty

intersection. Let F be such a family of closed sets. By a standard application of Zorn’s

Lemma, upon considering the collection of all the families of closed sets extending F ,

with the finite intersection property, we can find a maximal element G of this collection.

Observe that
⋂
G ⊆

⋂
F , thus it suffices to show that G has non-empty intersection.

Since every closed set in MaxA is the intersection of basic closed sets, we can assume

without loss of generality that every element of G is a basic closed set. Since G cannot

be empty, there is a ∈ A such that Fa ∈ G. Define the set

n := {a ∈ A | Fa ∈ G}.

This is an ideal of A: the element 0 belongs to n because G is maximal; if a ∈ n and

b ∈ A is such that b 6 a, then

Fb = {m ∈ MaxA | b ∈ m} ⊇ {m ∈ MaxA | a ∈ m} = Fa ∈ G

so that Fb ∈ G because the latter is maximal. Finally, if a, b ∈ n, then Fa⊕b = Fa∩Fb ∈ G
(see Remark 2.2.70) again by the maximality of G and the fact that G has the finite

intersection property. We shall prove that n is a maximal ideal, in other words n ∈
MaxA. If I ⊆ A is an ideal of A that strictly contains n, then there exists k ∈ I \ n.

In particular Fk /∈ G; by the maximality of G, we deduce that there exists a family

{Fa}a∈A′ ⊆ G such that A′ ⊆ A is a finite subset, and
(⋂

a∈A′ Fa
)
∩ Fk = ∅. Upon

denoting s :=
⊕

a∈A′ a, Remark 2.2.70 shows that s ⊕ k = 1. However Fs ∈ G by the

maximality of G, hence s ∈ n ⊂ I; the latter is closed under finite ⊕-sums, so that

1 ∈ I. In other words I = A, and n is a maximal ideal. It is elementary to see that⋂
G = {n}.

Let A be a non-trivial MV-algebra, and let m ∈ MaxA be a maximal ideal of A. By

Corollary 2.2.47 and Theorem 2.2.44, the quotient MV-algebra A/m is isomorphic to

a subalgebra of [0, 1]. This means that there exists an injective MV-homomorphism



2.2. MV-algebras 46

ιm : A/m → [0, 1]. In fact, we shall see in Theorem 2.3.30 below, that such MV-

embedding is unique. By composing with the quotient map A → A/m, we obtain

an MV-homomorphism such that, for every a ∈ A,

A→ A/m→ [0, 1], a 7→ a
m 7→ ιm

(
a
m

)
.

Now, we change the point of view: we fix an element a ∈ A, and let the maximal ideal

m vary among the points of MaxA. In this way, we get a function

â : MaxA→ [0, 1], â(m) := ιm
(
a
m

)
.

For each a ∈ A, it is possible to see that â is a continuous function on MaxA, and the

correspondence a 7→ â defines an MV-homomorphism between the MV-algebra A and

the MV-algebra C(MaxA, [0, 1]) (see [57, Theorem 4.16]). This map, denoted by

·̂ : A→ C(MaxA, [0, 1]),

is natural, meaning that for every MV-homomorphisms h : A→ B the following diagram

commutes.

A C(MaxA, [0, 1])

B C(MaxB, [0, 1])

·̂

h −◦h−1

·̂

The image of the MV-homomorphism ·̂ : A → C(MaxA, [0, 1]) is a subalgebra of the

MV-algebra C(MaxA, [0, 1]), denoted by Â; its underlying set is

{â ∈ C(MaxA, [0, 1]) | a ∈ A}.

We remark that Â is a separating subalgebra of C(MaxA, [0, 1]). Indeed, if m, n ∈ MaxA

are distinct (hence incomparable) maximal ideals, there exists a ∈ m \ n, so that

â(m) = ιm
(
a
m

)
= ιm(0) = 0 and â(n) = ιn

(
a
n

)
6= 0,

because ιn (unlike ·̂ ) is injective. In other words, the element â ∈ Â separates the points

m, n ∈ MaxA.

The next result subsumes Proposition 2.2.69.

Theorem 2.2.72. An MV-algebra A is semisimple if, and only if, the natural MV-

homomorphism

·̂ : A→ C(MaxA, [0, 1])

is injective, in which case A is isomorphic to the separating subalgebra Â of C(MaxA, [0, 1]).

Proof. If A is a semisimple MV-algebra, i.e. the intersection of all maximal ideals of

A is the trivial ideal {0}, and a ∈ A is a non-zero element, there exists m ∈ MaxA

such that a /∈ m. Then â is not the constant function of value 0 on MaxA, since
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â(m) = ιm
(
a
m

)
6= 0 because ιm is injective. By Lemma 2.2.24.(3), the natural MV-

homomorphism ·̂ : A→ C(MaxA, [0, 1]) is injective. On the other hand, upon assuming

the injectivity of the latter, we find that A is isomorphic to the separating subalgebra Â of

C(MaxA, [0, 1]). Then Proposition 2.2.69 entails that A is a semisimple MV-algebra.

Proposition 2.2.73. If X is a compact Hausdorff space and A is a separating MV-

subalgebra of C(X, [0, 1]), then MaxA is homeomorphic to X.

Proof. See [57, Theorem 4.16].

We briefly describe the homeomorphism of Proposition 2.2.73, in the caseA = C(X, [0, 1]).

For every subset S ⊆ X, define

I(S) := {f ∈ C(X, [0, 1]) | f(x) = 0 for all x ∈ S}.

It is elementary that I(S) is an ideal of the MV-algebra C(X, [0, 1]). Moreover, it is

possible to show that the ideal I(S) is maximal if, and only if, S is a singleton and, in

fact, every maximal ideal of C(X, [0, 1]) is of the form I({p}) for some p ∈ X (this is an

MV-algebraic version of Stone-Kolmogorov-Gelfand lemma [31]). In other words, there

is a bijection

µX : X → Max C(X, [0, 1]), µX(p) := I({p}).

We claim that, for every compact Hausdorff space X, µX is a homeomorphism. To see

that µX is continuous, consider a basic closed set

Ff := {m ∈ Max C(X, [0, 1]) | f ∈ m},

for some f ∈ C(X, [0, 1]). We prove that its preimage under µX is a closed subset of X.

µ−1
X (Ff ) = {p ∈ X | I({p}) ∈ Ff} = {p ∈ X | f ∈ I({p})} = {p ∈ X | f(p) = 0} = f−1(0),

where the latter is closed, being the preimage of a point in a Hausdorff space under a

continuous function. Since a continuous bijection from a compact space to a Hausdorff

space is a homeomorphism, the claim is proved.

2.3 The equivalence Γ

Denote by MV the category of MV-algebras and MV-homomorphisms, and recall that

`Grpu denotes the category of unital `-groups and unital `-homomorphisms. In this

section we shall introduce Mundici’s equivalence between the categories MV and `Grpu.

From a logical point of view, this categorical equivalence allows us to translate results

from the theory of unital `-groups, which is not even first-order axiomatisable, into

results about the variety of MV-algebras, and conversely. Yosida duality for (a certain

class of) unital `-groups, along with the possibility of reducing to an equational language

via Mundici’s equivalence, point the way for the duality obtained in Chapter 4.
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Firstly we will introduce the functor Γ: `Grpu → MV mapping a unital `-group to its

unit interval. The fact that this functor is an equivalence is proved by giving a quasi-

inverse Ξ: MV → `Grpu. The construction of the latter requires the notion of a good

sequence in an MV-algebra, which we introduce before defining the functor Ξ.

Given an `-group G and an element G 3 u > 0, consider the set

[0, u] := {x ∈ G | 0 6 x 6 u}.

This can be endowed with MV-algebraic operations in the following manner: for every

x, y ∈ [0, u], define

x⊕ y := u ∧ (x+ y), and ¬x := u− x.

It can be checked that the axioms for an MV-algebra are satisfied, in other words:

Lemma 2.3.1. If G is an `-group and G 3 u > 0, then Γ(G, u) := ([0, u],⊕,¬, 0) is an

MV-algebra.

Proof. See [21, Proposition 2.1.2].

So far, we have not assumed that the `-group G is unital. Further, the element u of

Lemma 2.3.1 is an arbitrary non-negative element of the `-group G. When G is a unital

`-group and u is a strong order unit for G, then the MV-algebra Γ(G, u) is called the

unit interval of G.

Example 2.3.2. Γ(R, 1) ∼= [0, 1], the standard MV-algebra.

Example 2.3.3. For any compact Hausdorff space X, Γ(C(X,R)) ∼= C(X, [0, 1]) (cf.

Examples 2.1.58 and 2.2.4).

Remark 2.3.4. Let G be an `-group, and let u > 0 be a non-negative element of G. The

set S := {x ∈ G | |x| 6 nu for some n ∈ N} is contained in G, in fact S is an ideal of G,

generated by u. Moreover, u is a strong order unit of S. Observe that

Γ(S, u) = {x ∈ S | 0 6 x 6 u}
= {x ∈ G | |x| 6 nu for some n ∈ N, and 0 6 x 6 u}
= {x ∈ G | 0 6 x 6 u}
= Γ(G, u).

For this reason, when dealing with the MV-algebra Γ(G, u), where G is a unital `-group

and u is a positive element of G, we shall always assume that u is a strong order unit

for G, so that S = G.

The following facts are elementary.

Lemma 2.3.5. If f : (G, u)→ (H, v) is a unital `-homomorphism, then

Γ(f) := f|[0,u] : Γ(G, u)→ Γ(H, v)

is an MV-homomorphism.
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Corollary 2.3.6. Γ: `Grpu → MV is a functor from the category of unital `-groups to

the category of MV-algebras.

We now turn to good sequences.

Definition 2.3.7. A good sequence in an MV-algebra A is a sequence a = (a1, a2, a3, . . .)

where, for all i, ai ∈ A, ai ⊕ ai+1 = ai and there exists n0 ∈ N such that an = 0 for

every n > n0.

Notation 2.3.8. A sequence (a1, a2, . . . , an, 0, 0, . . .) is denoted simply by (a1, a2, . . . , an).

In other words, we do not distinguish between the sequence (a1, a2, . . . , an) and the

sequence (a1, a2, . . . , an, 0
m) for any m ∈ N, where 0m represents a m-tuple of zeroes. If

a ∈ A, then (a, 0, . . . , 0, . . .) is a good sequence, and it is written as (a).

Example 2.3.9. If A is a Boolean algebra (see Example 2.2.2), then a good sequence

in A is a non-increasing eventually zero sequence of elements. This is due to the fact

that, in any idempotent MV-algebra, x⊕ y = x ∨ y [21, Theorem 1.5.3].

Good sequences in totally-ordered MV-algebras admit a sharp characterisation.

Proposition 2.3.10. Every good sequence in an MV-chain A is of the form (1p, a), for

some p ∈ N and a ∈ A.

Proof. Let (a1, a2, a3, . . .) be a good sequence in A. In particular, for all i, the condition

ai ⊕ ai+1 = ai is satisfied. By Proposition 2.2.14.(2) we must have either ai = 1 or

ai+1 = 0. Since the identity x ⊕ 1 = 1 holds in any MV-algebra, an arbitrary good

sequence in A is of the form (1p, a, 0, 0, . . .) = (1p, a) for some p ∈ N and a ∈ A.

Lemma 2.3.11. Suppose that the MV-algebra A is a subdirect product of the family

{Ai}i∈I . The sequence a = (a1, . . . , an, . . .) of elements of A is a good sequence if, and

only if, for every i ∈ I
ai = (πi(a1), . . . , πi(an), . . .)

is a good sequence in Ai, and there exists n0 ∈ N such that πi(an) = 0 for all n > n0

and for all i ∈ I.

Proof. It is sufficient to observe that an⊕ an+1 = an if, and only if, πi(an)⊕ πi(an+1) =

πi(an⊕ an+1) = πi(an) for every i ∈ I. Therefore a is a good sequence in A if, and only

if, each ai is a good sequence in Ai and there exists n0 ∈ N such that, for all n > n0

and for all i ∈ I, πi(an) = 0.

Definition 2.3.12. Given good sequences a = (a1, . . . , an) and b = (b1, . . . , bm), define

their sum a + b as the sequence c = (c1, c2, c3, . . .), where

ci := ai ⊕ (ai−1 � b1)⊕ · · · ⊕ (a1 � bi−1)⊕ bi.
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Remark 2.3.13. Consider an MV-chain A, and good sequences a, b in A. Proposition

2.3.10 states that there exist p, q ∈ N and a, b ∈ A such that a = (1p, a) and b = (1q, b).

Applying the definition of the sum of two good sequences, we find

(1p, a) + (1q, b) = (1p+q, a⊕ b, a� b).

By Proposition 2.2.14.(1) a⊕ b < 1 if, and only if a� b = 0. Hence we must have either

(1p, a) + (1q, b) = (1p+q+1, a � b) or (1p, a) + (1q, b) = (1p+q, a ⊕ b). In both cases, the

sequence a + b is again a good sequence in the MV-chain A. In fact, this is true for an

arbitrary MV-algebra:

Proposition 2.3.14. If a and b are good sequences in the MV-algebra A, then a+ b is

a good sequence in A.

Proof. If A is trivial, then (0) + (0) = (0) is a good sequence. Hence we assume that A

is non-trivial. By Theorem 2.2.41 the MV-algebra A is a subdirect product of a family

of MV-chains {Ai}i∈I . Since a = (a1, . . . , an) and b = (b1, . . . , bm) are good sequences

in A, by Lemma 2.3.11 the sum a+b = ((a+ b)1, . . . , (a+ b)m+n, . . .) is a good sequence

in A if, and only if, for every i ∈ I, πi(a + b) = (πi(a + b)1, . . . , πi(a + b)m+n, . . .) is a

good sequence in Ai. By hypothesis a and b are good sequences in A, hence

πi(a) = (πi(a1), . . . , πi(an)),

and

πi(b) = (πi(b1), . . . , πi(bm))

are good sequences in Ai. Since Ai is totally-ordered, Remark 2.3.13 implies that πi(a)+

πi(b) is a good sequence in Ai. We conclude that, for every i ∈ I, πi(a+b) = πi(a)+πi(b)

is a good sequence in Ai.

Proposition 2.3.15. Let A be an MV-algebra, and let MA denote the set of good se-

quences in A. Then (MA,+, (0)) is a commutative monoid (where the operation + is the

sum of good sequences). Further, for good sequences a, b, c ∈MA, the following hold.

1. If a + b = a + c, then b = c.

2. If a + b = (0), then a = b = (0).

Proof. See [21, Proposition 2.3.1].

Remark 2.3.16. If a = (a1, . . . , an) and b = (b1, . . . , bm) are good sequences, we can

assume without loss of generality that m = n. In fact, if e.g. m < n, it is enough to

consider b = (b1, . . . , bm, 0
n−m) (cf. Notation 2.3.8).

Proposition 2.3.17. Let a = (a1, . . . , an) and b = (b1, . . . , bn) be good sequences in the

MV-algebra A. The following are equivalent.

1. There exists c ∈MA such that b + c = a.
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2. bi 6 ai for all i = 1, . . . , n.

Proof. See [21, Proposition 2.3.2].

Proposition 2.3.17 allows us to equip the commutative monoid MA with a partial order:

we agree to set b 6 a if, and only if, the good sequences a, b satisfy the equivalent

conditions above. In fact, it is elementary that the relation 6 is a reflexive, transitive,

and antisymmetric relation on MA.

Lemma 2.3.18. Let a, b be good sequences in the MV-algebra A.

1. If b 6 a, then there exists a unique c ∈MA satisfying b + c = a.

2. The partial order 6 on MA is invariant under translations, i.e. if b 6 a, then

b + d 6 a + d for every d ∈MA.

Proof. Item 1 follows at once by Proposition 2.3.15.(1) for, if c, c′ ∈ MA are such that

b + c = a = b + c′, then c = c′. Concerning item 2, if b 6 a, then there exists c ∈MA

satisfying b + c = a, so that the good sequences b + c and a coincide termwise. If

d ∈ MA is an arbitrary good sequence, each term of the sequence b + c + d is equal to

the corresponding term of the sequence a + d, in other words b + d 6 a + d.

It is possible to show that the partially ordered set (MA,6) is a lattice [21, Proposition

2.3.5]. Indeed, if a, b ∈MA, the following are good sequences

a ∨ b := (a1 ∨ b1, . . . , an ∨ bn, . . .),

a ∧ b := (a1 ∧ b1, . . . , an ∧ bn, . . .)

and they are the least upper bound and the greatest lower bound of the pair a, b,

respectively.

In the following, starting with an MV-algebra A, we shall construct an `-group GA whose

positive cone is isomorphic to the lattice-ordered commutative monoid MA.

Remark 2.3.19. Given the lattice-ordered commutative monoid N∪{0}, we can construct

an `-group G such that G+ ∼= N ∪ {0}, as the quotient of N ∪ {0} × N ∪ {0} by the

equivalence relation (m,n) ∼ (p, q) if, and only if, m + q = p + n. Clearly G ∼= Z, and

we obtained the integers by considering differences of natural numbers.

The previous remark represents the motivation for the next

Definition 2.3.20. The equivalence relation ∼ on MA ×MA is defined as follows: if

(a, b), (c,d) ∈MA ×MA, then (a, b) ∼ (c,d) if, and only if, a + d = c + b. Denote by

[a, b] := {(c,d) ∈MA ×MA | (a, b) ∼ (c,d)}

the equivalence class of the element (a, b), and by GA the set MA×MA/ ∼ of equivalence

classes.
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Lemma 2.3.21. The structure (GA, [(0), (0)],+) is an abelian group, where

[a, b] + [c,d] := [a + c, b + d],

−[a, b] := [b,a].

Proof. It is easy to check that (GA, [(0), (0)],+) is an abelian monoid, since so is MA.

Therefore it suffices to observe that

[a, b] + (−[a, b]) = [a, b] + [b,a] = [a + b,a + b] = [(0), (0)]

because a + b + (0) = (0) + a + b.

The next step is defining an order on the abelian group GA which induces a lattice

structure on GA.

Definition 2.3.22. LetA be an MV-algebra, and let [a, b], [c,d] ∈ GA. Set [a, b] � [c,d]

if, and only if, there exists e ∈MA such that [c,d]− [a, b] = [e, (0)].

Remark 2.3.23. Notice that, for all [a, b], [c,d] ∈ GA,

[a,b] � [c,d] ⇔ [c,d]− [a,b] = [e, (0)]

⇔ [c + b,a + d] = [e, (0)]

⇔ c + b + (0) = e + a + d

⇔ a + d + e = c + b

⇔ a + d 6 c + b,

where 6 is the partial order on the monoid MA. Consequently, it is clear that the map

ψ : MA → GA defined by ψ(a) := [a, (0)] induces an isomorphism between the monoid

MA and the positive cone of the partially ordered group GA, namely

G+
A = {[c,d] ∈ GA | 0 � [c,d]}

= {[c,d] ∈ GA | c > d}.

Indeed, it is obvious that ψ is injective and that ψ(MA) = {[a, (0)] | a ∈MA} ⊆ G+
A; on

the other hand G+
A ⊆ ψ(MA) by Proposition 2.3.18.(1).

Proposition 2.3.24. The partial order � on GA is invariant under translations, and

(GA,�) is a lattice. For every pair of elements [a, b], [c,d] ∈ GA, the least upper bound

and greatest lower bound are given, respectively, by

[a, b] ∨ [c,d] = [(a + d) ∨ (c + b), b + d],

[a, b] ∧ [c,d] = [(a + d) ∧ (c + b), b + d].

Proof. See [21, Proposition 2.4.2].

The `-group GA is called the Chang `-group associated to the MV-algebra A.
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Proposition 2.3.25. The element uA := [(1), (0)] is a strong order unit for GA.

Proof. Let [a, b] ∈ GA. We only prove the result for the case in which [a, b] belongs to

the positive cone of GA, and leave the rest to the reader. By Remark 2.3.23 there exists

e = (e1, e2, . . .) ∈ MA such that [a, b] = [e, (0)]. Let m ∈ N be such that en = 0 for

every n > m. We conclude that [e, (0)] � muA = [1m, (0)] because

[e, (0)] � [1m, (0)] ⇔ e + (0) 6 1m + (0) ⇔ e 6 1m ⇔ ei 6 1 ∀i 6 m.

Corollary 2.3.26. If A is an MV-algebra, then Ξ(A) := (GA, uA) is a unital `-group.

Remark 2.3.27. The map φ : A → Γ(GA, uA), given by φ(a) := [(a), (0)], is an MV-

isomorphism between the MV-algebra A and the unit interval of the unital `-group GA.

Indeed, by Remark 2.3.23, the underlying set of Γ(GA, uA) is

{[a, b] ∈ GA | [(0), (0)] � [a, b] � [(1), (0)]} = {[(c), (0)] ∈ GA | c ∈ A},

which is in bijection with A. This bijection extends to an MV-isomorphism [21, Theorem

2.4.5]. Moreover, the MV-algebra A is totally-ordered if, and only if, the unital `-group

GA is totally-ordered. On the one hand, if A is an MV-chain, then the monoid MA is

also totally-ordered, and so is GA. On the other hand, if GA is totally-ordered, then its

unit interval Γ(GA, uA) is totally-ordered. But the latter is isomorphic to A, hence A is

an MV-chain.

With respect to morphisms, if h : A→ B is an MV-homomorphism, one can show that

the map h∗ : MA → MB, sending the good sequence a = (a1, a2, . . .) ∈ MA to h∗(a) :=

(h(a1), h(a2), . . .), is both a monoid homomorphism and a lattice homomorphism. Fur-

ther, the map Ξ(h) : (GA, uA) → (GB, uB), given by Ξ(h)[a, b] := [h∗(a), h∗(b)], is a

unital `-homomorphism (see [21, pp. 139–140]). Composition of MV-homomorphisms

and identities are easily seen to be preserved. Summing up:

Corollary 2.3.28. Ξ: MV → `Grpu is a functor from the category of MV-algebras to

the category of unital `-groups.

Remarkably, in 1986 Mundici [56, Theorem 3.9] proved:

Theorem 2.3.29. The functor Γ: `Grpu → MV is an equivalence between the category of

unital `-groups and the category of MV-algebras, whose quasi-inverse is Ξ: MV→ `Grpu.

Proof. See [21, Theorem 7.1.2, Theorem 7.1.7].

By Theorem 2.1.57, along with the functor Γ, it follows at once that
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Theorem 2.3.30. Every non-trivial semisimple MV-chain admits a unique MV-embedding

in the standard MV-algebra [0, 1]. In particular, if A is any non-trivial MV-algebra, and

m ∈ MaxA, then there is a unique MV-embedding

hm : A
m → [0, 1].



Chapter 3

Yosida duality

What we refer to, in modern terms, as the investigation of the dual of the category

KHaus, was traditionally tackled through the study of the continuous functions over

a given space. In this framework, the main rôle is played by C(X), the collection

of all the continuous (R or C)-valued functions on the compact Hausdorff space X.

Depending on the structure we endow the codomain with, C(X) can be regarded in

rather different ways. The literature on C(X) as a ring is extensive, see for example

[33], but many other structures have been taken into consideration (lattice, vector space,

Banach algebra, etc.). Historically, the three main representation theorems concerning

C(X) were proved at the beginning of the forties. In 1941, Kakutani [45] gave an order-

theoretic characterisation of the unital real Banach lattices (=unital lattice-ordered real

Banach spaces) of the form C(X,R). It is clear that, in his work, the non-algebraic

concept of norm plays a crucial rôle. Although the approach adopted by Kakutani was

more general, we remark that this representation result was announced simultaneously

in [47] by M. and S. Krein. The related duality between KHaus and the category whose

objects are some unital real Banach lattices (called M-spaces) and whose morphisms are

unital vector lattice homomorphisms, was made explicit in [8]. In the same year, Yosida

showed in the landmark paper [67] that a vector lattice (=lattice-ordered real vector

space) with a strong order unit is isomorphic to C(X,R), for some compact Hausdorff

space X if, and only if, it is archimedean and norm-complete. In sharp contrast with the

Kakutani-Krein-Krein result, the norm on the vector lattice is not a primitive operator,

but it is induced by the strong order unit. Yosida’s representation theorem extends to

a categorical duality with KHaus, and even if the dual class of vector lattices fails being

equationally definable, it still involves algebraic language only. Finally, in 1943, on the

way to a representation theorem for (possibly non-commutative) complex C∗-algebras,

Gelfand and Neumark [32] proved that a complex unital C∗-algebra can be represented

as the family of all continuous C-valued functions on a compact Hausdorff space if, and

only if, it is commutative. This result gives rise to the well-known Gelfand-Neumark

duality (see Section 6.2). As in Kakutani’s representation result, the norm is a primitive

element in the structure of a C∗-algebra.

What follows is an account of Yosida’s representation theorem, in the language of `-

groups, and of the related categorical duality.
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3.1 The Hölder-Yosida construction

Recall that, by a unital `-group, we understand an abelian lattice-ordered group with a

distinguished strong order unit (Definitions 2.1.1 and 2.1.52). In Example 2.1.59 we have

seen that not every archimedean unital `-group is isomorphic to an `-group of the form

C(X,R) for some compact Hausdorff space X. Indeed, a counterexample is provided by

the unital archimedean `-group (Z, 1). Nevertheless, Z can be embedded in the `-group

C({p},R) ∼= R, where {p} is any one-point space. The Hölder-Yosida construction shows

that every archimedean unital `-group admits such an embedding.

Remark 3.1.1. The Hölder-Yosida construction is the analogue for unital `-groups of

Chang’s representation result for semisimple MV-algebras, see Theorem 2.2.72. Indeed,

it is possible to obtain one result from the other by applying the functor Γ of Theorem

2.3.29. In the special case of totally-ordered structures this is carried out in Theorem

2.3.30.

Let (G, u) be an archimedean unital `-group. We shall find a compact Hausdorff space

X, along with an embedding (G, u)→ (C(X,R), 1X). The idea is the same described in

the case of MV-algebras at the end of Section 2.2, mutatis mutandis. Define the set

MaxG := {m ⊆ G | m is a maximal ideal of G}.

By Lemma 2.1.44, for every maximal ideal m ∈ MaxG, there exists an injective `-

homomorphism G
m → R; further, Theorem 2.1.57 states that there exists a unique unital

embedding

hm : (Gm ,
u
m)→ (R, 1).

The composition of maps

g 7→ g
m 7→ hm

( g
m

)
shows that, once we fix a maximal ideal m, we can associate to each element g ∈ G a

real number hm
( g
m

)
∈ R. Reversing the point of view, given an element g ∈ G, we can

define a function

ĝ : MaxG→ R, ĝ(m) := hm
( g
m

)
.

Here, the element g ∈ G is fixed, while m varies among the elements of MaxG. In view

of the previous construction, it makes sense to ask whether maximal ideals exist in an

arbitrary unital `-group.

Lemma 3.1.2. If (G, u) is a non-trivial unital `-group, then there exists a maximal

ideal in G.

Proof. The argument is a standard application of Zorn’s Lemma, therefore we shall just

give a sketch of the proof. Assume that the `-group (G, u) is non-trivial, i.e.G 6= {0 = u}.
Hence {0} is a proper ideal of G. Let D denote the set of proper ideals of G extending

the trivial ideal {0}. The set D is partially ordered by set-theoretic inclusion, and it is

non-empty because {0} is in D. Let D be a totally-ordered subset of D. One proves

that
⋃
Ij∈D Ij is an upper bound for D, and

⋃
Ij∈D Ij ∈ D. Then Zorn’s lemma implies
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that there exists a maximal element in D, in other words there exists a maximal ideal

in G.

Remark 3.1.3. In Lemma 3.1.2 the unital assumption is crucial. Indeed, there exist

non-unital `-groups which do not admit any maximal ideal (see [51, Example 27.8]).

Having defined the set MaxG, we shall equip it with a topology. The latter should be

defined in such a way that the topological space MaxG is a compact Hausdorff space, and

each function ĝ : MaxG→ R is continuous. Instead of giving this topology immediately,

we show how it arises, naturally, from the comparison with the `-group C(X,R).

Notation 3.1.4. In this chapter, X will always denote a compact Hausdorff space. More-

over, we write C(X) for the `-group C(X,R). Finally, by an ideal we understand an

`-ideal.

In order to study the (maximal) ideals of C(X), consider a subset K ⊆ X and define

I(K) := {f ∈ C(X) | f(x) = 0 for all x ∈ K}.

Remark 3.1.5. Note that the operator I reverses inclusions. If K1 ⊆ K2 are subsets of

X and f ∈ I(K2), then f(x) = 0 for all x ∈ K1 ⊆ K2. This shows that f ∈ I(K1), that

is I(K2) ⊆ I(K1).

Proposition 3.1.6. If K ⊆ X is an arbitrary subset, then I(K) is an ideal of C(X).

Proof. We must prove that I(K) is a convex subgroup and sublattice of C(X). If f, g ∈
I(K), then −f ∈ I(K) and f+g ∈ I(K), therefore I(K) is a subgroup of C(X). It is also

a sublattice, since it is clearly closed under the operations ∧,∨. Lastly, it is convex: if

f > g > h, where f, h ∈ I(K), then for all x ∈ K, 0 = f(x) > g(x) > h(x) = 0, whence

g ∈ I(K).

We can always assume without loss of generality that the subset K in the statement of

the preceding proposition is closed:

Lemma 3.1.7. Let K ⊆ X be an arbitrary subset. Then I(K) = I(K), where K is the

topological closure of K in X.

Proof. One of the two inclusions follows at once by Remark 3.1.5, upon observing that

K ⊆ K. On the other hand, if f|K = 0, the continuity of f implies f|K = 0.

The question arises, which are those closed subsets K ⊆ X for which I(K) is a maximal

ideal.

Lemma 3.1.8 (Gelfand-Kolmogorov). The ideal I(K) of C(X) is maximal if, and only

if, K is a one-point set.

Proof. This was first proved, regarding C(X) as a ring, in [31]. In the case of `-groups

the same arguments apply, mutatis mutandis.
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We have shown how to construct an ideal of C(X) starting from a (closed) subset of X.

The converse is also possible. If I ⊆ C(X) is an arbitrary subset, define

V(I) := {x ∈ X | f(x) = 0 for all f ∈ I}.

The set V(I) is called the zero set, or vanishing locus, of I.

Remark 3.1.9. The operator V, as the operator I, reverses inclusions. If I1 ⊆ I2 are

subsets of C(X) and x ∈ X is such that f(x) = 0 for all f ∈ I2, then f(x) = 0 for all

f ∈ I1 ⊆ I2. In other words, V(I2) ⊆ V(I1).

Proposition 3.1.10. If I ⊆ C(X) is an arbitrary subset, then V(I) is a closed subset

of X.

Proof. Observe that V(I) =
⋂
f∈I f

−1(0), where each f−1(0) is closed since it is the

continuous preimage of a closed set (every one-point space in a T1-space is closed). An

arbitrary intersection of closed sets is closed, therefore V(I) is closed.

In fact we can always assume without loss of generality that the subset I in the statement

of the foregoing proposition is an ideal:

Lemma 3.1.11. Let I ⊆ C(X) be an arbitrary subset. Then V(I) = V(〈I〉), where 〈I〉
is the ideal generated by I.

Proof. Since I ⊆ 〈I〉, one of the two inclusions follows at once from Remark 3.1.9. On

the other hand, if x ∈ V(I) and

g ∈ 〈I〉 = {h ∈ C(X) | ∃n ∈ N, ∃f ∈ I such that − n|f | 6 h 6 n|f |},

we have 0 = −n|f(x)| 6 g(x) 6 n|f(x)| = 0, i.e. x ∈ V(〈I〉).

Remark 3.1.12. Every closed subset of X is of the form V(I) for some ideal I ⊆ C(X).

Indeed, if S ⊆ X is an arbitrary subset, it is easy to see that V(I(S)) = S. In particular,

if K ⊆ X is a closed subset, then K = V(I(K)).

The next step consists in defining the concept of vanishing locus for an arbitrary `-group

G. Let us consider g ∈ G and m ∈ MaxG. We agree to say that the element g vanishes

in m, if ĝ(m) := hm( gm) = 0 ∈ R. Observe that, since the `-homomorphism hm is injective,

g vanishes in m if, and only if, g ∈ m. Define

V(g) := {m ∈ MaxG | ĝ(m) = 0}.

The vanishing locus of the subset S ⊆ G is

V(S) :=
⋂
g∈S

V(g) = {m ∈ MaxG | ĝ(m) = 0 for all g ∈ S}.
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Remark 3.1.13. We can write, equivalently,

V(g) = {m ∈ MaxG | g ∈ m},

and

V(S) = {m ∈ MaxG | S ⊆ m}.

Again, we can suppose without loss of generality that S is an ideal of G:

Lemma 3.1.14. If S ⊆ G, then V(S) = V(〈S〉).

Proof. If m ∈ V(〈S〉), then ĝ(m) = 0 for all g ∈ S ⊆ 〈S〉, so that m ∈ V(S). In the

other direction, if m ∈ V(S) and g′ ∈ 〈S〉, there exist n ∈ N and g ∈ S such that

−n|g| 6 g′ 6 n|g|. Since g ∈ S, we have g ∈ m; consequently −n|g|, n|g| ∈ m because

the latter is an `-ideal. However m is convex, therefore g′ ∈ m, that is ĝ′(m) = 0 if, and

only if, m ∈ V(〈S〉).

This motivates the following

Definition 3.1.15. Let G be an `-group. A subset T ⊆ MaxG is closed if, and only if,

it is of the form V(I) for some ideal I ⊆ G.

Lemma 3.1.16. Let I denote the collection of all the ideals of the `-group G. The

family of closed sets {V(I)}I∈I is a topology for MaxG, called the spectral topology. A

basis of closed sets for the latter is given by {V(g)}g∈G.

Proof. See [13, Théorème 10.1.4, Proposition 10.1.7].

In particular, for all positive elements g, h ∈ G we have V(g ∧ h) = V(g) ∩ V(h) [13,

Lemme 10.1.1]. The set MaxG, equipped with the spectral topology, is called the

maximal spectrum of the `-group G.

Proposition 3.1.17. Let G be an `-group, and let MaxG be its maximal spectrum. The

following hold.

1. MaxG is Hausdorff.

2. MaxG is compact if, and only if, G is unital.

3. For all g ∈ G, the function ĝ : MaxG→ R is continuous.

Proof. If G is the trivial group, there is nothing to prove. To check that the space

MaxG is Hausdorff, let m, n ∈ MaxG be distinct points. Distinct maximal ideals are

incomparable, hence there are positive elements a, b ∈ G such that a ∈ m\n and b ∈ n\m.

By Lemma 2.1.4 we have

(a− (a ∧ b)) ∧ (b− (a ∧ b)) = 0.
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Note that a − (a ∧ b) ∈ m because 0 6 a − (a ∧ b) 6 a, and similarly b − (a ∧ b) ∈ n.

Further, a ∧ b ∈ m since 0 6 a ∧ b 6 a, so that b − (a ∧ b) /∈ m, for otherwise b =

(a ∧ b) + (b− (a ∧ b)) ∈ m. In an analogous way, one can see that a− (a ∧ b) /∈ n. Upon

observing that

V(a− (a ∧ b)) ∩ V(b− (a ∧ b)) = V((a− (a ∧ b)) ∧ (b− (a ∧ b))) = V(0) = MaxG,

we see that MaxG \ V(a − (a ∧ b)) and MaxG \ V(b − (a ∧ b)) are disjoint open sets

separating the elements m, n ∈ MaxG. Item 2 is proved in [13, Proposition 10.1.6], while

item 3 in [13, Corollaire 13.2.6].

3.2 Yosida map

For an `-group G, we shall give precise conditions under which the Yosida map

Y: G→ C(MaxG), g 7→ (ĝ : MaxG→ R)

is an injective and surjective `-homomorphism.

It is elementary that Y is an `-homomorphism precisely because, for all m ∈ MaxG,

the quotient map qm : G → G
m is an `-homomorphism. For example, given f, g ∈ G,

f̂ + g = f̂ + ĝ if, and only if, for all m ∈ MaxG, f+g
m = f

m + g
m if, and only if, qm(f +g) =

qm(f) + qm(g). Further, if G is unital, with distinguished strong order unit u ∈ G, it

is clear that Y : (G, u) → (C(MaxG), 1MaxG) is a unital `-homomorphism, since each

embedding hm : (Gm ,
u
m) → (R, 1) is unital. The following commutative diagram shows

that the Yosida map can be thought of as the diffusion of Hölder’s embedding to the

whole `-group.

G C(MaxG)

G
m

C(MaxG)
I(m)

∼= R

Y

qm qI(m)

hm

Note that, considering the quotient with respect to the ideal I(m) means looking at the

value of a function at the point m ∈ MaxG. Indeed f
m = g

m ∈
C(MaxG)
I(m) if, and only if,

f(m) = g(m). Hence the equivalence class f
m is completely determined by the real value

f(m) ∈ R. It suffices to consider the constant functions on MaxG, to conclude that the

quotient of the `-group C(MaxG) by the ideal I(m) is isomorphic to R.

The next result should be compared with Theorem 2.2.72.

Proposition 3.2.1. A unital `-group (G, u) is archimedean if, and only if, the Yosida

map Y: (G, u)→ (C(MaxG), 1MaxG) is an injective `-homomorphism.

A few preliminary facts are needed, in order to prove the foregoing proposition.
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Definition 3.2.2. The radical ideal of an `-group G is defined as the intersection of all

its maximal ideals. In symbols,

RadG :=
⋂

MaxG.

Lemma 3.2.3. Let (G, u) be a unital `-group. The following are equivalent.

1. G is archimedean.

2. The radical of G is trivial, i.e. RadG = {0}.

Proof. This was first proved in [68, Theorem 1], for unital vector lattices (=unital lattice-

ordered real vector spaces). The proof for unital vector lattices can be adapted, by using

the unital Hölder’s Theorem 2.1.57 in place of [68, Lemma 1].

Remark 3.2.4. We remark that the analogue of Lemma 3.2.3 does not hold if G is not

unital. A counterexample is provided in [68, §2].

Corollary 3.2.5. Let (G, u) be an archimedean unital `-group. Then, for all g ∈ G,

g 6= 0 if, and only if, there exists m ∈ MaxG such that ĝ(m) 6= 0.

Proof. If the unital `-group is trivial, there is nothing to prove. If it is not trivial, Lemma

3.2.3 entails
⋂

MaxG = {0}. It follows at once that g 6= 0 if, and only if, there exists

m ∈ MaxG such that g /∈ m or, equivalently, such that ĝ(m) 6= 0.

Remark 3.2.6. In an archimedean unital `-group (G, u), whenever we are given a non-

zero element g ∈ G, we can find a maximal ideal m ∈ MaxG such that ĝ(m) 6= 0. If the

unital `-group (G, u) is non-trivial and non-archimedean, there are non-zero elements

h ∈ G such that ĥ is the constant function of value 0 on the maximal spectrum of G.

These elements are precisely those h ∈ G which satisfy 0 < n|h| 6 u for all n ∈ N. They

can be equivalently described as those elements h ∈ G for which there is g ∈ G such

that 0 < n|h| 6 g for all n ∈ N.

Proof of Proposition 3.2.1. If the `-homomorphism Y is injective, then (G,U) is iso-

morphic to the `-subgroup (Y(G), 1MaxG) of C(MaxG). The `-group C(MaxG) is

archimedean by Lemma 2.1.22, hence so is G ∼= Y(G). On the other hand, assume

that G is an archimedean unital `-group, and consider distinct elements f, g ∈ G. Then

f − g 6= 0, and by Corollary 3.2.5 there exists a maximal ideal m ∈ MaxG such that

f̂ − g(m) 6= 0. Upon recalling that the Yosida map is an `-homomorphism, we have

f̂ − g(m) 6= 0 if, and only if, f̂(m)− ĝ(m) 6= 0 if, and only if, f̂(m) 6= ĝ(m). This shows

that f̂ 6= ĝ.

Example 3.2.7. Let us consider the unital `-group (Z, 1). It is clearly archimedean,

hence the Yosida map provides an embedding Y : (Z, 1) → (C(MaxZ), 1MaxZ). As ob-

served in Example 2.1.48, the `-group Z is simple, so that MaxZ = {{0}}. In this situ-

ation, the Yosida map is essentially the inclusion (Z, 1) ↪→ (R, 1) ∼= (C(MaxZ), 1MaxZ).

The latter is not surjective; in particular, C(MaxZ) is a completion of Z, in a sense

which we shall now make precise.
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In the study of the family C(X) of continuous functions on the compact Hausdorff space

X, the uniform norm is often taken into consideration. Given f ∈ C(X), the latter

norm is defined by

‖f‖∞ := sup
x∈X
|f(x)|.

Regarding (C(X), 1X) as a unital `-group, we can introduce another norm, in the fol-

lowing way:

‖f‖1X := sup {pq ∈ Q | p, q ∈ N, q 6= 0 and |f | > p
q · 1X}

= sup {pq ∈ Q | p, q ∈ N, q 6= 0 and q|f | > p1X}.

It is elementary that, for all f ∈ C(X), ‖f‖∞ = ‖f‖1X . This motivates the following

Definition 3.2.8. Let (G, u) be a unital `-group. For all g ∈ G, the seminorm induced

by the unit u on G, is given by

‖g‖u := inf {pq ∈ Q | p, q ∈ N, q 6= 0 and q|g| 6 pu}

= sup {pq ∈ Q | p, q ∈ N, q 6= 0 and q|g| > pu} ∈ R.

It is easy to check that ‖ · ‖u : G→ R+ is, in fact, a seminorm, i.e. it satisfies all axioms

for a norm except, possibly, the faithfulness condition: ‖g‖u = 0 implies g = 0. The

next statement, which follows from the very definition of the seminorm induced by the

unit, tells us when this seminorm is, in fact, a norm.

Lemma 3.2.9. Let (G, u) be a unital `-group. Then

{g ∈ G | ‖g‖u = 0} = RadG.

In particular, ‖ · ‖u is a norm if, and only if, (G, u) is archimedean.

Remark 3.2.10. Recall that C(X), with the metric induced by the uniform norm, or

equivalently by the norm ‖ · ‖1X , is a Cauchy-complete metric space. Upon introducing

multiplication by real numbers, C(X) can be regarded as a Cauchy-complete metric

linear space.

Example 3.2.11. The norm induced by the unit on the unital `-group (Q, 1) is the

usual absolute value. However, Q is not Cauchy-complete, and the Yosida embedding

(Q, 1) → (C(Q), 1MaxQ) ∼= (R, 1) is essentially the completion of Q with respect to the

norm.

Example 3.2.12. The norm induced by the unit on the unital `-group (Z, 1) is again

the absolute value. Now, Z is complete with respect to this norm, however it is not a

divisible group. Recall that

Definition 3.2.13. An abelian group G is divisible if, for all g ∈ G and for all m ∈ N,

there exists h ∈ G such that g = mh.

We remark that every `-group is torsion-free [34, Corollary 0.1.2]. It is standard that

every torsion-free abelian group G admits a canonical embedding into a divisible abelian

group, called the divisible hull of G.
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Remark 3.2.14. Consider an archimedean unital `-group (G, u), along with the norm

‖ · ‖u induced by the unit. One can check that the operations +,∧,∨ are continuous

with respect to the topology induced by (the metric induced by) the norm. Therefore,

we can extend the operations above to the norm-completion of the `-group (G, u).

Example 3.2.15. With reference to Examples 3.2.11 and 3.2.12, the divisible hull of

(Z, 1) is (Q, 1), and the latter is not norm-complete. Its completion is (R, 1), which is

isomorphic to (C(X), 1X), where X is an arbitrary one-point space.

We are now ready to characterise those archimedean unital `-groups for which the Yosida

map is surjective, hence an `-isomorphism.

Proposition 3.2.16. Let (G, u) be a non-trivial archimedean unital `-group. The fol-

lowing are equivalent.

1. The Yosida map Y: (G, u)→ (C(MaxG), 1MaxG) is a surjective `-homomorphism.

2. G is divisible, and complete in the norm ‖ · ‖u induced by the unit.

The proof of this result relies, in an essential way, on the following lattice-theoretic

version of the Stone-Weierstrass theorem. Recall that a set S of continuous real-valued

functions on a topological space X separates points of X if, for each pair of distinct

points x, y ∈ X, there is f ∈ S such that f(x) 6= f(y).

Theorem 3.2.17. Let S denote a subset of the family C(X) of continuous real-valued

functions on a compact Hausdorff space X. Suppose that S contains the function 1X , is

closed under the operations +,∧,∨ and under multiplication by rational numbers, and

separates points of X. Then S is dense in C(X) with respect to the uniform norm.

Proof. See [6, Theorem 11.3].

Proof of Proposition 3.2.16. The map Y is an injective `-homomorphism by Proposition

3.2.1. Assuming that it is also surjective, we conclude that G is divisible and complete,

since it is `-isomorphic to the divisible complete `-group C(MaxG). Conversely, suppose

that G is divisible, and complete with respect to the norm ‖ · ‖u. We must prove that

Y(G) = C(MaxG). The set Y(G) contains 1MaxG = û, is closed under the operations

+,∧,∨, and it is closed under multiplication by rational constants since G is divisible.

Lastly, Y(G) separates points of MaxG: if m, n are distinct points of MaxG, then there

exists an element f ∈ G such that f ∈ m \ n. The function f̂ separates the two points,

because f̂(m) = 0 6= f̂(n). Theorem 3.2.17 entails that Y(G) is dense in C(MaxG) with

respect to the uniform norm ‖ · ‖∞ = ‖ · ‖1MaxG . By hypothesis G is complete in the

norm ‖ · ‖u, hence the `-group Y(G), which is isomorphic to G by Proposition 3.2.1, is

complete in the norm ‖ · ‖û = ‖ · ‖1MaxG . We conclude that Y(G) = C(MaxG).

Proposition 3.2.16, along with Proposition 3.2.1, provide a sharp characterisation of the

unital `-groups of continuous functions on some compact Hausdorff space. We shall state

it for future reference.
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Theorem 3.2.18 (Yosida’s representation theorem). A unital `-group (G, u) is repre-

sented by a compact Hausdorff space X, i.e. (G, u) ∼= (C(X), 1X), if, and only if, the

following hold.

1. G is archimedean.

2. G is divisible.

3. G is complete with respect to the norm ‖ · ‖u induced by the unit.

Observe that, if a unital `-group (G, u) is represented by a compact Hausdorff space X,

then it is represented by its maximal spectrum MaxG. Indeed, if (G, u) is represented by

X, then it is a complete, divisible, and archimedean unital `-group, since it is isomorphic

to (C(X), 1X). Then Propositions 3.2.1 and 3.2.16 imply (G, u) ∼= (C(MaxG), 1MaxG).

3.3 The categorical duality

Recall that `Grpu denotes the category of unital `-groups and unital `-homomorphisms,

while KHaus denotes the category of compact Hausdorff spaces and continuous maps. In

this section we shall see that Yosida’s representation theorem induces a dual equivalence

between the categories KHaus and `Grpu. We begin by making explicit the functorial

correspondences introduced in the preceding section.

The following fact was observed in Example 2.1.58.

Lemma 3.3.1. If X is a compact Hausdorff space, then

C(X) := (C(X), 1X)

is a unital `-group.

Lemma 3.3.2. If f : X → Y is a continuous function between compact Hausdorff spaces,

then

C(f) := − ◦ f : (C(Y ), 1Y )→ (C(X), 1X)

is a unital `-homomorphism.

Proof. We check that − ◦ f : (C(Y ), 1Y ) → (C(X), 1X) is a group homomorphism and

a lattice homomorphism, and it preserves the strong order unit. If g, g′ ∈ C(Y ) and

x ∈ X, then

((g + g′) ◦ f)(x) = (g + g′)(f(x)) = g(f(x)) + g′(f(x)) = (g ◦ f)(x) + (g′ ◦ f)(x).

This shows that C(f) is a group homomorphism. To see that it is a lattice homomorphism

it suffices to observe that, for all x ∈ X,

((g ∧ g′) ◦ f)(x) = (g ∧ g′)(f(x))
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= min (g(f(x)), g′(f(x)))

= (g(f(x))) ∧ (g′(f(x)))

= ((g ◦ f)(x)) ∧ ((g′ ◦ f)(x)).

In other words, C(f)(g ∧ g′) = C(f)(g) ∧ C(f)(g′). A similar argument shows that

C(f)(g ∨ g′) = C(f)(g) ∨ C(f)(g′). Moreover, the `-homomorphism C(f) is unital since,

for all x ∈ X, (1Y ◦ f)(x) = 1Y (f(x)) = 1. That is, C(f)(1Y ) = 1X .

It is immediate to verify that the correspondence X 7→ C(X) defines a functor.

Corollary 3.3.3. C : KHaus → `Grpu is a contravariant functor from the category of

compact Hausdorff spaces to the category of unital `-groups.

The next result was proved in Proposition 3.1.17.

Lemma 3.3.4. If (G, u) is a unital `-group, then

M(G) := MaxG

is a compact Hausdorff space, with respect to the spectral topology.

Lemma 3.3.5. If h : (G, u)→ (H, v) is a unital `-homomorphism, then

M(h) := h−1 : MaxH → MaxG

is a continuous function.

Proof. Clearly, if m ⊆ H is an ideal of H, i.e. a convex subgroup and sublattice, then

h−1(m) is a subgroup and sublattice of G. To see that h−1(m) is convex, let a, c ∈ h−1(m)

and pick b ∈ G such that a 6 b 6 c. The `-homomorphism h is order-preserving by

Lemma 2.1.11.(1), hence h(a) 6 h(b) 6 h(c). The elements h(a), h(c) belong to the

convex set m, therefore h(b) ∈ m. We conclude that h−1(m) is an ideal of G. Assume,

further, that m ∈ MaxH is a maximal ideal of H, and let x ∈ G \ h−1(m). Since

h(x) /∈ m, by Lemma 2.1.55 there exists n ∈ N such that h(u − nx) = v − nh(x) ∈ m,

whence u−nx ∈ h−1(m). Again by Lemma 2.1.55, we conclude that h−1(m) is a maximal

ideal of G. We now prove that the function h−1 is continuous, i.e. that the preimage

of a closed subset of MaxG, under the function h−1, is a closed subset of MaxH. An

arbitrary closed subset of MaxG is of the form

V(I) = {m ∈ MaxG | g ∈ m for all g ∈ I},

where I ⊆ G is an ideal of G. Its preimage is

(h−1)−1(V(I)) = {n ∈ MaxH | h−1(n) ∈ V(I)}
= {n ∈ MaxH | g ∈ h−1(n) for all g ∈ I}
= {n ∈ MaxH | h(g) ∈ n for all g ∈ I}
= V(h(I)).
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Lemma 3.1.14 entails V(h(I)) = V(〈h(I)〉), so that the preimage of V(I) under the

function h−1 is the closed subset V(〈h(I)〉) ⊆ MaxH.

Again, the correspondence G 7→ M(G) defines a functor:

Corollary 3.3.6. M : `Grpu → KHaus is a contravariant functor from the category of

unital `-groups to the category of compact Hausdorff spaces.

In view of Theorem 3.2.18, we are interested in the full subcategory of `Grpu whose

objects are the complete, divisible, and archimedean unital `-groups. Denote this sub-

category by YAlg; for the sake of brevity, we refer to its objects as Yosida algebras.

Henceforth, we consider the restrictions of the above functors to the category YAlg, that

is M : YAlg → KHaus, and C : KHaus → YAlg. The next two results state that they are

quasi-inverse functors.

Proposition 3.3.7. There exists a natural isomorphism

µ : IdKHaus →M◦ C,

where IdKHaus is the identity functor on the category KHaus.

Proof. The first step consists in showing that a compact Hausdorff space X is homeomor-

phic to the maximal spectrum Max C(X). Note that every maximal ideal m ∈ Max C(X)

is of the form I(S) for some closed subset S ⊆ X. Specifically, S = V(m), indeed

I(V(m)) = I({x ∈ X | f(x) = 0 for all f ∈ m})
= {f ∈ C(X) | f(x) = 0 for all x ∈ X such that f(x) = 0 for all f ∈ m} ⊇ m.

However, I(V(m)) 6= C(X), so that m = I(V(m)) by the maximality of m. Lemma 3.1.8

states that the ideal I(S) is maximal if, and only if, S = {p} for some p ∈ X. Therefore

there is a surjective map µX : X → Max C(X) defined by

µX : p 7→ I({p}) = {f ∈ C(X) | f(p) = 0}.

The map µX is injective by Urysohn’s lemma [28, Theorem 1.5.11] (recall that every

compact Hausdorff space is normal [28, Theorem 3.1.9], hence Urysohn’s lemma applies).

In fact, it turns out that the bijection µX is a homeomorphism. In order to prove the

continuity, pick a closed subset V(I) ⊆ Max C(X), where I ⊆ C(X) is an ideal. We

show that its preimage under µX is a closed subset of X.

µ−1
X (V(I)) = µ−1

X ({m ∈ Max C(X) | f(m) = 0 for all f ∈ I})
= {p ∈ X | f(I({p})) = 0 for all f ∈ I}
= {p ∈ X | f ∈ I({p}) for all f ∈ I}
= {p ∈ X | f(p) = 0 for all f ∈ I}

=
⋂
f∈I

f−1(0).
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Each zero set f−1(0) is closed, being the preimage of a point in a T1-space under a

continuous function. An arbitrary intersection of closed sets is closed, hence µX : X →
Max C(X) is continuous. To check that its inverse µ−1

X is continuous, we will prove that,

for any closed subset K ⊆ X, µX(K) is closed in Max C(X). The set K is compact,

because it is a closed subset of the compact space X. The continuous image of a compact

set is compact, therefore µX(K) is a compact subset of the Hausdorff space Max C(X),

i.e. µX(K) is closed. Define a natural transformation µ : IdKHaus → M ◦ C in the

following way: for each compact Hausdorff space X, the component (µ)X of µ at X

is the morphism (µ)X := µX . We have just proved that every such component is an

isomorphism in KHaus, hence it suffices to show that µ is a natural transformation. Let

f : X → Y be a continuous function between compact Hausdorff spaces: we must prove

that the following diagram commutes.

X Max C(X)

Y Max C(Y )

µX

f (M◦C)(f)

µY

We remark that, given a maximal ideal m ∈ Max C(X),

(M◦ C)(f)(m) = (− ◦ f)−1(m) = {h ∈ C(Y ) | h ◦ f ∈ m}.

We conclude that, for all p ∈ X,

(M◦ C)(f) ◦ µX(p) = (M◦ C)(f)(I({p}))
= {h ∈ C(Y ) | h ◦ f ∈ I({p})}
= {h ∈ C(Y ) | (h ◦ f)(p) = 0}
= {h ∈ C(Y ) | h(f(p)) = 0}
= I({f(p)})
= (µY ◦ f)(p).

Proposition 3.3.8. There exists a natural isomorphism

ν : IdYAlg → C ◦M,

where IdYAlg is the identity functor on the category YAlg.

Proof. Let (G, u) be a Yosida algebra. Upon denoting by

Y(G,u) : (G, u)→ (C(MaxG), 1MaxG)

the Yosida map, we know by Propositions 3.2.1 and 3.2.16 that Y(G,u) is a bijective unital

`-homomorphism. Define a natural transformation ν : IdYAlg → C◦M whose component
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at (G, u) is the isomorphism (ν)(G,u) := Y(G,u) in the category YAlg. To prove the

statement, it suffices to show that ν is a natural transformation, i.e. that given a unital

`-homomorphism h : (G, u)→ (H, v), the following diagram is commutative.

(G, u) (C(MaxG), 1MaxG)

(H, v) (C(MaxH), 1MaxH)

Y(G,u)

h (C◦M)(h)

Y(H,v)

For all g ∈ G, we have

(Y(H,v) ◦ h)(g) = Y(H,v)(h(g)) = Y(H,v)(h(g)) = ĥ(g),

and

(C ◦M)(h) ◦Y(G,u)(g) = (C ◦M)(h)(Y(G,u)(g)) = (C ◦M)(h)(ĝ) = ĝ ◦ h−1.

However, ĥ(g) = ĝ ◦ h−1 if, and only if, for all m ∈ MaxH, the condition ĥ(g)(m) =

ĝ ◦ h−1(m) is satisfied. In turn, this happens if, and only if,

hm

(
h(g)
m

)
= hh−1(m)

(
g

h−1(m)

)
,

where hm, hh−1(m) are the unique unital `-embeddings

hm : H
m → R, hh−1(m) : G

h−1(m)
→ R

provided by the unital Hölder’s Theorem 2.1.57. On the other hand, the `-homomorphism

h : (G, u)→ (H, v) induces an `-homomorphism G
h−1(m)

→ H
m , which we denote again by

h. The latter homomorphism is injective: if g ∈ G
h−1(m)

is such that h(g) = 0 ∈ H
m , then

h(g) ∈ m, i.e. g ∈ h−1(m). Thus g = 0 ∈ G
h−1(m)

. We have a diagram

H
m R

G
h−1(m)

hm

h hh−1(m)

It is elementary that the composition hm ◦h is an injective unital `-homomorphism from
G

h−1(m)
to R. By Theorem 2.1.57 there is only one such embedding, whence hh−1(m) =

hm ◦ h. To complete the proof, observe that

hh−1(m)

(
g

h−1(m)

)
= (hm ◦ h)

(
g

h−1(m)

)
= hm

(
h(g)
m

)
.
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We have just proved the existence of a duality between compact Hausdorff spaces and

Yosida algebras, i.e. complete, divisible, and archimedean unital `-groups.

Theorem 3.3.9 (Yosida duality). The category KHaus of compact Hausdorff spaces is

dually equivalent to the category YAlg of Yosida algebras via the functors C and M.



Chapter 4

δ-algebras

4.1 Summary of MV-algebraic results

We recall here those results about MV-algebras that will be used in the present chapter.

Lemma 4.1.1. Let A be an MV-algebra and let x, y ∈ A. The following conditions are

equivalent.

1. ¬x⊕ y = 1.

2. x� ¬y = 0, i.e. x	 y = 0.

3. y = x⊕ (y 	 x).

4. There exists z ∈ A such that x⊕ z = y.

Upon defining, for all x, y ∈ A, x 6 y if x, y satisfy the equivalent conditions above, the

partially ordered set (A,6) is a lattice.

Proof. See Lemma 2.2.7 and Remark 2.2.10.

Lemma 4.1.2. If A is an MV-algebra and x, y ∈ A, then the following hold.

1. x 6 y if, and only if, ¬y 6 ¬x.

2. If x 6 y then, for all z ∈ A, x⊕ z 6 y ⊕ z and x� z 6 y � z.

3. For all x, y ∈ A and for all n ∈ N, if x 6 y then nx 6 ny.

Proof. For items 1 and 2 please see Lemma 2.2.9. Item 3 is an elementary consequence

of item 2.

70
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Recall that the Chang distance on an MV-algebra A is the function d : A × A → A

defined by

d(x, y) := (x	 y)⊕ (y 	 x).

Lemma 4.1.3. If A is an MV-algebra, and x, y ∈ A, the following hold.

1. d(x, y) = 0 if, and only if, x = y.

2. If x 6 y, then y = x⊕ d(x, y).

3. For all x, y, z ∈ A, if x 6 y 6 z then d(x, z) > d(y, z).

4. For every MV-homomorphism h : A→ B, h(d(x, y)) = d(h(x), h(y)).

Proof. For item 1 see Proposition 2.2.28. Item 2 is a direct consequence of Axiom MV6.

Items 3 and 4 are straightforward verifications.

Lemma 4.1.4. The following identities hold in any MV-algebra A, for all x, y, z ∈ A.

1. x⊕ y ⊕ (x� y) = x⊕ y.

2. (x	 y)⊕ ((x⊕ ¬y)� y) = x.

3. x	 (y ⊕ z) = (x	 y)	 z.

Proof. Items 1 and 2 follow by Proposition 2.2.14 and Chang’s subdirect representation

Theorem 2.2.41. Item 3 is an easy computation.

Lemma 4.1.5. For arbitrary elements x, y, z in an MV-algebra A,

if x⊕ z = y ⊕ z and x� z = 0 = y � z, then x = y.

In particular, if y = x⊕ y and x� y = 0, then x = 0.

Proof. This is Lemma 2.2.6.

Recall that a subset I of an MV-algebra A is an ideal of A, provided that it is non-empty,

downward-closed, and closed under finite ⊕-sums. Those proper ideals of A which are

are not strictly contained in any proper ideal are called maximal. The family of all the

maximal ideals of A is denoted by MaxA. The radical ideal of A is the intersection of

all the maximal ideals in A, in symbols RadA :=
⋂

MaxA. A non-zero element x ∈ A
is infinitesimal if it satisfies nx 6 ¬x for all n ∈ N.

Proposition 4.1.6. For every MV-algebra A,

RadA = {x ∈ A | nx 6 ¬x for all n ∈ N}.

Proof. See Proposition 2.2.52.
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Lemma 4.1.7. If A is an MV-algebra and x, y ∈ RadA, then x� y = 0.

Proof. See Lemma 2.2.53.

Lemma 4.1.8. Given an arbitrary MV-homomorphism h : A→ B, if m ∈ MaxB then

h−1(m) ∈ MaxA.

Proof. See Lemma 2.2.25.

The set MaxA of all the maximal ideals of the MV-algebra A can be equipped with the

Stone-Zariski topology, as described at the end of Section 2.2. A basis of closed sets for

this topology is given by the sets of the form

Fa := {m ∈ MaxA | a ∈ m},

for a ∈ A. The topological space MaxA is called the maximal spectrum of A.

Proposition 4.1.9. If A is an MV-algebra, then MaxA is a compact Hausdorff space.

Proof. This is Lemma 2.2.71.

Recall that an MV-algebra A is semisimple if RadA = {0}, i.e. A has no infinitesimal

elements. Semisimple MV-algebras can be characterised in the following way.

Proposition 4.1.10. Let A be an MV-algebra. Then A is semisimple if, and only if,

it is isomorphic to a separating subalgebra of C(X, [0, 1]) for some compact Hausdorff

space X. In this case, the space X is homeomorphic to the maximal spectrum MaxA of

the MV-algebra A.

Proof. See Propositions 2.2.69 and 2.2.73.

Finally, we recall Mundici’s equivalence:

Theorem 4.1.11. The functor Γ: `Grpu → MV is an equivalence between the category

of unital `-groups and the category of MV-algebras.

Proof. See Theorem 2.3.29.

4.2 Definition and basic results

The language of δ-algebras is obtained from the language of MV-algebras by adding an

infinitary function symbol. Specifically, let L∆ := {δ,⊕,¬, 0} be a language formed by

a function symbol δ of arity ℵ0, a binary function symbol ⊕, a unary function symbol

¬ and a constant 0.
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Notation 4.2.1. The infinitary function symbol δ takes as argument a countable se-

quence of terms. We write ~x, ~y, ~f and ~0 as a shorthand for x1, x2, x3, . . ., y1, y2, y3, . . .,

f1, f2, f3, . . . and 0, 0, 0, . . ., respectively.

For the sake of simplicity, define a unary operation f 1
2

by setting

f 1
2
(x) := δ(x,~0).

Definition 4.2.2. A δ-algebra is an algebra (A, δ,⊕,¬, 0) such that (A,⊕,¬, 0) is an

MV-algebra, and the following identities are satisfied.

A1 d
(
δ(~x), δ(x1,~0)

)
= δ(0, x2, x3, . . .).

A2 f 1
2
(δ(~x)) = δ(f 1

2
(x1), f 1

2
(x2), f 1

2
(x3), . . .).

A3 δ (x, x, x, . . .) = x.

A4 δ(0, ~x) = f 1
2
(δ(~x)).

A5 δ(x1 ⊕ t1, x2 ⊕ t2, x3 ⊕ t3, . . .) > δ(x1, x2, x3, . . .).

A6 f 1
2
(x	 y) = f 1

2
(x)	 f 1

2
(y).

Remark 4.2.3. Since every MV-algebra is equipped with a natural lattice order (see

Lemma 4.1.1), Axiom A5 can be clearly written in an equational form.

Starting from the operation f 1
2
, we can define a unary operation f 1

2n
for each positive

integer n ∈ N.

f 1
2n

(x) := f 1
2
(· · · (f 1

2︸ ︷︷ ︸
n times

(x)) · · · ).

With respect to these derived operations, an identity analogous to Axiom A2 holds.

Lemma 4.2.4. Let A be δ-algebra, and let {xi}i∈N ⊆ A. Then, for all n ∈ N,

f 1
2n

(δ(~x)) = δ(f 1
2n

(x1), f 1
2n

(x2), f 1
2n

(x3), . . .).

Proof. By induction on n ∈ N. If n = 1, the statement is precisely Axiom A2, hence we

suppose n > 1.

f 1
2n

(δ(~x)) = f 1
2
(f 1

2n-
(δ(~x)))

= f 1
2
(δ(f 1

2n-
(x1), f 1

2n-
(x2), f 1

2n-
(x3), . . .)) (inductive hypothesis)

= δ(f 1
2
(f 1

2n-
(x1)), f 1

2
(f 1

2n-
(x2)), f 1

2
(f 1

2n-
(x3)), . . .) (A2)

= δ(f 1
2n

(x1), f 1
2n

(x2), f 1
2n

(x3), . . .).
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Lemma 4.2.5. If A is a δ-algebra and x ∈ A, then

f 1
2n

(x) = δ(0, . . . , 0︸ ︷︷ ︸
n−1 times

, x,~0).

Proof. We argue by induction on n ∈ N. If n = 1, the statement coincides with the

definition of f 1
2
. If n > 1, then

f 1
2n

(x) = f 1
2
(f 1

2n-
(x))

= f 1
2
(δ(0, . . . , 0︸ ︷︷ ︸

n−2 times

, x,~0)) (inductive hypothesis)

= δ(0, . . . , 0︸ ︷︷ ︸
n−1 times

, x,~0). (A4)

Lemma 4.2.6. In a δ-algebra A, for every {xi}i∈N ⊆ A,

f 1
2n

(δ(~x)) = δ(0, . . . , 0︸ ︷︷ ︸
n times

, ~x).

Proof. For n = 1, the statement holds by Axiom A4. Hence, we suppose n > 1. Then

we have

δ(0, . . . , 0︸ ︷︷ ︸
n times

, ~x) = f 1
2
(δ(0, . . . , 0︸ ︷︷ ︸

n−1 times

, ~x)) (A4)

= f 1
2

(
f 1

2n-
(δ(~x))

)
(inductive hypothesis)

= f 1
2n

(δ(~x)).

Lemma 4.2.7. Let A be a δ-algebra. For all {xi}i∈N ⊆ A, and for all n ∈ N,

δ(~x) > δ(x1, x2, . . . , xn,~0).

Moreover, δ(~x) = δ(x1,~0)⊕ δ(0, x2, x3, . . .).

Proof. The first part of the statement follows at once by Axiom A5, upon defining

t1 := 0, . . . , tn := 0, and ti := xi for all i > n. Indeed, for any {xi}i∈N ⊆ A, we have

δ(x1, x2, x3, . . .) = δ(x1 ⊕ 0, x2 ⊕ 0, . . . , xn ⊕ 0, 0⊕ xn+1, 0⊕ xn+2, . . .)

> δ(x1, x2, . . . , xn,~0). (A5)

In order to prove the second part, observe that δ(~x) > δ(x1,~0) by the argument above.

Consequently,

δ(~x) = δ(x1,~0)⊕ d(δ(~x), δ(x1,~0)) (Lemma 4.1.3.(2))
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= δ(x1,~0)⊕ δ(0, x2, x3, . . .). (A1)

Proposition 4.2.8. The following identities hold in an arbitrary δ-algebra.

1.
⊕n

i=1 δ(0, . . . , xi,
~0) = δ(x1, x2, . . . , xn,~0).

2. δ(~x) = δ(x1, x2, . . . , xn,~0)⊕ δ(0, 0, . . . , xn+1, xn+2, . . .).

3. δ(x, y, y, y, . . .) = f 1
2
(x)⊕ f 1

2
(y).

4. δ(x1, x2, . . . , xn,~0) =
⊕n

i=1 f 1

2i
(xi).

5. f 1
2
(x)⊕ f 1

2
(x) = x.

6. d
(
δ(~x), δ(x1, . . . , xn,~0)

)
= δ(0, . . . , xn+1, xn+2, . . .).

7. ¬ f 1
2
(1) = f 1

2
(1).

8. f 1
2n

(x	 y) = f 1
2n

(x)	 f 1
2n

(y).

Proof.

1. The equation holds trivially for n = 1, and it is true if n = 2, by Lemma 4.2.7.

Assuming that n > 2 we show that, for all k = 1, . . . , n− 2,

n⊕
i=n−k

δ(0, . . . , xi,~0) = δ(0, . . . , xn−k, xn−k+1, . . . , xn,~0). (4.1)

If k = 1, then

n⊕
i=n−1

δ(0, . . . , xi,~0) = δ(0, . . . , xn−1,~0)⊕ δ(0, . . . , xn,~0)

= f 1
2n−2

(δ(xn−1,~0))⊕ f 1
2n−2

(δ(0, xn,~0)) (Lemma 4.2.6)

= δ(f 1
2n−2

(xn−1),~0)⊕ δ(0, f 1
2n−2

(xn),~0) (Lemma 4.2.4)

= δ(f 1
2n−2

(xn−1), f 1
2n−2

(xn),~0) (Lemma 4.2.7)

= f 1
2n−2

(δ(xn−1, xn,~0)) (Lemma 4.2.4)

= δ(0, . . . , xn−1, xn,~0). (Lemma 4.2.6)

Now suppose (4.1) is true for 1 6 k < n− 1. We prove that it is true for k + 1.

n⊕
i=n−(k+1)

δ(0, . . . , xi,~0) = δ(0, . . . , xn−k−1,~0)⊕
n⊕

i=n−k
δ(0, . . . , xi,~0)

= δ(0, . . . , xn−k−1,~0)⊕ δ(0, . . . , xn−k, . . . , xn,~0)

(inductive hypothesis)
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= f 1

2n−k−2
(δ(xn−k−1,~0))⊕ f 1

2n−k−2
(δ(0, xn−k, . . . , xn,~0))

(Lemma 4.2.6)

= δ(f 1

2n−k−2
(xn−k−1),~0)⊕ δ(0, f 1

2n−k−2
(xn−k), . . . , f 1

2n−k−2
(xn),~0)

(Lemma 4.2.4)

= δ(f 1

2n−k−2
(xn−k−1), f 1

2n−k−2
(xn−k), . . . , f 1

2n−k−2
(xn),~0)

(Lemma 4.2.7)

= f 1

2n−k−2
(δ(xn−k−1, xn−k, . . . , xn,~0)) (Lemma 4.2.4)

= δ(0, . . . , xn−k−1, xn−k, . . . , xn,~0). (Lemma 4.2.6)

In particular, for k = n− 2, we have

n⊕
i=n−(n−2)

δ(0, . . . , xi,~0) = δ(0, x2, x3, . . . , xn,~0).

Therefore

n⊕
i=1

δ(0, . . . , xi,~0) = δ(x1,~0)⊕
n⊕
i=2

δ(0, . . . , xi,~0)

= δ(x1,~0)⊕ δ(0, x2, x3, . . . , xn,~0)

= δ(x1, x2, . . . , xn,~0). (Lemma 4.2.7)

2. We proceed by induction on n ∈ N. For n = 1 the identity holds by Lemma 4.2.7,

hence let n > 1.

δ(x1, . . . , xn,~0)⊕ δ(0, . . . , xn+1, xn+2, . . .) =

=
n⊕
i=1

δ(0, . . . , xi,~0)⊕ δ(0, . . . , xn+1, xn+2, . . .) (Proposition 4.2.8.(1))

=
n−1⊕
i=1

δ(0, . . . , xi,~0)⊕ δ(0, . . . , xn,~0)⊕ δ(0, . . . , xn+1, xn+2, . . .)

=δ(x1, . . . , xn−1,~0)⊕ f 1
2n-

(δ(xn,~0))⊕ f 1
2n-

(δ(0, xn+1, xn+2, . . .))

(Proposition 4.2.8.(1), Lemma 4.2.6)

=δ(x1, . . . , xn−1,~0)⊕ δ(f 1
2n-

(xn),~0)⊕ δ(0, f 1
2n-

(xn+1), f 1
2n-

(xn+2), . . .)

(Lemma 4.2.4)

=δ(x1, . . . , xn−1,~0)⊕ δ(f 1
2n-

(xn), f 1
2n-

(xn+1), f 1
2n-

(xn+2), . . .) (Lemma 4.2.7)

=δ(x1, . . . , xn−1,~0)⊕ f 1
2n-

(δ(xn, xn+1, xn+2, . . .)) (Lemma 4.2.4)

=δ(x1, . . . , xn−1,~0)⊕ δ(0, . . . , xn, xn+1, xn+2, . . .) (Lemma 4.2.6)

=δ(~x). (inductive hypothesis)

3. This is easily proved in the following way.

δ(x, y, y, y, . . .) = δ(x,~0)⊕ δ(0, y, y, y, . . .) (Proposition 4.2.8.(2))
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= f 1
2
(x)⊕ f 1

2
(δ(y, y, y, . . .)) (A4)

= f 1
2
(x)⊕ f 1

2
(y). (A3)

4. The equation holds, since

δ(x1, x2, . . . , xn,~0) =

n⊕
i=1

δ(0, . . . , xi,~0) (Proposition 4.2.8.(1))

=

n⊕
i=1

f 1

2i
(xi). (Lemma 4.2.5)

5. By an easy computation,

f 1
2
(x)⊕ f 1

2
(x) = δ(x, x, x, . . .) (Proposition 4.2.8.(3))

= x. (A3)

6. Arguing by induction on n ∈ N, the statement is true for n = 1 by Axiom A1.

Assuming n > 1,

d
(
δ(~x), δ(x1, . . . , xn,~0)

)
= δ(~x)	 δ(x1, . . . , xn,~0)

(Lemma 4.2.7, Lemma 4.1.1)

=δ(~x)	
(
δ(x1, . . . , xn−1,~0)⊕ δ(0, . . . , xn,~0)

)
(Proposition 4.2.8.(2))

=
(
δ(~x)	 δ(x1, . . . , xn−1,~0)

)
	 δ(0, . . . , xn,~0) (Lemma 4.1.4.(3))

=δ(0, . . . , xn, xn+1, . . .)	 δ(0, . . . , xn,~0) (inductive hypothesis)

= f 1
2n-

(δ(xn, xn+1, . . .))	 f 1
2n-

(δ(xn,~0)) (Lemma 4.2.6)

=δ(f 1
2n-

(xn), f 1
2n-

(xn+1), . . .)	 δ(f 1
2n-

(xn),~0) (Lemma 4.2.4)

=d
(
δ(f 1

2n-
(xn), f 1

2n-
(xn+1), . . .), δ(f 1

2n-
(xn),~0)

)
(Lemma 4.2.7, Lemma 4.1.1)

=δ(0, f 1
2n-

(xn+1), f 1
2n-

(xn+2), . . .) (A1)

= f 1
2n-

(δ(0, xn+1, xn+2, . . .)) (Lemma 4.2.4)

=δ(0, . . . , xn+1, xn+2, . . .). (Lemma 4.2.6)

7. Recall that 1 := ¬0. In any MV-algebra we have

1	 x = ¬(¬1⊕ x) = ¬x. (4.2)

It follows

¬ f 1
2
(1) = 1	 f 1

2
(1) (4.2)

= δ(1, 1, 1, . . .)	 δ(1,~0) (A3)

= d
(
δ(1, 1, 1, . . .), δ(1,~0)

)
(Lemma 4.2.7, Lemma 4.1.1)
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= δ(0, 1, 1, 1, . . .) (A1)

= f 1
2
(δ(1, 1, 1, . . .)) (A4)

= f 1
2
(1). (A3)

8. For n = 1 this is Axiom A6. If n > 1,

f 1
2n

(x	 y) = f 1
2
(f 1

2n-
(x	 y))

= f 1
2
(f 1

2n-
(x)	 f 1

2n-
(y)) (inductive hypothesis)

= f 1
2
(f 1

2n-
(x))	 f 1

2
(f 1

2n-
(y)) (A6)

= f 1
2n

(x)	 f 1
2n

(y).

Lemma 4.2.9. Let A be a δ-algebra, and let x, y ∈ A. Then f 1
2
(x) 6 x, and

x 6 y if, and only if, f 1
2
(x) 6 f 1

2
(y).

Finally, x = 0 if, and only if, f 1
2
(x) = 0.

Proof. Notice that

f 1
2
(x) = δ(x,~0) 6 δ(x, x, x, . . .) = x. (A3, A5)

Next, we prove that f 1
2
(x) = 0 if, and only if, x = 0. One of the two implications follows

at once by A3. To prove the other one observe that, if f 1
2
(x) = 0, then

x = f 1
2
(x)⊕ f 1

2
(x) = 0⊕ 0 = 0

by Proposition 4.2.8.(5). Now suppose x 6 y. Axiom A5 entails

f 1
2
(x) = δ(x,~0) 6 δ(y,~0) = f 1

2
(y).

Conversely, assuming f 1
2
(x) 6 f 1

2
(y), by Proposition 4.2.8.(5) and Lemma 4.1.2.(3) we

have

x = f 1
2
(x)⊕ f 1

2
(x) 6 f 1

2
(y)⊕ f 1

2
(y) = y.

Remark 4.2.10. It is easy to see that, if x 6 y, then f 1
2n

(x) 6 f 1
2n

(y) for all n ∈ N.

This was proved in Lemma 4.2.9 for n = 1. If n > 1, by using the inductive hypothesis

f 1
2n-

(x) 6 f 1
2n-

(y), we find

f 1
2n

(x) = f 1
2
(f 1

2n-
(x))

6 f 1
2
(f 1

2n-
(y)) (Lemma 4.2.9)

= f 1
2n

(y).
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Reasoning by induction on n ∈ N, it is also clear that f 1
2n

(x) 6 x for all n ∈ N. This

is true for n = 1, by Lemma 4.2.9. If n > 1, by the induction hypothesis f 1
2n-

(x) 6 x,

along with Lemma 4.2.9,

f 1
2n

(x) = f 1
2
(f 1

2n-
(x)) 6 f 1

2n-
(x) 6 x.

Lemma 4.2.11. Let A be a δ-algebra, let x ∈ A and let m,n ∈ N be such that m < n.

Then

f 1
2n

(x)⊕ · · · ⊕ f 1
2n

(x)︸ ︷︷ ︸
2m times

= f 1
2n−m

(x).

Proof. Let us fix an arbitrary positive integer n ∈ N. We shall proceed by induction on

m = 1, . . . , n− 1. If m = 1, then

f 1
2n

(x)⊕ f 1
2n

(x) = f 1
2
(f 1

2n-
(x))⊕ f 1

2
(f 1

2n-
(x))

= f 1
2n-

(x). (Proposition 4.2.8.(5))

Now, if 1 < m < n, we see that

f 1
2n

(x)⊕ · · · ⊕ f 1
2n

(x)︸ ︷︷ ︸
2m times

= (f 1
2n

(x)⊕ · · · ⊕ f 1
2n

(x)︸ ︷︷ ︸
2m−1 times

)⊕ (f 1
2n

(x)⊕ · · · ⊕ f 1
2n

(x)︸ ︷︷ ︸
2m−1 times

)

= f 1
2n−m+1

(x)⊕ f 1
2n−m+1

(x) (inductive hypothesis)

= f 1
2
(f 1

2n−m
(x))⊕ f 1

2
(f 1

2n−m
(x))

= f 1
2n−m

(x). (Proposition 4.2.8.(5))

Corollary 4.2.12. If A is a δ-algebra then, for all x ∈ A and for all n ∈ N,

f 1
2n

(x)⊕ · · · ⊕ f 1
2n

(x)︸ ︷︷ ︸
2n times

= x.

Proof. The case n = 1 is proved in Proposition 4.2.8.(5). Hence, assuming n > 1, we

have

f 1
2n

(x)⊕ · · · ⊕ f 1
2n

(x)︸ ︷︷ ︸
2n times

= (f 1
2n

(x)⊕ · · · ⊕ f 1
2n

(x)︸ ︷︷ ︸
2n−1 times

)⊕ (f 1
2n

(x)⊕ · · · ⊕ f 1
2n

(x)︸ ︷︷ ︸
2n−1 times

)

= f 1

2n−(n−1)
(x)⊕ f 1

2n−(n−1)
(x) (Lemma 4.2.11)

= f 1
2
(x)⊕ f 1

2
(x)

= x. (Proposition 4.2.8.(5))
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4.3 Every δ-algebra is semisimple

Given a δ-algebra (A, δ,⊕,¬, 0), we can consider the maximal spectrum of its MV-

algebraic reduct (A,⊕,¬, 0). We continue to denote it by MaxA. By the radical of a

δ-algebra we understand the radical RadA of its underlying MV-algebra. A δ-algebra is

semisimple if its radical is trivial, i.e. RadA = {0}. In this section we prove that every

δ-algebra is semisimple, in other words every δ-algebra has a semisimple MV-algebraic

reduct.

Lemma 4.3.1. If A is a δ-algebra, and x ∈ A satisfies x 6 f 1
2n

(1) for all n ∈ N, then

x ∈ RadA.

Proof. Notice that

x 6 f 1
2
(1) ⇔ x	 f 1

2
(1) = 0 ⇔ x� ¬ f 1

2
(1) = 0,

so that, by Proposition 4.2.8.(7),

x� f 1
2
(1) = 0. (4.3)

Let us fix an arbitrary n ∈ N. Then x 6 f 1
2n+1

(1) entails

nx 6 f 1
2n+1

(1)⊕ · · · ⊕ f 1
2n+1

(1)︸ ︷︷ ︸
n times

(Lemma 4.1.2.(3))

6 f 1
2n+1

(1)⊕ · · · ⊕ f 1
2n+1

(1)︸ ︷︷ ︸
2n times

= f 1
2
(1). (Lemma 4.2.11)

By (4.3) and Lemma 4.1.2.(2) we have

x� nx 6 x� f 1
2
(u) = 0,

therefore

x� nx = 0 ⇔ nx	 ¬x = 0 ⇔ nx 6 ¬x.

Then Proposition 4.1.6 implies x ∈ RadA.

Lemma 4.3.2. If A is a δ-algebra and x ∈ RadA then, for all n ∈ N,

f 1
2n

(2nx) = x.

Proof. The proof goes by induction on n ∈ N. In order to prove the case n = 1, note

that

f 1
2
(x⊕ x) = f 1

2
(¬(¬x	 x))

= f 1
2
(1	 (¬x	 x))
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= f 1
2
(1)	 f 1

2
(¬x	 x) (A6)

= f 1
2
(1)	 (f 1

2
(¬x)	 f 1

2
(x)) (A6)

= f 1
2
(1)	 (f 1

2
(1	 x)	 f 1

2
(x))

= f 1
2
(1)	 ((f 1

2
(1)	 f 1

2
(x))	 f 1

2
(x)) (A6)

= f 1
2
(1)	 (¬(¬ f 1

2
(1)⊕ f 1

2
(x))	 f 1

2
(x))

= f 1
2
(1)	 ¬((¬ f 1

2
(1)⊕ f 1

2
(x))⊕ f 1

2
(x))

= f 1
2
(1)� (¬ f 1

2
(1)⊕ f 1

2
(x)⊕ f 1

2
(x))

= (¬ f 1
2
(1)⊕ f 1

2
(x)⊕ f 1

2
(x))	 ¬ f 1

2
(1)

= (f 1
2
(1)⊕ f 1

2
(x)⊕ f 1

2
(x))	 f 1

2
(1) (Proposition 4.2.8.(7))

= (x⊕ f 1
2
(1))	 f 1

2
(1). (Proposition 4.2.8.(5))

We have just showed that

f 1
2
(x⊕ x) = (x⊕ f 1

2
(1))	 f 1

2
(1). (4.4)

However, by Lemma 4.1.4.(2), we know that

[(x⊕ f 1
2
(1))	 f 1

2
(1)]⊕ [(x⊕ f 1

2
(1)⊕ ¬ f 1

2
(1))� f 1

2
(1)] = x⊕ f 1

2
(1)

if, and only if,

[(x⊕ f 1
2
(1))	 f 1

2
(1)]⊕ [(x⊕ 1)� f 1

2
(1)] = x⊕ f 1

2
(1).

In turn, this is equivalent to

[(x⊕ f 1
2
(1))	 f 1

2
(1)]⊕ f 1

2
(1) = x⊕ f 1

2
(1). (4.5)

We shall see that the hypotheses of Lemma 4.1.5 are satisfied, that is

[(x⊕ f 1
2
(1))	 f 1

2
(1)]� f 1

2
(1) = 0, (4.6)

and

x� f 1
2
(1) = 0. (4.7)

A straightforward calculation proves that (4.6) holds:

[(x⊕ f 1
2
(1))	 f 1

2
(1)]� f 1

2
(1) = ¬[¬(x⊕ f 1

2
(1))⊕ f 1

2
(1)]� f 1

2
(1)

= ¬[¬(x⊕ f 1
2
(1))⊕ f 1

2
(1)⊕ ¬ f 1

2
(1)]

= ¬[¬(x⊕ f 1
2
(1))⊕ 1]

= ¬1

= 0.
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Concerning equation (4.7) we observe that, by Lemma 4.1.4.(1),

x⊕ f 1
2
(1)⊕ (x� f 1

2
(1)) = x⊕ f 1

2
(1).

Hence, by Lemma 4.1.5, it suffices to show that

(x⊕ f 1
2
(1))� (x� f 1

2
(1)) = 0. (4.8)

We have

(x⊕ f 1
2
(1))� (x� f 1

2
(1)) = 0

if, and only if,

¬[¬(x⊕ f 1
2
(1))⊕ (¬x⊕ ¬ f 1

2
(1))] = 0

if, and only if,

¬(x⊕ f 1
2
(1))⊕ (¬x⊕ ¬ f 1

2
(1)) = 1.

By Lemma 4.1.1 and Proposition 4.2.8.(7), this is equivalent to

x⊕ f 1
2
(1) 6 ¬x⊕ f 1

2
(1).

However, the latter inequality follows by Lemma 4.1.2.(2) upon observing that, if x ∈
RadA, then x 6 ¬x. Hence (4.8) is proved, and applying Lemma 4.1.5 to (4.5) we see

that

(x⊕ f 1
2
(1))	 f 1

2
(1) = x.

Finally, by (4.4) we have

f 1
2
(x⊕ x) = x. (4.9)

Now, for every positive integer n, we conclude that

f 1
2n

(2nx) = f 1
2
(f 1

2n-
(2n−1(2x)))

= f 1
2
(2x) (inductive hypothesis)

= x. (4.9)

Remark 4.3.3. It is easy to show that the converse of Lemma 4.3.1 holds. Indeed,

suppose that A is a δ-algebra, and let x ∈ RadA. Then, for all n ∈ N, we have

2nx 6 ¬x 6 1,

so that, by Remark 4.2.10 and Lemma 4.3.2,

x = f 1
2n

(2nx) 6 f 1
2n

(1).

In other terms, the radical of a δ-algebra can be characterised as follows.

RadA = {x ∈ A | x 6 f 1
2n

(1) for all n ∈ N}.
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The next result is fundamental in proving that the radical ideal of a δ-algebra is trivial,

i.e. that the only element x ∈ A satisfying x 6 f 1
2n

(1), for all n ∈ N, is x = 0.

Proposition 4.3.4. In any δ-algebra A,

if {xi}i∈N ⊆ RadA, then δ(~x) ∈ RadA.

Proof. By Lemma 4.3.1, it is sufficient to prove that, for all n ∈ N, δ(~x) 6 f 1
2n

(1). Fix

an arbitrary positive integer n ∈ N, and set m := n+ 1. Then Lemma 4.2.9 entails

f 1
2m

(1) = f 1
2
(f 1

2n
(1)) 6 f 1

2n
(1),

hence

f 1
2m

(1)	 f 1
2n

(1) = 0

by Lemma 4.1.1. Now,

d(f 1
2m

(1), f 1
2n

(1)) = (f 1
2m

(1)	 f 1
2n

(1))⊕ (f 1
2n

(1)	 f 1
2m

(1))

= f 1
2n

(1)	 f 1
2m

(1)

= f 1
2n

(1	 f 1
2
(1)) (Proposition 4.2.8.(8))

= f 1
2n

(¬ f 1
2
(1))

= f 1
2n

(f 1
2
(1)) (Proposition 4.2.8.(7))

= f 1
2m

(1).

Therefore, by Lemma 4.1.3.(2),

f 1
2n

(1) = f 1
2m

(1)⊕ f 1
2m

(1). (4.10)

We claim that

δ(x1, x2, . . . , xm,~0) 6 f 1
2m

(1). (4.11)

Indeed, we have

δ(x1, x2, . . . , xm,~0) = δ(f 1
2m

(2mx1), f 1
2m

(2mx2), . . . , f 1
2m

(2mxm),~0) (Lemma 4.3.2)

= f 1
2m

(δ(2mx1, 2
mx2, . . . , 2

mxm,~0)) (Lemma 4.2.4)

6 f 1
2m

(1). (Remark 4.2.10)

The proposition is then proved by the following computation.

δ(~x) = δ(x1, x2, . . . , xm,~0)⊕ δ(0, . . . , 0, xm+1, xm+2, . . .) (Proposition 4.2.8.(2))

= δ(x1, x2, . . . , xm,~0)⊕ f 1
2m

(δ(xm+1, xm+2, . . .)) (Lemma 4.2.6)

6 f 1
2m

(1)⊕ f 1
2m

(δ(1, 1, 1, . . .)) ((4.11), A5, Lemma 4.1.2.(2))

= f 1
2m

(1)⊕ f 1
2m

(1) (A3)

= f 1
2n

(1). (4.10)



4.4. The representation theorem 84

We can finally prove the main result of this section.

Theorem 4.3.5. Every δ-algebra is semisimple.

Proof. Pick an arbitrary element x ∈ RadA. Recall that RadA is an ideal of the

underlying MV-algebra of A. In particular, it is closed with respect to ⊕-sums, so that

nx ∈ RadA for all n ∈ N. Consider the countable sequence

~t := {2ix}i∈N ⊆ RadA.

Then δ(~t) ∈ RadA by Proposition 4.3.4, and

δ(~t) = δ(2x,~0)⊕ δ(0, 22x, 23x, 24x, . . .) (Proposition 4.2.8.(2))

= f 1
2
(2x)⊕ f 1

2
(δ(22x, 23x, 24x, . . .)) (A4)

= x⊕ f 1
2
(δ(2(2x), 2(22x), 2(23x), . . .)) (Lemma 4.3.2)

= x⊕ δ(f 1
2
(2(2x)), f 1

2
(2(22x)), f 1

2
(2(23x)), . . .) (A2)

= x⊕ δ(2x, 22x, 23x, . . .) (Lemma 4.3.2)

= x⊕ δ(~t).

We have just proved that

δ(~t) = x⊕ δ(~t). (4.12)

Since x, δ(~t) ∈ RadA, Lemma 4.1.7 implies x � δ(~t) = 0. Applying Lemma 4.1.5 to

equation (4.12), we conclude that x = 0, i.e. RadA = {0}.

Corollary 4.3.6. Every δ-algebra is isomorphic, as an MV-algebra, to a separating

subalgebra of C(X, [0, 1]) for some compact Hausdorff space X.

Proof. This follows at once from Theorem 4.3.5 and Proposition 4.1.10.

4.4 The representation theorem

Proposition 4.4.1. Let A be a δ-algebra, and let {xi}i∈N ⊆ A. If
∨
n∈N

⊕n
i=1 f 1

2i
(xi)

exists in A, then

δ(~x) =
∨
n∈N

n⊕
i=1

f 1

2i
(xi).

Proof. By Proposition 4.2.8.(1),(4) we know that, for all n ∈ N,

δ(~x) > δ(x1, x2, . . . , xn,~0) =
n⊕
i=1

f 1

2i
(xi).
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Hence, by definition of least upper bound,

δ(~x) >
∨
n∈N

n⊕
i=1

f 1

2i
(xi).

Upon defining the element

t := d

(∨
n∈N

n⊕
i=1

f 1

2i
(xi), δ(~x)

)
,

Lemma 4.1.3.(2) implies

δ(~x) =
∨
n∈N

n⊕
i=1

f 1

2i
(xi)⊕ t. (4.13)

We prove that t is an infinitesimal element. Clearly, we have

δ(x1, x2, . . . , xn,~0) =

n⊕
i=1

f 1

2i
(xi) 6

∨
n∈N

n⊕
i=1

f 1

2i
(xi) 6 δ(~x).

Then Lemma 4.1.3.(3) entails, for all n ∈ N,

d(δ(x1, x2, . . . , xn,~0), δ(~x)) > d

(∨
n∈N

n⊕
i=1

f 1

2i
(xi), δ(~x)

)
.

The latter holds if, and only if, by Proposition 4.2.8.(6),

δ(0, . . . , 0, xn+1, xn+2, . . .) > t.

Applying Lemma 4.2.6 and Remark 4.2.10 we see that, for all n ∈ N,

t 6 f 1
2n

(δ(xn+1, xn+2, . . .)) 6 f 1
2n

(1),

hence t ∈ RadA by Lemma 4.3.1. Since A is semisimple by Theorem 4.3.5, we must

have t = 0. Therefore (4.13) states that

δ(~x) =
∨
n∈N

n⊕
i=1

f 1

2i
(xi).

Lemma 4.4.2. Let A be a δ-algebra, identified with a suitable subalgebra of C(X, [0, 1]),

for some compact Hausdorff space X (cf. Corollary 4.3.6). Then, for all n ∈ N, the

operation f 1
2n

is the pointwise multiplication by the rational number 1
2n .

Proof. By Proposition 4.2.8.(5) we know that, for all g ∈ A and for all x ∈ X,

f 1
2
(g)(x)⊕ f 1

2
(g)(x) = g(x). (4.14)
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Further, Proposition 4.2.8.(7) implies

f 1
2
(1X)(x) = ¬ f 1

2
(1X)(x) = 1− f 1

2
(1X)(x),

where 1X is the constant function of value 1 on X. Hence, f 1
2
(1X) is the constant

function of value 1
2 on X. Then, by Lemma 4.2.9,

f 1
2
(g)(x) 6 f 1

2
(1X)(x) = 1

2 ,

so that

f 1
2
(g)(x)⊕ f 1

2
(g)(x) = f 1

2
(g)(x) + f 1

2
(g)(x)

in the standard MV-algebra [0, 1], because

f 1
2
(g)(x)⊕ f 1

2
(g)(x) = min (1, f 1

2
(g)(x) + f 1

2
(g)(x)) = f 1

2
(g)(x) + f 1

2
(g)(x).

Then (4.14) states that

f 1
2
(g)(x) + f 1

2
(g)(x) = g(x),

which is equivalent to

f 1
2
(g)(x) = g(x)

2 . (4.15)

In other words, f 1
2

is the pointwise multiplication by 1
2 . If we assume n > 1,

f 1
2n

(g)(x) = f 1
2
(f 1

2n-
(g))(x)

= f 1
2

( g
2n−1

)
(x) (inductive hypothesis)

=
g(x)
2n−1

2 (4.15)

= g(x)
2n .

Notation 4.4.3. Henceforth, Lemma 4.4.2 allows us to write
∨
n∈N

⊕n
i=1

gi
2i

in place of∨
n∈N

⊕n
i=1 f 1

2i
(gi).

The following result tells us that the intended models, i.e. the families of all continuous

[0, 1]-valued functions on a compact Hausdorff space, are, in fact, δ-algebras.

Proposition 4.4.4. Given any compact Hausdorff space X, the MV-algebra C(X, [0, 1])

is a δ-algebra if, for all {fi}i∈N ⊆ C(X, [0, 1]), the infinitary operation δ is defined as

δ(~f) :=

∞∑
i=1

fi
2i
.

Proof. We prove that Axioms A1-A6 are satisfied in the MV-algebra C(X, [0, 1]). Notice

that the operation δ is well-defined because the series above is uniformly convergent.
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A1 If {gi}i∈N ⊆ C(X, [0, 1]) and x ∈ X, the sequence of the partial sums
{∑n

i=1
gi(x)

2i

}
n∈N

is monotonically increasing, therefore δ(~g)(x) > δ(g1,~0X)(x). For all x ∈ X we

have

d
(
δ(~g)(x), δ(g1,~0X)(x)

)
= max

(
0,

( ∞∑
i=1

gi(x)

2i

)
− g1(x)

2

)

=
∞∑
i=2

gi(x)

2i

= δ(0X , g2, g3, . . .)(x).

A2 Let {gi}i∈N ⊆ C(X, [0, 1]). For all x ∈ X,

f 1
2
(δ(~g))(x) =

∑∞
i=1

gi(x)
2i

2

=

∞∑
i=1

gi(x)

2i+1

=
∞∑
i=1

f 1
2
(gi(x))

2i

= δ
(
f 1

2
(g1), f 1

2
(g2), f 1

2
(g3), . . .

)
(x).

A3 If g ∈ C(X, [0, 1]) then, for all x ∈ X,

δ(g, g, g, . . .)(x)

( ∞∑
i=1

g

2i

)
(x) =

∞∑
i=1

g(x)

2i
= g(x) ·

∞∑
i=1

1

2i
= g(x) · 1 = g(x).

A4 Let {gi}i∈N ⊆ C(X, [0, 1]). Then, for all x ∈ X,

δ(0X , ~g)(x) =
0X(x)

2
+
∞∑
i=1

gi(x)

2i+1
= 0 +

1

2
·
∞∑
i=1

gi(x)

2i
=

∑∞
i=1

gi(x)
2i

2
= f 1

2
(δ(~g)).

A5 Let us consider {fi}i∈N, {gi}i∈N ⊆ C(X, [0, 1]), and set ~h := {fi ⊕ gi}i∈N. Then, for

all x ∈ X and for all n ∈ N,

δ(h1, . . . , hn,~0X)(x) =

n∑
i=1

hi(xi)

2i
>

n∑
i=1

fi(xi)

2i
= δ(f1, . . . , fn,~0X)(x).

Consequently,

δ(~h)(x) = lim
n→∞

n∑
i=1

hi(xi)

2i
> lim

n→∞

n∑
i=1

fi(xi)

2i
= δ(~f)(x).

A6 If g, h ∈ C(X, [0, 1]) then, for all x ∈ X,

f 1
2
(g 	 h)(x) =

g 	 h
2

(x) =
(g 	 h)(x)

2
=
g(x)	 h(x)

2
=

max (0, g(x)− h(x))

2
.
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However,

max (0, g(x)− h(x))

2
= max

(
0,
g(x)− h(x)

2

)
= max

(
0,
g(x)

2
− h(x)

2

)
.

In turn, we have

max

(
0,
g(x)

2
− h(x)

2

)
=
g(x)

2
	 h(x)

2
= f 1

2
(g)(x)	f 1

2
(h)(x) = (f 1

2
(g)	f 1

2
(h))(x).

Corollary 4.4.5. Let X be a compact Hausdorff space, and consider the MV-algebra

A := C(X, [0, 1]). There is a unique way to define an infinitary operation δ on A, such

that (A, δ,⊕,¬, 0) is a δ-algebra.

Proof. Proposition 4.4.4 assures that such an infinitary operation δ can be defined on A,

in such a way that (A, δ,⊕,¬, 0) is a δ-algebra. By Proposition 4.4.1, to prove uniqueness

it suffices to show that, for all {fi}i∈N ⊆ A, the join
∨
n∈N

⊕n
i=1

fi
2i

exists in A. Upon

recalling that the uniform limit of continuous functions is a continuous function, for all

{fi}i∈N ⊆ A we have

∨
n∈N

n⊕
i=1

fi
2i

=
∨
n∈N

n∑
i=1

fi
2i

= lim
n→+∞

n∑
i=1

fi
2i

=

∞∑
i=1

fi
2i
∈ A.

Here we used the fact that
∨
n∈N

∑n
i=1

fi
2i

= limn→∞
∑n

i=1
fi
2i

. To see that this is true,

denote

gn :=
n∑
i=1

fi
2i
, f := lim

n→∞
gn,

and suppose that h ∈ A satisfies h(x) > gn(x) for all n ∈ N and for all x ∈ X. We

prove that, for all x ∈ X, h(x) > f(x). Fix an arbitrary point x ∈ X, and observe that

the sequence {gn(x)}n∈N ⊆ [0, 1] is monotonically increasing and bounded. Hence its

supremum exists, and satisfies

sup
n∈N

gn(x) = lim
n→∞

gn(x).

The sequence {gn}n∈N converges uniformly, therefore pointwise, to the function f . In

particular, limn→∞ gn(x) = f(x). Finally, by definition of supremum, since h(x) > gn(x)

for all n ∈ N, we must have

h(x) > sup
n∈N

gn(x) = f(x).

Remark 4.4.6. If we consider the singleton X = {p} as a compact Hausdorff space, then

C({p}, [0, 1]) ∼= [0, 1]. Therefore, Corollary 4.4.5 ensures that the standard MV-algebra



4.4. The representation theorem 89

[0, 1] admits a unique structure of δ-algebra. This structure is obtained by defining, for

all {xi}i∈N ⊆ [0, 1],

δ(~x) :=
∞∑
i=1

xi
2i
.

Definition 4.4.7. Let A,B be δ-algebras, and denote by δ, δ′ the interpretations of the

infinitary operation, respectively in A and B. An MV-homomorphism h : A → B is a

δ-homomorphism if, for all {xi}i∈N ⊆ A,

h(δ(~x)) = δ′(h(x1), h(x2), h(x3), . . .).

Notation 4.4.8. The sequence {h(xi)}i∈N in the definition above will sometimes be de-

noted by h(~x). With this notation, the MV-homomorphism h is a δ-homomorphism if,

for all {xi}i∈N ⊆ A, h(δ(~x)) = δ′(h(~x)).

Lemma 4.4.9. Consider the δ-algebra [0, 1], and let A be an arbitrary δ-algebra. If

h : A→ [0, 1] is an MV-homomorphism then, for all x ∈ A and for all n ∈ N,

f 1
2n

(h(x)) = h(f 1
2n

(x)).

Proof. Let us fix an arbitrary element x ∈ A. If n = 1, Proposition 4.2.8.(5) entails

f 1
2
(h(x))⊕ f 1

2
(h(x)) = h(x),

and

h(f 1
2
(x))⊕ h(f 1

2
(x)) = h(f 1

2
(x)⊕ f 1

2
(x)) = h(x).

Hence, f 1
2
(h(x))⊕ f 1

2
(h(x)) = h(f 1

2
(x))⊕ h(f 1

2
(x)). On the other hand, since

f 1
2
(h(x))⊕ f 1

2
(h(x)) = h(x) 6 h(1) = 1,

and

h(f 1
2
(x))⊕ h(f 1

2
(x)) = h(x) 6 h(1) = 1,

it is clear that

f 1
2
(h(x)) + f 1

2
(h(x)) = h(f 1

2
(x)) + h(f 1

2
(x)).

We conclude that

f 1
2
(h(x)) = h(f 1

2
(x)). (4.16)

If n > 1, then

f 1
2n

(h(x)) = f 1
2
(f 1

2n-
(h(x)))

= f 1
2
(h(f 1

2n-
(x))) (inductive hypothesis)

= h(f 1
2
(f 1

2n-
(x))) (4.16)

= h(f 1
2n

(x)).
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Proposition 4.4.10. If A is a δ-algebra, then any MV-homomorphism h : A→ [0, 1] is

a δ-homomorphism.

Proof. Denote by δ the interpretation of the infinitary operation in A, and by δ′ the

interpretation in [0, 1]. By Remark 4.4.6 we know that, for every {yi}i∈N ⊆ [0, 1],

δ′(~y) =

∞∑
i=1

yi
2i
. (4.17)

Now, for all = {xi}i∈N ⊆ A and for all n ∈ N, the following holds.

h(δ(~x)) = h(δ(x1, x2, . . . , xn,~0)⊕ δ(0, 0, . . . , xn+1, xn+2, . . .)) (Proposition 4.2.8.(2))

= h(δ(x1, x2, . . . , xn,~0))⊕ h(δ(0, 0, . . . , xn+1, xn+2, . . .))

= h

(
n⊕
i=1

f 1

2i
(xi)

)
⊕ h(δ(0, 0, . . . , xn+1, xn+2, . . .)) (Proposition 4.2.8.(4))

= h

(
n⊕
i=1

f 1

2i
(xi)

)
⊕ h(f 1

2n
(δ(xn+1, xn+2, . . .))) (Lemma 4.2.6)

=
n⊕
i=1

f 1

2i
(h(xi))⊕ f 1

2n
(h(δ(xn+1, xn+2, . . .))) (Lemma 4.4.9)

=
n⊕
i=1

h(xi)

2i
⊕ h(δ(xn+1, xn+2, . . .))

2n
. (Lemma 4.4.2)

We have proved that

h(δ(~x)) =

n⊕
i=1

h(xi)

2i
⊕ h(δ(xn+1, xn+2, . . .))

2n
. (4.18)

Notice that, in the δ-algebra [0, 1], the element
⊕n

i=1
h(xi)

2i
coincides with

∑n
i=1

h(xi)
2i

,

because
n∑
i=1

h(xi)

2i
6

n∑
i=1

1

2i
= 1− 1

2n
< 1.

Moreover,(
n∑
i=1

h(xi)

2i

)
⊕ h(δ(xn+1, xn+2, . . .))

2n
=

(
n∑
i=1

h(xi)

2i

)
+
h(δ(xn+1, xn+2, . . .))

2n
(4.19)

since (
n∑
i=1

h(xi)

2i

)
+
h(δ(xn+1, xn+2, . . .))

2n
6

(
1− 1

2n

)
+

1

2n
= 1.

We remark that the limits limn→∞
∑n

i=1
h(xi)

2i
and limn→∞

h(δ(xn+1,xn+2,...))
2n exist in [0, 1],

and that h(δ(~x)) ∈ [0, 1] does not depend on n ∈ N. Hence,

h(δ(~x)) = lim
n→∞

h(δ(~x))
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= lim
n→∞

(
n⊕
i=1

h(xi)

2i
⊕ h(δ(xn+1, xn+2, . . .))

2n

)
(4.18)

= lim
n→∞

(
n∑
i=1

h(xi)

2i
+
h(δ(xn+1, xn+2, . . .))

2n

)
(4.19)

= lim
n→∞

n∑
i=1

h(xi)

2i
+ lim
n→∞

h(δ(xn+1, xn+2, . . .))

2n

=
∞∑
i=1

h(xi)

2i

= δ′(h(~x)). (4.17)

If A is a δ-algebra, Corollary 4.3.6 states that A is isomorphic, as an MV-algebra, to a

subalgebra of C(X, [0, 1]) for some compact Hausdorff space X. In fact, by Proposition

4.1.10 there is a canonical choice for the compact Hausdorff space: this is the maximal

spectrum MaxA of the MV-algebraic reduct of A.

Proposition 4.4.11. Let (A, δ,⊕,¬, 0) be a δ-algebra, identified with an MV-subalgebra

of C(MaxA, [0, 1]). Then, for all {fi}i∈N ⊆ A and for all m ∈ MaxA,

δ(~f)(m) =
∞∑
i=1

fi
2i

(m).

Proof. We briefly recall how the embedding ·̂ : A → C(MaxA, [0, 1]) is defined (for

more details, please see Section 2.2). If f ∈ A and m ∈ MaxA, then the function

f̂ : MaxA → [0, 1] is given by f̂(m) := ιm

(
f
m

)
, where ιm is the unique embedding

ιm : A
m → [0, 1]. Then, Theorem 2.2.72 allows us to identify A with the subalgebra Â of

C(MaxA, [0, 1]), i.e. we identify f ∈ A with f̂ : MaxA → [0, 1]. Let us fix an arbitrary

point m ∈ MaxA, and denote by qm : A → A
m the quotient map. We can consider the

MV-homomorphism hm : A→ [0, 1] given by

hm := ιm ◦ qm.

We remark that hm is precisely the evaluation at the point m ∈ MaxA. Upon denoting

with δ′ the infinitary operation in the δ-algebra [0, 1], for all {fi}i∈N ⊆ A and for all

m ∈ MaxA, we have

δ(~f)(m) = ιm

(
δ(~f)

m

)
= hm(δ(~f))

= δ′(hm(~f)) (Proposition 4.4.10)

= δ′(~f(m))
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=
∞∑
i=1

fi(m)

2i
, (Remark 4.4.6)

where ~f(m) := {fi(m)}i∈N ⊆ [0, 1]. This proves the proposition.

Corollary 4.4.12. If A,B are δ-algebras and h : A → B is an MV-homomorphism,

then h is a δ-homomorphism.

Proof. In the case B = [0, 1], the statement holds by Proposition 4.4.10. The proof

of the latter relies on the fact that the interpretation of the infinitary operation in the

δ-algebra [0, 1] is known: pointwise, it is the series
∑∞

i=1
fi
2i

. It follows by Proposition

4.4.11, that the same argument applies here, mutatis mutandis.

Proposition 4.4.13. Let A be a δ-algebra such that A ⊆ C(X, [0, 1]) for some compact

Hausdorff space X, and let f ∈ C(X, [0, 1]) be an arbitrary continuous function. Sup-

pose that there exists a monotonically increasing sequence {si}i∈N ⊆ A which converges

uniformly to f , and satisfies ‖s1‖ 6 1/2, ‖si − si−1‖ 6 1/2i for all i > 2. Then

f = δ(2s1, 2
2(s2 	 s1), 23(s3 	 s2), . . . , 2i(si 	 si−1), . . .).

In particular, f ∈ A.

Proof. The following argument is due to Isbell [42]. For simplicity, define the element

s0 := 0 ∈ A, and set

{2s1, 2
2(s2 	 s1), 23(s3 	 s2), . . . , 2i(si 	 si−1), . . .} = {2i(si 	 si−1)}i∈N =: ~s.

We point out that the hypothesis ‖si−si−1‖ 6 1/2i for all i > 1, implies ~s ⊆ A. Further,

the assumption si > si−1 for all i > 1 entails that the function si 	 si−1 coincides with

si − si−1, for all i ∈ N. Then, for every x ∈ X,

δ(~s)(x) =
∞∑
i=1

2i(si 	 si−1)

2i
(x) (Proposition 4.4.11)

=
∞∑
i=1

si(x)− si−1(x)

= lim
n→∞

n∑
i=1

si(x)− si−1(x)

= lim
n→∞

sn(x)

= f(x),

where the last equality holds since the uniform convergence implies the pointwise con-

vergence. We conclude that f = δ(~s).

Lemma 4.4.14. Let A ⊆ C(X, [0, 1]) be a separating δ-algebra. Then A is dense in

C(X, [0, 1]) with respect to the uniform norm.
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Proof. The δ-algebra A is closed under finite ⊕-sums and finite joins. Moreover, it

contains the constant functions 0X , 1X , respectively of value 0 and 1 on X. Given a

dyadic rational number φ := m
2n ∈ [0, 1] and a function f ∈ A, the function φf belongs

to A since it can be obtained as

φf = f 1
2n

(f)⊕ · · · ⊕ f 1
2n

(f)︸ ︷︷ ︸
m times

.

More generally, if r ∈ [0, 1] is any real number in the unit interval, it is easy to see that

rf is in A. Indeed, let ~r := {ri}i∈N ∈ {0, 1}ω be a binary expansion of r. Assume r is not

a dyadic rational number, so that this expansion is unique, and define ~f := {fi}i∈N ⊆ A
by fi := 0X if ri = 0, and fi := f if ri = 1. Consequently, for all x ∈ X,

δ(~f)(x) =
∞∑
i=1

fi(x)

2i
=
∞∑
i=1

rif(x)

2i
= f(x) ·

∞∑
i=1

ri
2i

= rf(x).

Choosing f = 1X in the previous construction, we see that every constant function of

value r ∈ [0, 1] is in A. Furthermore, A separates points of X; hence, by the lattice-

theoretic version of the Stone-Weierstrass Theorem 3.2.17, together with the functor Γ,

we conclude that A is dense in C(X, [0, 1]).

Lemma 4.4.15. If A ⊆ C(X, [0, 1]) is a separating δ-algebra, and f ∈ C(X, [0, 1]), there

exists a monotonically increasing sequence {fi}i∈N ⊆ A which converges uniformly to f .

Proof. Recall by Theorem 4.1.11 that the functor Γ, from the category of unital `-groups

to the category of MV-algebras, is an equivalence. Its quasi-inverse is denoted by Ξ (see

Section 2.3 for details). The MV-algebra A is dense in C(X, [0, 1]) by Lemma 4.4.14,

hence it is possible to show that its enveloping unital `-group Ξ(A) is dense in C(X,R).

Consider the strictly decreasing sequence {ai = 1/2i}i∈N. In particular, ai tends to zero,

as i → ∞. We define two more sequences {bi}i∈N and {ci}i∈N ⊆ A, such that, for all

i ∈ N,

bi :=
1

2
(ai + ai+1) =

3

2i+2
, ci :=

1

2
(ai − ai+1) =

1

2i+2
.

Observe that bi, ci tend to 0 as i→∞, and

bi + ci =
1

2i
= ai, bi − ci =

1

2i+1
= ai+1.

For each i ∈ N, f − bi ∈ C(X,R), hence the density of Ξ(A) entails the existence of

gi ∈ Ξ(A) such that ‖gi− (f − bi)‖ < ci. This is equivalent to saying that, for all x ∈ X,

f(x)− 1

2i−1
< gi(x) < f(x)− 1

2i
.

We remark that

f(x)− 1

2i−1
< gi(x) < f(x)− 1

2i
< gi+1(x) < f(x)− 1

2i+1
,
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i.e. {gi}i∈N ⊆ Ξ(A) is a strictly monotonically increasing sequence. Upon defining

fi := gi ∨ 0X ,

it is clear that {fi}i∈N ⊆ A is a monotonically increasing sequence. To prove that the

latter converges uniformly to f , it suffices to notice that, for all i ∈ N,

‖fi− f‖ 6 ‖gi− f‖ = ‖(gi− f + bi)− bi‖ 6 ‖gi− (fi− bi)‖+ ‖− bi‖ <
1

2i+2
+

3

2i+2
=

1

2i
.

Theorem 4.4.16. For every δ-algebra A, there exists a compact Hausdorff space X

such that A ∼= C(X, [0, 1]).

Proof. By Corollary 4.3.6 we know that A is MV-isomorphic (=δ-isomorphic, by Corol-

lary 4.4.12) to a separating δ-algebra B ⊆ C(X, [0, 1]), where the infinitary operation

on B is induced by that of A. We prove that B = C(X, [0, 1]). Let g ∈ C(X, [0, 1])

be an arbitrary continuous function. By Lemma 4.4.15 there exists a monotonically

increasing sequence {gi}i∈N ⊆ B that converges uniformly to g. Consider the sequence

{f 1
2
(gi)}i∈N = {gi2 }i∈N ⊆ B, and note that ‖gi2 ‖ 6

1
2 for all i ∈ N. The sequence {gi2 }i∈N

is again uniformly convergent, but its limit is g
2 . It is possible to find a subsequence

{si}i∈N ⊆ {gi2 }i∈N satisfying ‖si−si−1‖ 6 1
2i

for all i ∈ N. This subsequence satisfies the

hypotheses of Proposition 4.4.13, therefore (with the notation of the proof of the latter)

we have δ(~s) = g
2 . We conclude, by Proposition 4.2.8.(5), that

δ(~s)⊕ δ(~s) = f 1
2
(g)⊕ f 1

2
(g) = g.

This shows that g ∈ B, so that A ∼= B = C(X, [0, 1]).

Let us denote by ∆ the category with δ-algebras as objects, and δ-homomorphisms as

morphisms. Corollary 4.4.12 then states that ∆ is a full subcategory of the category MV

of MV-algebras. The following fact was proved in Proposition 4.4.4.

Lemma 4.4.17. If X is a compact Hausdorff space, then

C(X) := C(X, [0, 1])

is a δ-algebra.

Lemma 4.4.18. If ϕ : Y → X is a continuous function between compact Hausdorff

spaces, then

C(ϕ) := − ◦ ϕ : C(X)→ C(Y )

is a δ-homomorphism.

Proof. Since ∆ is a full subcategory of MV, it suffices to prove that C(ϕ) is an MV-

homomorphism. Given f, g ∈ C(X) and q ∈ Y , we have

(0X ◦ ϕ)(q) = 0X(ϕ(q)) = 0 = 0Y (q),
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((f ⊕ g) ◦ ϕ) (q) = (f ⊕ g)(ϕ(q)) = f(ϕ(q))⊕ g(ϕ(q)) = (f ◦ ϕ)(q)⊕ (g ◦ ϕ)(q),

(¬f ◦ ϕ)(q) = ¬f(ϕ(q)) = 1− f(ϕ(q)) = ¬(f(ϕ(q))) = ¬(f ◦ ϕ)(q).

It is elementary that C preserves compositions, and maps the identity function on a

compact Hausdorff space X to the identity homomorphism of the δ-algebra C(X, [0, 1]).

Corollary 4.4.19. C : KHaus → ∆ is a contravariant functor from the category of

compact Hausdorff spaces to the category of δ-algebras.

On the other hand, Proposition 4.1.9 tells us that

Lemma 4.4.20. If A is a δ-algebra, then its maximal spectrum MaxA is a compact

Hausdorff space.

Regarding the morphisms,

Lemma 4.4.21. If h : B → A is a δ-homomorphism, then

M(h) := h−1 : M(A)→M(B)

is a continuous function.

Proof. We remark that the map M(h) is well-defined by Lemma 4.1.8. Recall that a

basis of closed sets for MaxB is given by the sets of the form

Fb := {m ∈ MaxB | b ∈ m}.

To prove thatM(h) is a continuous function, it is sufficient to show that the preimage of

each basic closed set under the map h−1 is closed inM(A). Indeed, this is true because

(h−1)−1(Fb) = {m ∈ MaxA | h−1(m) ∈ Fb}
= {m ∈ MaxA | b ∈ h−1(m)}
= {m ∈ MaxA | h(b) ∈ m}
= Fh(b).

Again, it is easy to see that M preserves compositions and the identity:

Corollary 4.4.22. M : ∆ → KHaus is a contravariant functor from the category of

δ-algebras to the category of compact Hausdorff spaces.

We prove that the functors M and C are quasi-inverse.
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Proposition 4.4.23. There exists a natural isomorphism

µ : IdKHaus →M◦ C,

where IdKHaus denotes the identity functor on the category KHaus.

Proof. If X is a compact Hausdorff space, recall by Proposition 2.2.73 that the map

µX : X → Max C(X, [0, 1]), µX(p) := I({p})

is a homeomorphism, where

I({p}) := {f ∈ C(X, [0, 1]) | f(p) = 0}.

Define the component of µ at X as (µ)X := µX . To prove the statement, it suffices to

show that µ is a natural transformation. In other words, that the following diagram

commutes, whenever f : X → Y is a continuous function between compact Hausdorff

spaces.

X Max C(X, [0, 1])

Y Max C(Y, [0, 1])

µX

f (M◦C)(f)

µY

For every m ∈ Max C(X, [0, 1]) we have

(M◦ C)(f)(m) = (− ◦ f)−1(m) = {g ∈ C(Y, [0, 1]) | g ◦ f ∈ m}.

Hence, for all p ∈ X,

(M◦ C)(f) ◦ µX(p) = (M◦ C)(f)(I({p}))
= {g ∈ C(Y, [0, 1]) | g ◦ f ∈ I({p})}
= {g ∈ C(Y, [0, 1]) | (g ◦ f)(p) = 0}
= {g ∈ C(Y, [0, 1]) | g(f(p)) = 0}
= I({f(p)})
= (µY ◦ f)(p).

Proposition 4.4.24. There exists a natural isomorphism

ν : Id∆ → C ◦M,

where Id∆ denotes the identity functor on the category ∆.
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Proof. Given a δ-algebra A, Theorem 4.4.16 shows that the map

νA : A→ C(MaxA, [0, 1]), νA(a) := â

is an isomorphism in the category ∆. Define ν : Id∆ → C ◦M by its components: we set

(ν)A := νA. To prove that ν is a natural isomorphism, it is enough to show that it is

a natural transformation. That is, for every δ-homomorphism h : A→ B, the following

diagram commutes.

A C(MaxA, [0, 1])

B C(MaxB, [0, 1])

νA

h (C◦M)(h)

νB

Note that, for all a ∈ A,

(νB ◦ h)(a) = νB(h(a)) = ĥ(a),

and

((C ◦M)(h) ◦ νA) (a) = (C ◦M)(h)(â) = â ◦ h−1.

In other words, we must prove that, for all n ∈ MaxB,

ĥ(a)(n) = (â ◦ h−1)(n). (4.20)

In turn, upon denoting by hn, hh−1(n) the unique MV-embeddings

hn : B
n → [0, 1], hh−1(n) : A

h−1(n)
→ [0, 1]

provided by Theorem 2.3.30, (4.20) is equivalent to

hn

(
h(a)

n

)
= hh−1(n)

(
a

h−1(n)

)
.

Fix an arbitrary maximal ideal n ∈ MaxB. It is clear that h : A → B induces an MV-

homomorphism A
h−1(n)

→ B
n , that we continue to denote by h. The latter homomorphism

is injective. Indeed, if h(a) = 0 ∈ B
n , then h(a) ∈ n, that is a ∈ h−1(n). Thus

a = 0 ∈ A
h−1(n)

. It follows that the composition

hn ◦ h :
A

h−1(n)
→ [0, 1]

is an MV-embedding. By Theorem 2.3.30 we conclude that hh−1(n) = hn ◦ h, whence

hh−1(n)

(
a

h−1(n)

)
= hn

(
h

(
a

h−1(n)

))
= hn

(
h(a)

n

)
.
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We have just proved

Theorem 4.4.25. The category KHaus of compact Hausdorff spaces is dually equivalent

to the category ∆ of δ-algebras via the functors C and M.



Chapter 5

The Lawvere-Linton theory of

δ-algebras

5.1 Algebraic theories

From the point of view of classical model theory, and in particular of universal algebra, an

algebraic theory is a set T of equational formulæ in a language that contains only finitary

function symbols. This approach has two limitations: firstly, it only deals with finitary

operations; secondly, it depends on a specific presentation in terms of operations and

equations. In 1959 S lomiński [64] rectified the first limitation by introducing infinitary

universal algebra, that is the study of equationally defined classes of algebras admitting

infinitary function symbols. In the sixties Lawvere [48] introduced the categorical notion

of algebraic theory which rectified the second defect without, however, rectifying the first.

Indeed we will see that (Lawvere) algebraic theories can only capture finitary equational

theories. We give a brief motivation before introducing the abstract notion of algebraic

theory.

Suppose we are given a presentation of a finitary algebraic theory , i.e. an equational

theory T (whose formulæ are called axioms) on a finitary signature Σ without relation

symbols, together with a countable set of variables Var = {x1, x2, . . .}. For each positive

integer n, we denote by Fn the set of function symbols of arity n. The set Term of

terms for the language Σ is inductively defined in the following way: every variable is

in Term; if α ∈ Fn and t1, . . . , tn ∈ Term, then α(t1, . . . , tn) ∈ Term. The theory T is

then a set of pairs of terms (s, t), s, t ∈ Term, where each such pair can informally be

thought of as the equation s = t. In the following, we use the latter notation whenever

convenient.

A Σ-structure is a set U together with an operation α̂ : Un → U for each function

symbol α ∈ Fn. Observe that any function ϕ : Var→ U can be extended to a function

ϕ : Term → U . Indeed, suppose that the map ϕ is defined on the terms t1, . . . , tn ∈
Term, and let α ∈ Fn be a function symbol of arity n. Then, we define

ϕ(α(t1, . . . , tn)) := α̂(ϕ(t1), . . . , ϕ(tn)).

99
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A model of T is a Σ-structure U such that, for every function ϕ : Var → U and for

every pair (s, t) ∈ T, the condition ϕ(s) = ϕ(t) is satisfied. The category whose objects

are models for a theory T and whose morphisms are maps preserving the operations, is

denoted by ModT. It is possible to construct models for T of a purely syntactic nature.

Define the set Ded of all the equalities between terms deducible from the axioms of T
(this is usually called the deductive closure of the axioms) by the following deduction

rules.

1. Every axiom (i.e. element of T) is in Ded.

2. For each term t ∈ Term, t = t ∈ Ded.

3. If t = u, u = v ∈ Ded, then u = t ∈ Ded and t = v ∈ Ded.

4. If t = t′ ∈ Ded and t occurs as a subterm of r ∈ Term, upon denoting with r′ the

term we obtain by substituting t in such an occurrence with t′, then r = r′ ∈ Ded.

5. Suppose t = t′ ∈ Ded where t and t′ are terms in which the variables x1, . . . xm
occur. If t1, . . . , tm are arbitrary terms and s, s′ denote the terms obtained respec-

tively from t and t′ by simultaneously substituting each occurrence of the variable

xi with the term ti for every i = 1, . . . ,m, then s = s′ ∈ Ded.

6. Nothing else is in Ded.

We can define an equivalence relation on the set Term, given by t ∼ t′ if, and only if,

t = t′ ∈ Ded. One can prove that ∼ is a congruence, i.e. it is an equivalence relation

compatible with all the operations in Fn, for all n ∈ N. If Tn ⊆ Term is the set of terms

in which only variables among x1, . . . , xn appear, the quotient Tn/ ∼ is denoted by Fn.

Lemma 5.1.1. If T is the presentation of a finitary algebraic theory, then Fn is a model

for T and it is free in ModT (with respect to the underlying-set functor) over a set with

n generators.

Proof. See [18, Theorem 10.12].

Remark 5.1.2. Lemma 5.1.1 holds more generally for presentations of infinitary algebraic

theories, if the countability restriction on the set of variables is dropped [64, 8.3].

It is possible to prove that a coproduct of free models is again a free model and that the

nth copower of the free model F1 over one generator is isomorphic to the free model Fn
[17, Lemma 3.2.7]. The following proposition provides the connection between classical

universal algebra and categorical universal algebra.

Proposition 5.1.3. Let T be the presentation of a finitary algebraic theory and let F be

the full subcategory of ModT whose objects are the free finitely generated models Fn, for

all n ∈ N. The category Fop has finite products, and ModT is equivalent to the category

SetF
op

ω of functors Fop → Set that preserve finite products, where the morphisms in the

latter functor category are the natural transformations.
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Proof. See [17, Proposition 3.2.9].

The following definition, motivated by Proposition 5.1.3, is due to Lawvere [48].

Definition 5.1.4. A finitary algebraic theory (or Lawvere theory) is a small category

T whose objects are given by a countable set {T 0, T 1, . . . , Tn, . . .} where T i is the ith

power of T 1, for each positive integer i. A model of T is a functor F : T → Set preserving

finite products. A homomorphism between two models for T is a natural transformation

between the two functors.

Proposition 5.1.3 states that for every presentation T of a finitary algebraic theory there

is an associated Lawvere theory Fop, where F is the category of finitely generated free

models for T. Further, we can recover the category of models for T, up to equivalence,

as SetF
op

ω . Conversely, it is possible to show that each Lawvere theory as in Definition

5.1.4 arises from an appropriate presentation T. Lawvere theories succeed in making

finitary equational theories independent of a specific presentation, in fact every Lawvere

theory is determined by a class of equational axiomatisations which can be regarded as

different presentations (by operations and equations) of that same theory. The previous

definition can be generalized in a straightforward way.

Definition 5.1.5. For any infinite regular cardinal λ, a λ-ary algebraic theory (or

Lawvere-Linton theory) is a small category T λ with all λ-products, such that every

object is the product of µ copies of a fundamental object F1, for some cardinal µ < λ.

Again, a model of T λ is a functor to Set preserving λ-products, and a morphism between

two models is a natural transformation. Now we can consider a presentation T of an al-

gebraic theory on a λ-signature (see the Prologue for additional details on λ-signatures).

In this case, if F is the full subcategory of ModT whose objects are all the free objects

generated by a set of cardinality strictly smaller than λ, then Fop is the λ-ary algebraic

theory associated to T. Observe that, for λ = ℵ0, we recover the Lawvere theory of

T. Denote by SetF
op

λ the category of models of the λ-ary algebraic theory of T. In the

following, when a presentation T of an algebraic theory is given, we write T λ for the

λ-ary algebraic theory associated to T.

Proposition 5.1.3 can be extended to theories on λ-ary signatures.

Proposition 5.1.6. Let T be the presentation of an algebraic theory on a λ-signature

Σ, and denote by F the full subcategory of ModT whose objects are all the free objects

on sets of cardinality smaller than λ. Then ModT ' SetF
op

λ .

Proof. See [1, Theorem 3.30].

5.2 The case of δ-algebras: Hilbert cubes

In this section, we compute the Lawvere-Linton theory of δ-algebras which reduces, by

Proposition 5.1.6, to the study of the ℵ1-ary algebraic theory associated to δ-algebras.
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The first step consists in finding an explicit description of the free δ-algebras. We will

see that the (unique up to isomorphism) free δ-algebra on a set X of generators is

C([0, 1]X , [0, 1]).

This can be proved directly, applying McNaughton’s Theorem 2.2.64 and Proposition

4.4.13. However, we shall prove a stronger result, namely that the category ∆ of δ-

algebras is a reflective subcategory of the category MV of MV-algebras, i.e. the inclusion

functor ∆ → MV has a left adjoint. A description of the free objects in ∆ is then

obtained as a consequence.

We observe that Yosida’s representation Theorem 3.2.18 can be translated into the

language of MV-algebras. For this purpose, we agree to say that an MV-algebra A is

divisible if its enveloping unital `-group Ξ(A) is a divisible group. Moreover, recall that

every unital `-group can be equipped with a seminorm induced by the strong order unit

(see Section 3.2). Therefore, we can consider the seminorm induced on its unit interval,

so that any MV-algebra can be naturally equipped with a seminorm. The latter is a

norm if, and only if, the MV-algebra is semisimple (cf. Lemma 3.2.9). An MV-algebra

is complete if it is complete in the norm induced by the norm of the enveloping unital

`-group Ξ(A).

Remark 5.2.1. The definitions above make reference to the enveloping unital `-group

of the MV-algebra A. It is possible to give equivalent MV-algebraic definitions in the

following way. Let n ∈ N be an arbitrary positive integer. There exists a term τn in the

language of MV-algebras such that, for all y ∈ A, τn(y) = 0 if, and only if,

y ⊕ · · · ⊕ y︸ ︷︷ ︸
n times

= y + · · ·+ y︸ ︷︷ ︸
n times

in the enveloping `-group (see [3] for details). It is easy to check that an MV-algebra A

is divisible if, and only if, for all x ∈ A and for all n ∈ N, there exists a unique y ∈ A
such that

x = ny, τn(y) = 0.

If A is semisimple, we know that it is isomorphic to the separating subalgebra Â of

C(MaxA, [0, 1]) by Theorem 2.2.72. One can show that, in this situation, A is divisible

if, and only if, for all â ∈ Â and for all k ∈ Q ∩ [0, 1], the function kâ belongs to Â. It

is also possible to define a seminorm on a divisible MV-algebra without mentioning the

unital `-group A. For every x ∈ A, set

‖x‖1 := inf {pq ∈ Q ∩ [0, 1] | x 6 p1
q}.

Here p1
q denotes the iterated ⊕-sum p times of the unique element y ∈ A such that

qy = 1 and τq(y) = 0.

It is clear that an MV-algebra A is complete if, and only if, it is complete in the norm

‖ · ‖1; in fact, the norm ‖ · ‖1 coincides with the norm inherited by the norm of Ξ(A).
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Theorem 5.2.2. An MV-algebra A is represented by a compact Hausdorff space X, i.e.

A ∼= C(X, [0, 1]), if, and only if, the following hold.

1. A is semisimple.

2. A is divisible.

3. A is complete.

Proof. This follows at once from Theorem 3.2.18, along with the functor Γ.

In other words, we can identify ∆ with the full subcategory of MV whose objects are

semisimple, divisible, and complete MV-algebras. In order to see that the latter category

is a reflective subcategory of MV, we proceed by steps. Firstly, we shall prove that the

category of semisimple MV-algebras and MV-homomorphisms is a reflective subcategory

of MV. The reflector, i.e. the left adjoint to the inclusion functor, is the functor that

maps an MV-algebra to the semisimple (see Lemma 2.2.50) MV-algebra

A

RadA
.

Furthermore, the image of an MV-homomorphism f : A → B via the reflector is the

induced map between the quotients, namely a
RadA 7→

f(a)
RadB . The latter map is well-

defined:

Remark 5.2.3. If f : A → B is an MV-homomorphism, then f(x) ∈ RadB whenever

x ∈ RadA. Indeed, by Proposition 2.2.52, if n ∈ N and x ∈ RadA, then nx 6 ¬x. By

Remark 2.2.17, for all n ∈ N,

nf(x) = f(nx) 6 f(¬x) = ¬f(x).

We conclude, by Proposition 2.2.52, that f(x) ∈ RadB.

Lemma 5.2.4. The category of semisimple MV-algebras is a reflective subcategory of

the category MV of MV-algebras.

Proof. Let A be an MV-algebra, and let B be a semisimple MV-algebra. Denote with

q : A → A
RadA the quotient map. We must prove that, for every MV-homomorphism

f : A → B, there exists a unique MV-homomorphism f̃ : A
RadA → B such that the

following diagram commutes.

A A
RadA

B

q

f
f̃

For every equivalence class [a] ∈ A
RadA , define f̃([a]) := f(a). We prove that this map

is well-defined. Suppose that b ∈ A satisfies [a] = [b]. This means that d(a, b) ∈ RadA,
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so that f(d(a, b)) ∈ RadB = {0} by Remark 5.2.3. However, it is elementary that

f(d(a, b)) = d(f(a), f(b)), hence f(a) = f(b) by Proposition 2.2.28.(1). It is clear that

f̃ is an MV-homomorphism, since so is f , and that it is the unique map such that

f = f̃ ◦ q.

If A is an arbitrary MV-algebra, it is not always the case that the abelian group Ξ(A)

is divisible. However, the latter group can be embedded in a divisible abelian group.

Since every `-group is torsion-free [34, Corollary 0.1.2] there is a canonical such group,

the divisible hull of Ξ(A), that we denote by Ξ(A)d. In other words, for all a ∈ Ξ(A)d

and for all n ∈ N, there exists b ∈ Ξ(A)d such that a = nb. The (unique) element b is

sometimes denoted by a
n . It is elementary that Ξ(A)d ∼= Q ⊗ Ξ(A). It is easy to show

that Ξ(A)d is an `-group where, for all a
m ,

b
n ∈ Ξ(A)d,

a

m
∧ b

n
=
na ∧mb
mn

, (5.1)

a

m
∨ b

n
=
na ∨mb
mn

.

We prove only (5.1). Assume that x ∈ Ξ(A)d satisfies x 6 a
m and x 6 b

n . Then mx 6 a
and nx 6 b, so that mnx 6 na and mnx 6 mb. It follows that mnx 6 na ∧mb. If y is

the element in Ξ(A)d such that mny = na ∧mb, we have mnx 6 mny, whence

x 6 y =
na ∧mb
mn

.

Define the divisible hull of the MV-algebra A as the MV-algebra

Ad := Γ(Ξ(A)d).

We remark that Ξ(Ad) ∼= Ξ(A)d.

Lemma 5.2.5. The category of semisimple and divisible MV-algebras is a reflective

subcategory of the category of semisimple MV-algebras.

Proof. Let A be a semisimple MV-algebra, and consider the functor that sends A to

the semisimple and divisible MV-algebra Ad (the behaviour of the latter functor on

morphisms is clear). Denote by i : A → Ad the inclusion map. We prove that this

functor is a reflector, i.e. for every semisimple and divisible MV-algebra B, and for every

MV-homomorphism f : A → B, there exists a unique MV-homomorphism fd : Ad → B

such that the following diagram commutes.

A Ad

B

i

f
fd
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However, since the functor Γ: `Grpu → MV is an equivalence (Theorem 2.3.29), it suffices

to observe that there exists a unique group homomorphism g : Ξ(A)d → Ξ(B) such that

the next diagram is commutative.

Ξ(A) Ξ(A)d

Ξ(B)

Ξ(i)

Ξ(f)
g

It is easy to prove that g is an `-homomorphism since it extends the `-homomorphism

f . Therefore, the MV-homomorphism fd := Γ(g) has the required property.

Let A be a semisimple MV-algebra, equipped with the norm induced by the norm

of the `-group Ξ(A). It is possible to show that the MV-algebraic operations of A are

continuous with respect to the norm. Hence, there is an induced structure of MV-algebra

on the norm-completion of A. We denote this completion by Ac. It is elementary that

Ac ∼= Γ(Ξ(A)c), where Ξ(A)c is the completion of the enveloping `-group with respect

to the norm induced by the strong order unit.

Lemma 5.2.6. The category of semisimple, divisible and complete MV-algebras is a

reflective subcategory of the category of semisimple and divisible MV-algebras.

Proof. If A is a semisimple and divisible MV-algebra, denote by j : A→ Ac the inclusion

map. We must prove that, for every semisimple, divisible, and complete MV-algebra B

and for every MV-homomorphism f : A→ B, there exists a unique MV-homomorphism

f c : Ac → B such that the following diagram commutes.

A Ac

B

j

f
fc

If b is an arbitrary element of Ac and {ai}i∈N ⊆ A is a sequence converging to b in the

norm of A, define f c(b) := limi∈N f(ai). Since the operations of A are continuous with

respect to the norm, it is clear that f c is an MV-homomorphism from Ac to B. Now,

suppose that gc : Ac → B is another MV-homomorphism satisfying f = gc ◦ j. Then we

have two unital `-homomorphisms Ξ(f c),Ξ(gc) : Ξ(Ac)→ Ξ(B) satisfying

Ξ(f c) ◦ Ξ(j) = Ξ(f) = Ξ(gc) ◦ Ξ(j). (5.2)

Since Ξ(Ac),Ξ(B) are complete, divisible, and archimedean `-groups, by Propositions

3.2.16 and 3.2.1 we know that Ξ(Ac) ∼= C(Max Ξ(A),R) (because Ξ(Ac) ∼= Ξ(A)c) and

Ξ(B) ∼= C(Max Ξ(B),R). However, by Yosida duality every unital `-homomorphism

from C(Max Ξ(A),R) to C(Max Ξ(B),R) is of the form − ◦ h for some continuous map

h : Max Ξ(B) → Max Ξ(A). Let h, h′ be continuous maps such that Ξ(f c) = − ◦ h
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and Ξ(gc) = − ◦ h′. Since A is a semisimple MV-algebra, it follows that Ξ(A) is an

archimedean `-group, so that Ξ(A) is `-isomorphic to the separating `-subgroup

Y(Ξ(A)) = {ĝ ∈ C(Max Ξ(A),R) | g ∈ Ξ(A)}

of C(Max Ξ(A),R). Then, (5.2) entails the following:

for all ĝ ∈ Y(G), ĝ ◦ h = ĝ ◦ h′. (5.3)

Assume by contradiction that h 6= h′, i.e. there exists m ∈ Max Ξ(B) such that h(m) 6=
h′(m). The `-group Y(G) separates points, hence there exists ĝ ∈ Y(G) such that

ĝ(h(m)) 6= ĝ(h′(m)), which contradicts (5.3). We conclude that h = h′, that is Ξ(f c) =

Ξ(gc). However Ξ is an equivalence (in particular it is faithful), thus f c = gc.

Theorem 5.2.7. The category ∆ of δ-algebras is a full reflective subcategory of the

category MV of MV-algebras. The reflector is provided by the functor

R: MV→ ∆, R(A) :=
((

A
RadA

)d)c
.

Proof. The category ∆ is a full subcategory of MV by Corollary 4.4.12. For each MV-

algebra A, R(A) is the completion of the divisible hull of the MV-algebra A
RadA . Denote

by l : A→ R(A) the composition of the maps

A A
RadA

(
A

RadA

)d ((
A

RadA

)d)c
,

q i j

where q is the quotient map and i, j are the inclusion maps. Now, let A be an arbitrary

MV-algebra. To prove the theorem, it suffices to show that for every complete, divisible,

and semisimple MV-algebra B and for every MV-homomorphism f : A→ B, there exists

a unique map g : R(A)→ B such that the following diagram commutes.

A R(A)

B

l

f
g

However, by Lemmas 5.2.4, 5.2.5 and 5.2.6, the following diagram is commutative.

A A
RadA

(
A

RadA

)d ((
A

RadA

)d)c

B

q

f

i

f̃

j

f̃d

(f̃d)c

Hence, to conclude it is enough to set g := (f̃d)c. In fact, in order to prove the theorem it

suffices to recall that a composition of adjoint functors is an adjoint functor [52, Theorem

1 p. 101], and apply Lemmas 5.2.4, 5.2.5 and 5.2.6.
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Proposition 5.2.8. The free δ-algebra on a set X of cardinality κ is the δ-algebra

C([0, 1]κ, [0, 1]).

Proof. Let X be a set of cardinality κ, and let Freeκ denote the free MV-algebra on X.

In view of Theorem 2.2.64, we can identify Freeκ with the MV-algebra of McNaughton

functions on [0, 1]κ, i.e. the MV-algebra of all the continuous piecewise linear functions

with integer coefficients from [0, 1]κ to [0, 1]. Then, Theorem 5.2.7 implies that the free

δ-algebra on the set X is ((
Freeκ

Rad Freeκ

)d)c
.

However, it is elementary that Freeκ is semisimple, so that Freeκ
Rad Freeκ

∼= Freeκ. We

remark that (Freeκ)d is the MV-algebra of all the continuous [0, 1]-valued piecewise

linear functions with rational coefficients on [0, 1]κ. By Proposition 2.2.68 the MV-

algebra Freeκ, a fortiori its divisible hull, separates points. The lattice version of Stone-

Weierstrass Theorem 3.2.17, along with the functor Γ, entail that (Freeκ)d is dense in

the MV-algebra C([0, 1]κ, [0, 1]). Therefore,(
(Freeκ)d

)c ∼= C([0, 1]κ, [0, 1]).

Corollary 5.2.9. The Lawvere-Linton theory T ℵ1 of δ-algebras is equivalent to the

category whose objects are the cubes [0, 1]λ, for every countable cardinal λ, and whose

maps are all the continuous maps between cubes.

Proof. Let F denote the full subcategory of ∆ whose objects are the free δ-algebras

on a countable set of generators. Since the free δ-algebra on a set of cardinality κ is

isomorphic to C([0, 1]κ, [0, 1]) by Proposition 5.2.8, an arbitrary object of F is of the

form C([0, 1]λ, [0, 1]) where λ is a countable cardinal. However, by the duality between

δ-algebras and compact Hausdorff spaces (Theorem 4.4.25), it is clear that the dual

of the δ-algebra C([0, 1]λ, [0, 1]) is the space [0, 1]λ. We conclude that Fop is the full

subcategory of KHaus whose objects are all the cubes [0, 1]λ, with λ a countable cardinal

number. Furthermore, by Proposition 5.1.6, the category ∆ of δ-algebras is equivalent

to the category of functors from Fop to Set which preserve countable products.

Remark 5.2.10. Every category that is monadic over Set is complete and cocomplete

[11, Corollary 2 p. 118, Proposition 4 p. 320]. Hence, in particular, the category

∆ is complete and cocomplete. Recall that a subcategory D of a category C is said

to be closed in C under limits (respectively under colimits) if the following property is

satisfied: the limit (respectively colimit) of every diagram in D, computed in C is, in fact,

in D. Since right adjoint functors preserve limits, every reflective subcategory is clearly

closed under limits in the ambient category. Therefore, the category ∆ is closed under

limits in MV, by Theorem 5.2.7. However, it is easy to see that ∆ is not closed in MV

under colimits. General category-theoretic results show that the underlying-set functor

of a variety commutes with directed colimits if, and only if, the variety is finitary [1, p.
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149]. This means that there is a directed diagram in ∆ whose colimit is computed in

different ways in the categories ∆ and MV. We explicitly describe this colimit. Consider

the family of all the finitely generated free δ-algebras, partially ordered by inclusion. In

fact, the latter set is a directed partially oredered set. One can prove that the colimit of

this diagram in the category MV is the free MV-algebra on ℵ0 generators, i.e. the algebra

of the McNaughton functions on the cube [0, 1]ℵ0 . However, the colimit of the diagram

in the category ∆ is the free δ-algebra on ℵ0 generators C([0, 1]ℵ0 , [0, 1]). In particular,

the latter is the completion of the divisible hull of the former. Another example is the

following. Consider the directed set in ∆ whose objects are all the δ-algebras of the form

C([0, 1
n ], [0, 1]), for n ∈ N. It is possible to show that the colimit of the latter diagram

in ∆ is the δ-algebra [0, 1], while the colimit in MV is not semisimple.

We close this chapter by providing some universal-algebraic information on the category

∆, regarded as a variety of algebras.

Lemma 5.2.11. The δ-algebra [0, 1] generates ∆ as a variety, and as a quasivariety.

Proof. It is enough to observe that every δ-algebra is isomorphic to an algebra of the

form C(X, [0, 1]) for some compact Hausdorff space, by Theorem 4.4.16. This means

that every δ-algebra is a subalgebra of the δ-algebra [0, 1]X (where operations in the

latter algebra are defined pointwise). In other words,

SP([0, 1]) = ∆,

and the lemma is proved.

Lemma 5.2.12. The variety of δ-algebras does not admit any proper non-trivial subva-

riety.

Proof. Let V be a non-trivial subvariety of ∆. By Lemma 5.2.11 it suffices to prove that

the δ-algebra [0, 1] belongs to V. Since V is non-trivial, there is a non-trivial algebra

C(X, [0, 1]) in V, i.e. X 6= ∅. Then the subalgebra of C(X, [0, 1]) generated by ¬0 = 1

is isomorphic to [0, 1].

Lemma 5.2.13. The unique non-trivial simple δ-algebra is [0, 1].

Proof. Suppose A is a non-trivial simple δ-algebra, i.e. the only congruences on A are

the trivial one and the improper one. Then the MV-reduct of A is a simple MV-algebra,

so that A is MV-isomorphic to a subalgebra of [0, 1] by Theorem 2.2.44. It is elementary

that A = [0, 1].

Remark 5.2.14. Recall that an algebra A is a subdirect product of the family of algebras

{Ai}i∈I if A is isomorphic to a subalgebra of the product
∏
i∈I Ai, i.e. there is an

injective homomorphism α : A →
∏
i∈I Ai, and πi ◦ α(A) = Ai for all i ∈ I (where

πi :
∏
i∈I Ai → Ai is the ith projection). An algebra A is subdirectly irreducible if,

whenever it is represented as the subirect product of a family {Ai}i∈I , there is i ∈ I

such that A ∼= Ai. G. Birkhoff proved in [14] that every finitary algebra is a subdirect
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product of subdirectly irreducible algebras. Moreover, he remarked that this result

cannot be extended, in general, to infinitary algebras. However, since every δ-algebra

is a subdirect product of copies of [0, 1] by Theorem 4.4.16, it is clear that the unique

subdirectly irreducible δ-algebra is the δ-algebra [0, 1]. This shows that every δ-algebra

is a subdirect product of subdirectly irreducible δ-algebras.



Chapter 6

C∗-algebras

6.1 Banach algebras

The theory of Banach algebras can be treated in four different ways, by studying ei-

ther real commutative or non-commutative algebras, or complex commutative or non-

commutative algebras. When considering C∗-algebras (=Banach algebras with an invo-

lution satisfying the C∗-identity), these four paths lead to four different representation

theorems. These approaches are clearly exposed in the monograph [36]. Traditionally,

the highest attention was paid to the complex case, in connection with the investiga-

tion of operator algebras. In this context, the two main representation results are due

to Gelfand and Neumark. The first one states that every complex commutative unital

C∗-algebra is the algebra of all continuous C-valued functions on a compact Hausdorff

space [32, Lemma 1]. The second one allows to represent every complex (possibly non-

commutative) unital C∗-algebra as a (norm and adjoint)-closed algebra of some bounded

operators on a complex Hilbert space [32, Theorem 1]. For a thorough treatment of the

Gelfand-Neumark representation theorems, along with a historical introduction to the

subject, the interested reader is referred to [26].

We will focus on the complex commutative case only. Since many central constructions in

the theory of C∗-algebras (e.g. the Gelfand transform) can be carried out more generally

for Banach algebras, we shall begin studying the latter algebras. We will not restrict

ourselves to C∗-algebras, until their extra structure is needed (e.g. to show that the

Gelfand transform of a C∗-algebra is a ∗-isomorphism).

6.1.1 Introduction

Definition 6.1.1. A complex commutative Banach algebra is a complex Banach space

A with a product (denoted by a dot x ·y or by juxtaposition xy), satisfying the following

conditions.

1. xy = yx.

110
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2. x(yz) = (xy)z.

3. x(y + z) = xy + xz.

4. If xn → x, then xny → xy (and consequently, by commutativity, if yn → y, then

xyn → xy), i.e. the product operation is continuous.

Remark 6.1.2. In item 4 of the previous definition, the notation xn → x means that

the sequence {xn}n∈N ⊆ A converges in the metric induced by the norm to the element

x ∈ A. In general, when dealing with metric properties of a Banach algebra, we will

always implicitly refer to the metric induced by the norm.

Notation 6.1.3. Henceforth, by a Banach algebra, we understand a complex commutative

Banach algebra.

Definition 6.1.4. A unit of a Banach algebra A is an element e ∈ A such that ex = x

for every x ∈ A (the equality x e = x follows by commutativity). If A has a unit, then

it is said to be a unital Banach algebra.

It is not always the case that a Banach algebra has a unit, however it is always possible

to add it, in the following way. Consider the set Ae := A × C of pairs (a, λ), where a

is an element of the algebra and λ is a complex number. We can equip this set with

operations

(x1, λ1) + (x2, λ2) := (x1 + x2, λ1 + λ2),

for all µ ∈ C, µ(x, λ) := (µx, µλ),

(x1, λ1) · (x2, λ2) := (x1x2 + λ1x2 + λ2x1, λ1λ2).

Furthermore, we can define a norm on Ae, by setting

‖(x, λ)‖ := ‖x‖+ |λ|.

It is easy to verify that

Lemma 6.1.5. Ae is a Banach algebra. Moreover, its subalgebra with underlying set

{(x, 0) ∈ Ae | x ∈ A} is isomorphic and isometric to A.

Observe that the algebra Ae has a unit, namely the element (0, 1). Indeed, for all

(x, λ) ∈ Ae,

(0, 1) · (x, λ) = (0 · x+ 0 · λ+ 1 · x, 1 · λ) = (x, λ).

In other words, every Banach algebra A can be embedded in a unital Banach algebra

Ae. Hence:

Notation 6.1.6. Throughout this chapter, unless stated otherwise we assume that every

Banach algebra has a unit e. Therefore, by a Banach algebra we understand a unital

Banach algebra. We do not require that the condition e 6= 0 is satisfied, so that {0 = e}
is a Banach algebra.

Some authors (see for example [16]) assume, as part of the definition of a Banach algebra,

that the norm is submultiplicative, i.e. ‖xy‖ 6 ‖x‖ · ‖y‖. Another property of unital
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Banach algebras, that is usually required, is that ‖ e ‖ = 1. In fact, these conditions are

not necessary, in the sense that given any Banach algebra A, there is an equivalent norm

on A satisfying the conditions above. We first recall what it means for two norms to be

equivalent. Given a normed space (X, ‖ · ‖), we say that a norm |||·||| on X is equivalent

to ‖·‖ if there exist real numbers a, b > 0 such that a‖x‖ 6 |||x||| 6 b‖x‖ for every x ∈ X.

Equivalent norms preserve convergence and limits of sequences, hence they induce the

same topology.

Lemma 6.1.7. Given a Banach algebra A, there exists an equivalent norm ‖ · ‖ on A

such that ‖xy‖ 6 ‖x‖ · ‖y‖ for all x, y ∈ A, and ‖ e ‖ = 1.

Proof. The proof goes as follows: we shall construct a Banach algebra A′ whose elements

are some bounded linear operators from A to itself, and show that there is an isomor-

phism of linear spaces T : A→ A′ that is continuous with continuous inverse. The norm

on A′ will satisfy the required conditions, and so will the norm induced on A, that is

‖x‖ := ‖Tx‖. For each element x ∈ A, define the operator Vx : A → A as Vxy := x · y
for all y ∈ A. Clearly Vx is a linear operator, that is Vx(y1 + y2) = Vxy1 + Vxy2 and

Vx(λy) = λVxy, and it satisfies Vx1x2y = Vx1y · Vx2y. It is also a bounded operator: for

any sequence yn → y, we have Vxyn = xyn → xy = Vxy, hence Vx is bounded, because

a linear operator between normed spaces is continuous if, and only if, it is bounded [50,

Theorem 7A]. In this way, we get a collection of continuous operators {Vx}x∈A contained

in the set L(A) of all bounded linear operators from A to itself. L(A) is a Banach space

since A is a Banach space [50, 7B], and {Vx}x∈A is a linear submanifold of L(A). Denote

A′ := {Vx}x∈A and notice that, for all Vx ∈ A′, the identity Vx(yz) = Vxy · z holds

since Vx(yz) = x(yz) = (xy)z = (Vxy) · z. We will show that this property completely

characterises the set A′. Assume that an operator V : A→ A satisfies V (xy) = V (y) · z
for all y, z ∈ A. We shall find an element x ∈ A such that V = Vx. Consider x := V e,

where e ∈ A is the unit of A; then, for all y ∈ A, we have V y = V (e y) = V e ·y = x · y.

In other words, we have shown that V = Vx, where x = V e. Next, we prove that A′

is norm-closed in L(A), so that it is a Banach space. Given {Vn} ⊆ A′ and y ∈ A, if

Vny → V y, then V ∈ A′; indeed, by the characteristic property, Vn(y1y2) = (Vny1) · y2

for all n ∈ N. Further Vn ∈ A′, hence there exists xn such that Vny = xny. The con-

dition Vny → V y is equivalent to xny → xy. For y = e we have Vn e = xn e = xn, and

xn = Vn e → V e. Upon writing x for V e, the sequence xny = Vny converges both to

V y and to xy. We conclude that V y = xy, that is V = Vx, whence A′ is closed under

pointwise convergence. On the set A′ there is a multiplication given by VxVy = Vxy,

since VxVyz = Vx(yz) = x(yz) = (xy)z = Vxyz. The operator T̂ : A′ → A defined by

T̂ : Vx 7→ x is a bijective linear operator. It is also bounded, indeed

‖Vx‖ = sup
‖y‖61

‖Vxy‖ = sup
‖y‖61

‖xy‖ >
∥∥∥∥x · e

‖ e ‖

∥∥∥∥ =
1

‖ e ‖
· ‖x‖,

so that ‖x‖ 6 ‖ e ‖ · ‖Vx‖, which says that T̂ is bounded by the constant ‖ e ‖. Since T̂ is

a bijective bounded linear operator, by the Inverse Mapping theorem [22, Theorem 12.5

p. 91], the operator T := T̂−1 : A→ A′ is bounded. We conclude that T is a continuous

isomorphism of linear spaces with continuous inverse. Finally, it is easy to see that the
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norm on A′, namely the operator norm

‖Vx‖ := inf {M ∈ R | ‖Vxy‖ 6M‖y‖ for all y ∈ A},

satisfies ‖VxVy‖ 6 ‖Vx‖ · ‖Vy‖ for every Vx, Vy ∈ A′, and ‖Te ‖ = ‖Ve‖ = 1. The equiva-

lent norm on A, defined by ‖x‖ := ‖Tx‖ satisfies the two conditions of the statement.

Corollary 6.1.8. Let A be a Banach algebra, let {xn}, {yn} ⊆ A, and let x, y ∈ A. If

xn → x and yn → y, then xnyn → xy.

Proof. Consider an equivalent norm on A satisfying ‖xy‖ 6 ‖x‖ · ‖y‖. Such a norm

exists by Lemma 6.1.7. Then

‖xnyn − xy‖ = ‖(xnyn − xny) + (xny − xy)‖
6 ‖xnyn − xny‖+ ‖xny − xy‖
= ‖xn(yn − y)‖+ ‖y(xn − x)‖
6 ‖xn‖ · ‖yn − y‖+ ‖y‖ · ‖xn − x‖.

By hypothesis, ‖xn − x‖ → 0 and ‖yn − y‖ → 0, as n → ∞. Moreover ‖x‖, ‖y‖ are

constants, hence ‖xnyn − xy‖ → 0 as n→∞, i.e. xnyn → xy.

Henceforth, in view of Lemma 6.1.7, we assume that the norm on any Banach algebra

satisfies the conditions ‖xy‖ 6 ‖x‖ · ‖y‖ and ‖ e ‖ = 1.

Recall that a bounded operator T : X → Y between normed spaces is said to be non-

extensive if ‖T‖ 6 1, i.e. ‖Tx‖ 6 ‖x‖ for all x ∈ X. A non-extensive operator is

sometimes called a weak contraction. Further, recall that a map between unital com-

plex algebras is a homomorphism (of unital complex algebras) if it preserves addition,

multiplication, scalar multiplication, and the unit.

Definition 6.1.9. A map f : A → B between Banach algebras is a Banach homomor-

phism, provided that it is a non-extensive homomorphism of complex algebras.

In particular, every Banach homomorphism is continuous.

Remark 6.1.10. Observe that every bijective Banach homomorphism is an isometry. In

fact, let T be a bijective bounded operator between Banach spaces. Then the inverse

operator T−1 is a bounded by the Inverse Mapping theorem [22, Theorem 12.5 p. 91].

Moreover,

1 = ‖TT−1‖ 6 ‖T‖ · ‖T−1‖,

whence ‖T−1‖ > ‖T‖−1 > 1. If T is a bijective Banach homomorphism, then 1 > ‖T‖ >
‖T−1‖−1 > 1, meaning that T is an isometry. In other words, a bijective homomorphism

of complex algebras is a Banach isomorphism if, and only if, it is isometric.

We now give some examples of Banach algebras.
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Example 6.1.11. Let C([0, 1],C) be the set of all the C-valued continuous functions

on the real interval [0, 1]. This is a (commutative) unital Banach algebra, whose norm

is given by the uniform norm

‖f‖∞ := sup
06t61

|f(t)| = max
06t61

|f(t)|,

for every f ∈ C([0, 1],C). The multiplication of the algebra is the pointwise multipli-

cation, and the unit is the constant function of value 1, i.e. e = 1[0,1]. The inequality

‖fg‖ 6 ‖f‖·‖g‖ is easily seen to be satisfied, and the unit e has obviously norm 1. More

generally, these observations hold for an arbitrary compact Hausdorff space X, not only

for the space X = [0, 1]. In other terms, C(X,C) is a (commutative) unital Banach

algebra.

Notation 6.1.12. In this chapter, the symbol C(X) will always denote the Banach algebra

C(X,C) of all the C-valued continuous functions on the compact Hausdorff space X.

Example 6.1.13. If X is a Banach space, and L(X) is the set of all bounded linear

operators from X to itself, then L(X) is a non-commutative Banach algebra. In fact it is

a Banach space by [50, 7B] if the norm of T ∈ L(X) is defined, as usual, as the operator

norm

‖T‖ := inf {M ∈ R | ‖Tx‖ 6M‖x‖ for all x ∈ X}.

Furthermore, the multiplication on L(X) is taken to be the composition of operators,

and the unit element is the identity operator on X. It is easy to see that, equipped with

this structure, L(X) is a Banach algebra which is, in general, non-commutative.

Example 6.1.14. Let Dn denote the subset of C([0, 1]) whose elements admit continuous

nth derivative. We remark that, if f ∈ Dn, then f belongs to Dm for every 0 6 m 6 n.

Define the following norm on the set Dn. For every element f ∈ Dn,

‖f‖ :=

n∑
k=0

max
06t61

|f (k)(t)|.

The latter norm is not submultiplicative. Indeed, consider the function f(t) := t, and

take g = f . Then fg : t 7→ t2, and

‖fg‖ = max
06t61

|t2|+ max
06t61

|2t|+ max
06t61

|2| = 5,

while

‖f‖ · ‖g‖ = (‖f‖)2 =

(
max
06t61

|t|+ max
06t61

|1|
)2

= 4.

In this case we can consider an equivalent submultiplicative norm on Dn, namely

|||f ||| :=
n∑
k=0

max06t61 |f (k)(t)|
k!

.

It is possible to show that Dn is a Banach space, and a Banach algebra if multiplication

is defined pointwise.
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6.1.2 Spectrum and Gelfand-Mazur theorem

Proposition 6.1.15. Let A be a Banach algebra, and let

G := {x ∈ A | there exists x−1 ∈ A}

be the set of invertible elements of A. The following hold.

1. G is an open subset of A.

2. The map x 7→ x−1, from G to itself, is continuous.

Proof. If A is the trivial Banach algebra {0 = e}, there is nothing to prove. Otherwise,

the set G is non-empty because e ∈ G. We shall first prove that, for all x ∈ A such

that ‖x‖ < 1, there exists (e−x)−1 ∈ A. In other words, a neighborhood of e consists

of invertible elements. Consider the series

e +x+ x2 + x3 + · · ·

in the Banach algebra A: it is convergent, since it satisfies Cauchy’s convergence test.

Indeed, from the inequality ‖xy‖ 6 ‖x‖ · ‖y‖, it easily follows by induction that ‖xi‖ 6
‖x‖i for every i ∈ N. Upon denoting q := ‖x‖, we have ‖xi‖ 6 qi. The condition q < 1

entails ∥∥∥∥∥
m∑

i=n+1

xi

∥∥∥∥∥ 6
m∑

i=n+1

‖xi‖ 6
m∑

i=n+1

qi → 0, as n→∞.

A Banach algebra is complete, so that e +
∑∞

i=1 x
i =: y ∈ A. We claim that y =

(e−x)−1; this will show that (e−x)−1 ∈ A. In fact, the equality (e−x)y = e holds

because

(e−x)y = (e−x) lim
n→∞

(e +x+ x2 + · · ·+ xn−1)

= lim
n→∞

(e−x)(e +x+ x2 + · · ·+ xn−1)

= lim
n→∞

(e +x+ x2 + · · ·+ xn−1 − x− x2 − x3 − · · · − xn)

= lim
n→∞

(e−xn)

= e .

Here xn goes to 0 as n → ∞, because the condition q < 1 implies ‖xn‖ 6 ‖x‖n 6 qn,

i.e. limn→∞ ‖xn‖ = 0. Now, to prove item 1, pick an element x ∈ G. We will show that

the open neighborhood

{x+ h | h ∈ A, ‖h‖ < 1
2‖x−1‖}

of x is contained in G, that is for every such h there exists (x + h)−1 ∈ A. We remark

that (x+ h) = x(e +x−1h), and

‖x−1h‖ 6 ‖x−1‖ · ‖h‖ < ‖x−1‖
2‖x−1‖ = 1

2 < 1.
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We proved above that, if ‖z‖ < 1, then e−z is invertible. Therefore the element e +x−1h

is invertible, and so is x+ h since

(x+ h)x−1(e +x−1h)−1 = (x+ h)(x+ h)−1 = e .

For item 2, let h be an element of A satisfying the condition ‖h‖ 6 1
2‖x−1‖ . Then

‖(x+ h)−1 − x−1‖ = ‖x−1(e +x−1h)−1 − x−1‖
= ‖x−1((e +x−1h)−1 − e)‖
6 ‖x−1‖ · ‖(e +x−1h)−1 − e ‖.

Setting y := x−1h, we find that the norm of the element y does not exceed 1, indeed we

previously observed that ‖y‖ 6 1
2 . Reasoning as above we have (e−y)−1 = e +y + y2 +

y3 + · · · , whence

(e +y)−1 = (e−(−y))−1 = e−y + y2 − y3 + · · · .

Consequently,

‖x−1‖ · ‖(e +y)−1 − e ‖ = ‖x−1‖ · ‖ − y + y2 − y3 + y4 − · · · ‖
= ‖x−1‖ · ‖y(−e+ y − y2 + y3 − · · · )‖
6 ‖x−1‖ · ‖y‖ · ‖ − e+ y − y2 + y3 − · · · ‖
6 ‖x−1‖ · ‖x−1‖ · ‖h‖ · ‖ − e+ y − y2 + y3 − · · · ‖
6 ‖x−1‖2 · ‖h‖ · (‖ − e ‖+ ‖y‖+ ‖ − y2‖+ ‖y3‖+ · · · )
6 ‖x−1‖2 · ‖h‖ · (1 + 1

2 + 1
22

+ 1
23

+ · · · )
= 2‖x−1‖2 · ‖h‖.

To sum up, we showed that ‖(x+ h)−1 − x−1‖ 6 2‖x−1‖2 · ‖h‖. It is clear that the real

number ‖(x+ h)−1 − x−1‖ goes to 0 as h→ 0. We conclude that the function x 7→ x−1

is continuous (in fact, it is Lipschitz continuous).

We state, for future reference, a useful fact that we showed in the proof of the foregoing

proposition.

Lemma 6.1.16. Let A be a non-trivial Banach algebra, and let x ∈ A. If ‖x‖ < 1, then

the element e−x is invertible.

Definition 6.1.17. Let A be a non-trivial Banach algebra, and let x ∈ A. The spectrum

of x is the set of complex numbers λ ∈ C for which x−λ e is not invertible. In symbols,

σx := {λ ∈ C | (x− λ e)−1 does not exist} ⊆ C.

The set Ωx := C \ σx is called the resolvent set of x. If λ ∈ Ωx, the element Rλ :=

(x− λ e)−1 ∈ A is a resolvent for x.

Remark 6.1.18. If A is the trivial Banach algebra {0 = e}, we set σ0 := ∅.
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Example 6.1.19. Consider the Banach algebra C(X), for some compact Hausdorff

space X. If f ∈ C(X), then σf = f(X). On the one hand, if λ ∈ f(X), then the

function f − λ1X has a zero, hence it is not invertible. This shows that f(X) ⊆ σf . On

the other hand, if λ /∈ f(X), then the function f − λ1X never vanishes on the space X.

Thus its inverse is a well-defined continuous function on X, so that λ /∈ σf .

Lemma 6.1.20. Let x ∈ A be an element of a non-trivial Banach algebra, and let λ ∈ C.

If |λ| > ‖x‖, then λ ∈ Ωx, i.e. x− λ e is invertible.

Proof. Write x− λ e = λ
(
x
λ − e

)
. Then ‖xλ‖ = ‖x‖

|λ| < 1, because |λ| > ‖x‖. By Lemma

6.1.16 the element x
λ − e is invertible. We conclude that (x− λ e)−1 ∈ A, since

(x− λ e)−1 =
(
λ
(
x
λ − e

))−1
= λ−1

(
x
λ − e

)−1
.

Corollary 6.1.21. If A is a Banach algebra and x ∈ A, then σx is a bounded subset of

C.

Proof. If A is the trivial Banach algebra {0 = e}, then σ0 = ∅ ⊆ C is clearly bounded.

If A is non-trivial and λ ∈ σx, then |λ| 6 ‖x‖ by Lemma 6.1.20.

Lemma 6.1.22. If A is a Banach algebra and x ∈ A, then Ωx is an open subset of C.

Proof. The statement is trivial if A is the trivial Banach algebra {0 = e}. Let ϕ : C→ A

be the map given by ϕ(λ) := x − λ e. It is easy to see that ϕ is a continuous function.

Further, it is elementary that Ωx = ϕ−1(G), where G ⊆ A is the set of invertible elements

of A. The set G is open by Proposition 6.1.15.(1), hence its preimage Ωx is an open

subset of C.

Corollary 6.1.23. If A is a Banach algebra and x ∈ A, then σx is a closed subset of

C.

Corollary 6.1.24. If A is a Banach algebra and x ∈ A, then σx is a compact subset of

C.

Proof. This follows at once from the Heine-Borel theorem [5, Theorem 3.30], since σx is

a closed and bounded subset of C by Corollaries 6.1.21 and 6.1.23.

Lemma 6.1.25 (Hilbert Identity). Let A be a Banach algebra, and let x ∈ A. Then,

for all λ, µ ∈ Ωx,

Rλ −Rµ = (λ− µ)RλRµ.

Proof. Writing (λ−µ) e = (x−µ e)− (x−λ e), and recalling that Rλ = (x−λ e)−1 and

Rµ = (x− µ e)−1, we see that

Rµ(λ− µ) eRλ = Rµ(x− µ e)Rλ −Rµ(x− λ e)Rλ
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if, and only if,

(λ− µ)RµRλ e = eRλ −Rµ e .

Therefore (λ− µ)RµRλ = Rλ −Rµ.

Corollary 6.1.26. Let A be a Banach algebra, and let x ∈ A. The function R : Ωx → A,

defined by R(λ) := Rλ, is analytic on Ωx.

Proof. By Lemma 6.1.25, we know that

Rλ−Rµ
λ−µ = RµRλ.

For µ→ λ, if the limit of the ratio exists, it coincides with the derivative of R evaluated

in λ ∈ Ωx. Firstly, observe that, if µ→ λ, then Rµ → Rλ. Indeed, assuming that µ→ λ,

we see that (x− µ e)→ (x− λ e). Hence

Rµ = (x− µ e)−1 → (x− λ e)−1 = Rλ,

by the continuity of the function x 7→ x−1 (Proposition 6.1.15.(2)). We conclude that

RµRλ → (Rλ)2, i.e. R is differentiable in every point λ ∈ Ωx, with derivative R′(λ) =

(Rλ)2.

Theorem 6.1.27. Let x ∈ A be an element of a non-trivial Banach algebra. Then the

spectrum of x is non-empty, i.e. σx 6= ∅.

Proof. Suppose by contradiction that there is x ∈ A such that σx = ∅ or, equivalently,

Ωx = C. Then the function R : λ 7→ (x− λ e)−1 is analytic on the whole complex plane.

Fix a real number K strictly greater than ‖x‖, and assume that |λ| > K. We have

(x− λ e)−1 = λ−1
(
x
λ − e

)−1
,

where ‖xλ‖ = ‖x‖
|λ| < 1. As |λ| → ∞, we have x

λ−e→ − e, and consequently
(
x
λ − e

)−1 →
(− e)−1 = − e. Since

(
x
λ − e

)−1
converges, ‖

(
x
λ − e

)−1 ‖ is bounded. It follows that

‖R(λ)‖ is also bounded, because

‖Rλ‖ = 1
|λ|‖

(
x
λ − e

)−1 ‖.

Now, we deal with the case |λ| 6 K. The function R is continuous, even differentiable,

and the norm function ‖ · ‖ is continuous. Since the domain {λ ∈ C | |λ| 6 K} is

compact, the function λ 7→ ‖R(λ)‖ is bounded. We have proved that, for all λ ∈ C,

the function ‖R(λ)‖ is bounded. Liouville’s theorem [4, p. 122] states that an analytic

bounded function on C is constant. In our case this constant must be 0, because Rλ =

(x− λ e)−1 = λ−1
(
x
λ − e

)−1 → 0, as |λ| goes to infinity. In other words, R : Ωx → A is

the constant function of value 0 ∈ A. But this leads to a contradiction, namely

e = (x− λ e)(x− λ e)−1 = (x− λ e)Rλ = 0.
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Thus, for every element x ∈ A of a non-trivial Banach algebra, there exists a complex

number λ such that the element x − λ e is not invertible. As a consequence, we obtain

the following

Theorem 6.1.28 (Gelfand-Mazur). Let A be a non-trivial Banach algebra in which

every non-zero element is invertible. Then A is isomorphic and isometric to C.

Proof. Consider an arbitrary element x ∈ A. By Theorem 6.1.27 there exists λ ∈ σx.

The element x−λ e is not invertible, hence x−λ e = 0, i.e. x = λ e. This means that, for

every non-zero x ∈ A there is a unique λx ∈ C such that x = λx e. This allows to define

a bijection A→ C by x 7→ λx. It is easy to check that the latter is an isomorphism, and

it is isometric since ‖x‖ = ‖λx e ‖ = |λx| · ‖ e ‖ = |λx| · 1 = |λx|.

6.1.3 Maximal ideals and multiplicative functionals

By a subspace of a Banach space X we understand a subset of X that is closed under

sum and scalar multiplication, in other words a linear subspace of X. We do not require

the subset be closed, i.e. that itself be a Banach space.

Definition 6.1.29. Given a Banach algebra A, an ideal of A is a subset I ⊆ A such

that I is a subspace of A and, for all x ∈ A, xI ⊆ I.

Any Banach algebra A contains two (possibly non-distinct) ideals, namely the trivial

ideal I = {0} and the improper ideal I = A.

Example 6.1.30. It is clear that the subset

I := {f ∈ C([0, 1]) | f
|[0,12 ]

= 0}

is an ideal of the Banach algebra C([0, 1]).

The following result states that an arbitrary proper ideal consists of non-invertible ele-

ments.

Lemma 6.1.31. If I ⊆ A is a proper ideal then, for all x ∈ I, x−1 does not exist in A.

Proof. Suppose, by contradiction, that there exists an invertible element x ∈ I, that

is x−1 ∈ A. If z ∈ A is an arbitrary element of the algebra, then zx−1 ∈ A entails

(zx−1)I ⊆ I. In particular, since x ∈ I, we get z = (zx−1)x ∈ I. Therefore I = A, but

this contradicts the assumption that I is a proper ideal.

On the other hand, any non-invertible element of a Banach algebra is contained in some

proper ideal.

Lemma 6.1.32. Let A be a Banach algebra, and let x ∈ A. If x is not invertible, then

there is a proper ideal I ⊆ A such that x ∈ I.
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Proof. Pick an element x ∈ A which is not invertible, and consider the set

xA := {xy | y ∈ A}.

It is elementary that xA is an ideal of A. Moreover it is proper because e /∈ xA, since x

is not invertible. Obviously we have x = x e ∈ xA.

Corollary 6.1.33. A Banach algebra A does not admit any proper non-trivial ideal if,

and only if, every non-zero element of A is invertible.

Remark 6.1.34. By Theorem 6.1.28 and Corollary 6.1.33 it follows at once that a Banach

algebra does not admit any proper non-trivial ideal if, and only if, it is isomorphic and

isometric to C. This should be compared with Hölder’s Theorem 2.1.23.

Definition 6.1.35. An ideal m ⊆ A of a Banach algebra A is said to be maximal if it

is proper and it is not strictly contained in any proper ideal of A. In other words, if

m ⊆ A is a proper ideal and I ⊆ A is a proper ideal extending m, then I = m.

Maximal ideals play a key rôle in Gelfand representation theory of (commutative) Banach

algebras; thus we shall now give a very important example of maximal ideal.

Example 6.1.36. Consider the Banach algebra C([0, 1]), and pick a point t0 ∈ [0, 1].

We will see that

mt0 := {f ∈ C([0, 1]) | f(t0) = 0}

is a maximal ideal of C([0, 1]), and every maximal ideal of the algebra is of this kind,

for a unique t0. One can easily check that mt0 is an ideal. Choosing g ∈ C([0, 1]) such

that g(t0) 6= 0, and h ∈ C([0, 1]), we can write

h(t) = h(t0)
g(t0)g(t) +

(
h(t)− h(t0)

g(t0)g(t)
)

︸ ︷︷ ︸
∈mt0

,

so that an arbitrary continuous function h is combination of g with an element of mt0 .

In other terms, the codimension of mt0 is 1. If we add any element to mt0 , we get

something of codimension 0, which is the whole C([0, 1]). Hence mt0 is a maximal ideal.

Viceversa, for every maximal ideal m ⊆ A, there exists t0 ∈ [0, 1] such that m = mt0 .

Indeed, assume by contradiction that, for all τ ∈ [0, 1], there exists a function fτ ∈ m

such that fτ (τ) 6= 0. Then |fτ (τ)| > δτ > 0 for some δτ . Consequently, for all τ ∈ [0, 1],

there is a continuous function fτ ∈ C([0, 1]), and a neighborhood Uτ of τ , such that

|fτ (t)| > δτ > 0 for every t ∈ Uτ . The family {Uτ}τ∈[0,1] is an open covering of the

compact set [0, 1], hence there is a finite subcover {Uτi}i=1,...,n of [0, 1]. Notice that

fτi ∈ m ⊂ C([0, 1]), whence fτi ∈ C([0, 1]), and fτi · fτi ∈ m. It follows that

n∑
i=1

fτi(t) · fτi(t) =
n∑
i=1

|fτi(t)|2 > min
16i6n

δ2
τi := δ > 0.

Define f(t) :=
∑n

i=1 fτi(t) · fτi(t) ∈ m. The inequality |f(t)| > δ entails that f(t) is

invertible, however a proper ideal cannot contain invertible elements by Lemma 6.1.31.



6.1. Banach algebras 121

This shows that there is t0 ∈ [0, 1] such that m = mt0 . The real number t0 is unique:

indeed, assume that mt0 = m = mt1 for some distinct t0, t1 ∈ [0, 1]. This means that

m = {f(t) ∈ C([0, 1]) | f(t0) = 0 = f(t1)}.

By Urysohn’s lemma [28, Theorem 1.5.11], the ideal mt1 strictly contains m, which

contradicts the maximality of m. The same arguments apply to the study of the maximal

ideals of the Banach algebra C(X), for an arbitrary compact Hausdorff space X.

Remark 6.1.37. Notice that, if I is a proper ideal of the Banach algebra A, then its

closure I is again a proper ideal of A. The set G of invertible elements of A is open by

Proposition 6.1.15, whence A \G is closed. Since I 6= A and every element of an ideal is

not invertible by Lemma 6.1.31, we see that I ⊂ A \G. Then I ⊆ A \G, so that I 6= A.

Corollary 6.1.38. Every maximal ideal in a Banach algebra is closed.

Proof. Let m be a proper ideal of a Banach algebra A. Then m is a proper ideal

containing m. By the maximality of m, we conclude that m = m, i.e. m is closed.

Theorem 6.1.39. Every proper ideal of a Banach algebra is contained in some maximal

ideal.

Proof. Let I be a proper ideal of a Banach algebra A. If I is maximal, there is nothing

to prove. Assuming that I is not maximal, we shall consider the set M of those proper

ideals of A extending I, partially ordered by set-theoretic inclusion. The family M is

non-empty because I ∈M. If {Iα}α is a totally-ordered subset ofM, define I0 :=
⋃
α Iα.

It is possible to see that I0 ∈M and that it is an upper bound for the family {Iα}α. By

Zorn’s lemma there exists a maximal element m ∈M, that is a maximal ideal containing

I.

Corollary 6.1.40. An element of a Banach algebra A is invertible if, and only if, it is

not contained in any maximal ideal of A.

Proof. The statement is clearly true for the element 0 ∈ A. Further, Lemma 6.1.31

states that proper ideals do not contain invertible elements. In particular, maximal

ideals do not contain invertible elements. On the other hand, suppose that 0 6= x ∈ A
is not invertible. Then it is contained in some proper ideal I, by Lemma 6.1.32. But

Theorem 6.1.39 entails that there is a maximal ideal m such that x ∈ I ⊆ m, which is a

contradiction.

Definition 6.1.41. A multiplicative functional on a Banach algebra A is a non-zero

function f : A→ C satisfying f(xy) = f(x)f(y) for all x, y ∈ A.

Example 6.1.42. Consider the Banach algebra C([0, 1]). Fix t0 ∈ [0, 1] and define the

map ft0 : C([0, 1])→ C by setting, for all x ∈ C([0, 1]), ft0(x) := x(t0). In other words,

ft0 is the evaluation at the point t0. This is a multiplicative functional, because

ft0(xy) = xy(t0) = x(t0)y(t0) = ft0(x)ft0(y).
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Proposition 6.1.43. If A is a Banach algebra and f : A→ C is a multiplicative func-

tional, the following hold.

1. f(e) = 1.

2. For every invertible element x ∈ A, f(x−1) = 1
f(x) .

Proof. For item 1, we have f(e) = f(e · e) = f(e)f(e), so that f(e)(f(e) − 1) = 0. It

follows that either f(e) = 1 or f(e) = 0. If f(e) = 0 then, for all x ∈ A, we have

f(x) = f(e ·x) = f(e) · f(x) = 0 · f(x) = 0.

However we assumed that f is a non-zero function. Therefore f(e) = 1. Using the latter

identity in order to prove item 2, we see that

1 = f(e) = f(xx−1) = f(x)f(x−1).

In other words, f(x−1) = 1
f(x) .

Recall that a functional f : A→ C on a Banach algebra (more generally, on a C-vector

space) A is said to be linear if it satisfies

f(λx+ µy) = λf(x) + µf(y),

for all x, y ∈ A and for all λ, µ ∈ C. We remark that there exist no linear multiplicative

functionals on the trivial Banach algebra {0 = e}. Indeed, one such functional f would

satisfy 0 = f(0) = f(e) = 1.

Proposition 6.1.44. If f is a multiplicative linear functional on a Banach algebra A,

and x ∈ A is such that ‖x‖ < 1, then |f(x)| < 1.

Proof. Suppose, by contradiction, that f(x) = λ, where |λ| > 1. Observe that ‖xλ‖ < 1,

hence x
λ−e is invertible by Lemma 6.1.16. Consequently, the element x−λ e is invertible

because x − λ e = λ
(
x
λ − e

)
. By Proposition 6.1.43.(2) we know that f(x − λ e) 6= 0,

whence f(x)− f(λ e) 6= 0 if, and only if, f(x) 6= λf(e). However, Proposition 6.1.43.(1)

ensures that f(e) = 1. Thus f(x) 6= λ, a contradiction.

Corollary 6.1.45. Every multiplicative linear functional on a Banach algebra is bounded,

with norm 1. In particular, it is continuous.

Proof. Let A be a Banach algebra. Denote by B := {x ∈ A | ‖x‖ 6 1} the unit ball of

A, and by B◦ the interior of B. Then

‖f‖ = sup
x∈B
|f(x)| = sup

x∈B◦
|f(x)| 6 1,

by Proposition 6.1.44. Finally, we notice that e ∈ B and f(e) = 1 by Proposition

6.1.43.(1), whence ‖f‖ = 1. Since a linear functional is continuous if, and only if, it is

bounded [46, Theorem 2 p. 77], f is continuous on A.
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Henceforth, we assume that every multiplicative functional on a Banach algebra is linear.

For every such multiplicative functional f : A→ C, we can define its kernel as

ker f := {x ∈ A | f(x) = 0}.

The structure of the kernel of a multiplicative functional is made explicit in the following

Proposition 6.1.46. If f is a multiplicative functional on a Banach algebra A, then

ker f is a maximal ideal of A.

Proof. It is elementary that ker f is an ideal of A. Moreover, ker f is proper since f is

a non-zero function. Hence there exists x ∈ A \ ker f . Furthermore, the codimension of

ker f is 1, because every element y ∈ A can be written as

y = f(y)
f(x)x+

(
y − f(y)

f(x)x
)
,

where y − f(y)
f(x)x ∈ ker f . This shows that ker f is maximal.

For any closed ideal I of a Banach algebra A, define the set A/I := {x+I | x ∈ A}. The

latter is a Banach space by [50, Theorem 6B]. The family of cosets A/I can be equipped

with the norm

‖x+ I‖ := inf
U∈x+I

‖U‖,

for every x+I ∈ A/I. If x+I, y+I ∈ A/I, we can even define a product in the following

way: (x+ I)(y + I) := xy + I. Then

‖(x+ I)(y + I)‖ = inf
U∈x+I, V ∈y+I

‖UV ‖

6 inf
U∈x+I, V ∈y+I

‖U‖ · ‖V ‖

= inf
U∈x+I

‖U‖ · inf
V ∈y+I

‖V ‖

= ‖x+ I‖ · ‖y + I‖.

Furthermore, E := e +I is a unit for A/I. Indeed, for all x+ I ∈ A/I,

E(x+ I) = (e +I)(x+ I) = (ex) + I = x+ I.

The norm of E does not exceed 1:

‖E ‖ = ‖ e +I‖ = inf
U∈e+I

‖U‖ 6 ‖ e ‖ = 1.

In fact, we shall prove that ‖E ‖ = 1. Suppose, by contradiction, that ‖E ‖ < 1, i.e.

there exists x ∈ I such that ‖ e +x‖ < 1. This means, by Lemma 6.1.16, that x is

invertible; but the ideal I cannot contain invertible elements, by Lemma 6.1.31. Hence

‖E ‖ = 1. The Banach algebra A/I is well-defined, and it is called the quotient of the

Banach algebra A with respect to its closed ideal I.
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Remark 6.1.47. If I ⊆ A is a closed ideal, then the quotient map q : A→ A/I, mapping

x ∈ A to x+ I ∈ A/I, is continuous because it is clearly norm-decreasing. Further, q is

multiplicative. Indeed, for all x, y ∈ A,

q(xy) = (xy) + I = (x+ I)(y + I) = q(x)q(y).

Lemma 6.1.48. Let I be a closed ideal of a Banach algebra A, let J be a closed ideal

of the quotient A/I, and let q : A→ A/I be the quotient map. Then q−1(J) is a closed

ideal of A extending I.

Proof. The fact that q−1(J) is an ideal of A is a straightforward computation. Further,

q−1(J) is closed in A, being the preimage of a closed subset under a continuous function

(see Remark 6.1.47).

Proposition 6.1.46 states that the kernel of a multiplicative functional is a maximal

ideal, so that to every multiplicative functional f we can associate the maximal ideal

ker f . The next result shows that the converse holds: to every maximal ideal m we can

associate a multiplicative functional, namely q : A→ A/m ∼= C.

Proposition 6.1.49. If m is a maximal ideal of a Banach algebra A, then A/m ∼= C.

Proof. Let q : A → A/m denote the quotient map. By Corollary 6.1.33 and Theorem

6.1.28, it suffices to prove that A does not admit non-trivial proper ideals. Suppose, by

contradiction, that there exists a proper non-trivial ideal J ⊆ A/m. By Remark 6.1.37

we can assume, without loss of generality, that J is a closed ideal. Then q−1(J) is a closed

ideal of A by Lemma 6.1.48. Since J is non-trivial, the ideal q−1(J) strictly contains

the maximal ideal m. Therefore q−1(J) = A, i.e. J is improper, a contradiction.

6.1.4 Gelfand transform

For a Banach algebra A, we agree to denote by fm the functional associated to the

maximal ideal m of A, as provided by Proposition 6.1.49. In more detail, fm is obtained

as the composition of the quotient map A → A/m with the isometric isomorphism

A/m ∼= C. The functional fm is obviously linear, and it is multiplicative by Remark

6.1.47. Now, observe that the correspondence between multiplicative functionals and

maximal ideals, given by f → ker f is surjective: every maximal ideal arises as the

kernel of a multiplicative functional. Indeed, it is immediate to verify that m = ker fm.

On the other hand, this correspondence is injective. If f, g : A → C are multiplicative

functionals satisfying ker f = ker g, then g = λf for some λ ∈ C, by [22, Proposition

A.1.4]. Then

1 = g(e) = λf(e) = λ · 1 = λ,

so that f = g. The existence of a bijection between the set of maximal ideals of a Banach

algebra, and the set of multiplicative functionals on the algebra, allows us to define the
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Gelfand transform in two, completely equivalent, ways. We shall work with the family

of multiplicative functionals, denoted by

Σ := {f : A→ C | f is a multiplicative functional }.

In view of the foregoing discussion, Σ is called the maximal spectrum (or the maximal

ideal space) of the Banach algebra A. The set Σ is contained in the collection W

of all bounded linear functionals on the Banach algebra A. Equipped with pointwise

operations, the space W is a C-vector space, and it is usually called the conjugate (or

dual) space of A. The space W can be turned into a topological space in two different

ways. On the one hand, we have the topology induced by (the metric induced by)

the usual operator norm. On the other hand, we can define the so-called weak-star

topology on the conjugate space W, induced by the product topology on the space

CA. Henceforth, we shall regard Σ as a topological space with respect to the weak-star

topology. We remark that the maximal spectrum of the trivial Banach algebra {0 = e}
is empty. The following easy result describes the convergence of sequences in the space

W:

Lemma 6.1.50. Let W be the space of bounded linear functionals on a Banach algebra

A, equipped with the weak-star topology. A sequence {fn}n∈N ⊆ W converges to the

element f ∈W if, and only if, fn(x)→ f(x) for all x ∈ A.

Remarkably enough, we find

Proposition 6.1.51. The maximal spectrum Σ of a Banach algebra is compact, with

respect to the weak-star topology.

Proof. If the Banach algebra is trivial, then its maximal spectrum is empty and there

is nothing to prove. Hence, we shall assume that A is a non-trivial Banach algebra.

Alaoglu’s theorem [50, Theorem 9B] states that, if X is a normed space, then the closed

unit ball in the conjugate space W (with respect to the operator norm) is compact in

the weak-star topology. The maximal spectrum Σ of A is contained in the unit ball of

W by Corollary 6.1.45, hence it suffices to prove that Σ is closed in W, because a closed

subset of a compact space is compact. Let {fn}n∈N ⊆ Σ be a sequence of multiplicative

functionals converging to the functional f0 ∈ W. By Lemma 6.1.50, this means that

fn(x) → f0(x) for every x ∈ A. We will prove that f0 is a multiplicative functional, so

that f0 ∈ Σ. For all x, y ∈ A we have fn(xy)→ f0(xy). Moreover, by Corollary 6.1.8,

fn(xy) = fn(x) · fn(y)→ f0(x) · f0(y).

This shows that, for all x, y ∈ A, f0(xy) = f0(x) · f0(y). Thus Σ is compact.

Remark 6.1.52. Proposition 6.1.51, as stated above, holds for unital (commutative)

Banach algebras. In general, if a Banach algebra does not admit unit, its maximal

spectrum is a locally compact space, i.e. a space in which every point has a closed

compact neighborhood (see [50, Theorem 19B]).
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Given a Banach algebra A and an element x ∈ A, define the function x̂ : Σ → C by

setting, for all f ∈ Σ,

x̂(f) := f(x).

The function x̂ is continuous, and the map

Λ: A→ C(Σ), Λ(x) := x̂

is a multiplicative linear operator [22, Theorem 8.9 p. 220]. The operator Λ is called

the Gelfand transform.

Proposition 6.1.53. If A is a Banach algebra, then the Gelfand transform

Λ: A→ C(Σ)

has norm 1. In particular, Λ is a continuous operator.

Proof. By Corollary 6.1.45, for all x ∈ A, we have

‖Λx‖ = ‖x̂‖ = sup
f∈Σ
|x̂(f)| = sup

f∈Σ
|f(x)| 6 1 · ‖x‖ = ‖x‖.

In other terms, ‖Λ‖ 6 1. In fact ‖Λ‖ = 1, because ‖Λ e ‖ = ‖1Σ‖ = 1.

Theorem 6.1.54. If A is a Banach algebra and x ∈ A, then σx = {f(x) | f ∈ Σ}. In

other words, σx = x̂(Σ).

Proof. If A is the trivial Banach algebra, there is nothing to prove. Recall that, by

definition of the spectrum of an element, λ ∈ σx if the element x− λ e is not invertible.

By Corollary 6.1.40, λ ∈ σx if, and only if, there exists a maximal ideal m ⊆ A such that

x−λ e ∈ m. Since every maximal ideal is the kernel of a multiplicative functional, this is

equivalent to the existence of a multiplicative functional f ∈ ∆ such that x−λ e ∈ ker f .

In turn, f(x− λ e) = 0, if, and only if,

f(x) = f(λ e) = λ · f(e) = λ · 1 = λ.

That is, λ ∈ {f(x) | f ∈ Σ}.

Example 6.1.55. Consider the Banach algebra C([0, 1]). For every multiplicative func-

tional h on A there exists a unique t0 ∈ [0, 1] such that, for all f ∈ C([0, 1]), h(f) = f(t0)

(cf. Example 6.1.36). Then Theorem 6.1.54 states nothing but

σf = {f(t) | t ∈ [0, 1]} = f([0, 1]).

Definition 6.1.56. The radical of a Banach algebra A is the set

RadA := {x ∈ A | f(x) = 0 ∀f ∈ Σ}.

The Banach algebra A is said to be semisimple if it has trivial radical, i.e. RadA = {0}.
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Remark 6.1.57. By definition of radical, an element x ∈ A belongs to RadA if, and

only if, x ∈ ker f for all f ∈ Σ. Given the bijection between maximal ideals of A and

multiplicative functionals on A, this is equivalent to x belonging to every maximal ideal

of A. Therefore, the radical of A is the intersection of all the maximal ideals of A:

RadA =
⋂
{m ⊆ A | m is a maximal ideal}.

In fact, it is easy to see that RadA is an ideal of A. Another way of describing the

radical ideal is the following. Observe that, if x ∈ A and f ∈ Σ, then f(x) = 0 if, and

only if, x̂(f) = 0. This means that

RadA = ker Λ.

The latter fact has an immediate consequence.

Lemma 6.1.58. For every Banach algebra A, the Gelfand transform Λ: A → C(Σ) is

injective if, and only if, A is semisimple.

Therefore, if A is a semisimple Banach algebra, the Gelfand transform provides a Banach

isomorphism between A and

Â := Λ(A) = {x̂ ∈ C(Σ) | x ∈ A}.

The next formula allows us to compute the norm of the Gelfand transform of an element

x, in terms of the norm of x.

Proposition 6.1.59. For every element x ∈ A of a Banach algebra,

‖x̂‖ = lim
n→∞

n
√
‖xn‖.

Proof. See [50, Theorem 24A].

We conclude with one more characterisation of a semisimple Banach algebra A. We

agree to say that a set T of bounded linear functionals on A is total if the only element

x ∈ A satisfying f(x) = 0, for all f ∈ T , is x = 0. From the very definition of radical, it

follows

Lemma 6.1.60. A Banach algebra is semisimple if, and only if, its maximal spectrum

Σ is a total set.

6.1.5 Involution

Our main example of a Banach algebra is C([0, 1]) or, more generally, C(X) for some

compact Hausdorff space X. If f : X → C is a continuous function, it is promptly

recognised that its complex conjugate f : X → C is again a continuous function. We

recall that the function f is defined, for all x ∈ X, by f(x) := f(x). The complex

conjugation has an analogue in many other Banach algebras, leading to the notion of

involution.
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Definition 6.1.61. Let A be a Banach algebra. An operation ∗ : A → A is called an

involution if it satisfies the following properties, for all λ ∈ C and for all x, y ∈ A.

1. (x+ y)∗ = x∗ + y∗.

2. (λx)∗ = λx∗.

3. (xy)∗ = y∗x∗.

4. (x∗)∗ = x.

Example 6.1.62. Let us consider the algebra B(H) of all the bounded operators from

a Hilbert space H to itself. This is a non-commutative Banach algebra, but nevertheless

it admits an involution mapping an operator D ∈ B(H) to the adjoint operator D∗

defined, for every x, y ∈ H, by

〈Dx, y〉 = 〈x,D∗y〉.

Definition 6.1.63. Let A,B be Banach algebras with an involution. A Banach homo-

morphism f : A→ B is a Banach ∗-homomorphism if, for all x ∈ A, f(x∗) = f(x)∗.

Henceforth, we assume that any Banach algebra is endowed with an involution.

Definition 6.1.64. An element x ∈ A of a Banach algebra is self-adjoint , provided that

it is fixed by the involution, i.e. x∗ = x.

Proposition 6.1.65. If A is a Banach algebra and x ∈ A, then the following hold.

1. x+ x∗, i(x− x∗), and xx∗ are self-adjoint elements.

2. There exist unique self-adjoint elements u, v ∈ A such that x = u+ iv.

Proof. Item 1 is proved by means of straightforward computations.

(x+ x∗)∗ = x∗ + x∗∗ = x∗ + x = x+ x∗,

(i(x− x∗))∗ = i(x− x∗)∗ = −i(x∗ − x∗∗) = −i(x∗ − x) = i(x− x∗),

(xx∗)∗ = x∗∗x∗ = xx∗.

In order to prove item 2, define

u := 1
2(x+ x∗), and v := − i

2(x− x∗).

The elements u, v are self-adjoint, indeed(
1
2(x+ x∗)

)∗
= 1

2(x+ x∗)∗ = 1
2(x+ x∗),(

− i
2(x− x∗)

)∗
= −1

2(i(x− x∗))∗ = −1
2(i(x− x∗)) = − i

2(x− x∗).
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Moreover,

u+ iv = 1
2(x+ x∗) + 1

2(x− x∗) = 1
2x+ 1

2x = x.

To prove the uniqueness of u and v, suppose that u′, v′ are self-adjoint elements satisfying

u+ iv = x = u′ + iv′. Then

u− iv = (u+ iv)∗ = x∗ = (u′ + iv′)∗ = u′ − iv′,

and consequently 2u = x+x∗ = 2u′, so that u = u′. We conclude that v = v′ also holds.

Self-adjoint elements in a Banach algebra play the same rôle of real numbers in C.

In the following, we state some more properties of the involution operation.

Proposition 6.1.66. If A is a Banach algebra, the following hold.

1. The unit e ∈ A is a self-adjoint element.

2. For all x ∈ A, x is invertible if, ad only if, x∗ is invertible. In this case, we have

(x∗)−1 = (x−1)∗.

3. For all x ∈ A, σx∗ = σx := {λ ∈ C | λ ∈ σx}.

Proof. Item 1 holds, since

e = (e∗)∗ = (e e∗)∗ = e∗ e∗∗ = e∗ e = e∗ .

Regarding item 2, assume that there exists x−1 ∈ A. Then

e = e∗ = (xx−1)∗ = (x−1)∗x∗,

hence x∗ is invertible and (x∗)−1 = (x−1)∗. On the other hand, suppose that there exists

(x∗)−1 ∈ A. It follows

e = e∗ = (x∗(x∗)−1)∗ = ((x∗)−1)∗x∗∗ = ((x∗)−1)∗x,

so that x is invertible. Lastly, in order to prove item 3, we shall equivalently show that

λ /∈ σx if, and only if, λ /∈ σx∗ , for all λ ∈ C. Recall that λ /∈ σx if, and only if, x−λ e is

invertible. By item 2, this happens precisely when (x− λ e)∗ is invertible, in which case

((x− λ e)∗)−1 = ((x− λ e)−1)∗. Now,

(x− λ e)∗ = x∗ − λ e∗ = x∗ − λ e .

Hence there exists ((x− λ e)∗)−1 if, and only if, λ /∈ σx∗ if, and only if, λ /∈ σx∗ .

Proposition 6.1.67. If A is a semisimple Banach algebra, then the involution operation

on A is continuous, i.e. xn → x entails x∗n → x∗.

The proof of the proposition above requires the following
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Lemma 6.1.68. Let A be a Banach algebra, and let h ∈ Σ be a multiplicative functional

on A. Then the functional

φ : A→ C, φ(x) := h(x∗)

is multiplicative.

Proof. The operator φ is linear, because

φ(x+ y) = h((x+ y)∗) = h(x∗ + y∗) = h(x∗) + h(y∗) = h(x∗) + h(y∗) = φ(x) + φ(y),

and, for all λ ∈ C,

φ(λx) = h((λx)∗) = h(λx∗) = λh(x∗) = λh(x∗) = λφ(x).

It is bounded since h is a bounded operator, and ‖φ‖ = ‖h‖ = ‖h‖. Finally, φ is

multiplicative:

φ(xy) = h((xy)∗) = h(y∗x∗) = h(y∗)h(x∗) = h(y∗) · h(x∗) = h(x∗) · h(y∗) = φ(x)φ(y).

Proof of Proposition 6.1.67. By the Closed Graph theorem [22, Theorem 12.6 p. 91],

every closed linear operator defined on a Banach space is bounded. Hence, to prove

the boundedness of the involution operation ∗ : A → A, which is equivalent to its

continuity (see [46, Theorem 1 p. 96]), it suffices to show that it is closed. In other

words, we shall prove that, if xn → x and x∗n → y, then y = x∗. Pick a multiplicative

functional h ∈ Σ, and consider the functional φ(x) := h(x∗). By Lemma 6.1.68 φ is

bounded, hence continuous. This means that, if xn → x, then limn→∞ φ(xn) = φ(x), i.e.

limn→∞ h(x∗n) = h(x∗). However, since h is continuous by Corollary 6.1.45, and x∗n → y,

we know that limn→∞ h(x∗n) = h(y). Therefore h(x∗) = h(y). It follows that, for all

h ∈ Σ, h(x∗) = h(y), i.e. h(x∗ − y) = 0. Since Σ is total by Lemma 6.1.60, we conclude

that x∗ − y = 0, that is x∗ = y.

6.2 Gelfand-Neumark duality

Definition 6.2.1. A commutative unital C∗-algebra is a commutative unital Banach

algebra A with an involution satisfying, for all x ∈ A, the C∗-identity

‖xx∗‖ = ‖x‖2.

Unless otherwise stated, by a C∗-algebra we understand a commutative unital C∗-

algebra.
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Example 6.2.2. The fundamental example of C∗-algebra is the Banach algebra C(X),

where X is a compact Hausdorff space and the involution is given by complex conjuga-

tion. The C∗-identity is satisfied for all f ∈ C(X):

‖ff∗‖ = ‖ff‖ = ‖|f |2‖ = sup
x∈X
|f(x)|2 = sup

x∈X
|f(x)| · sup

x∈X
|f(x)| = ‖f‖ · ‖f‖ = ‖f‖2.

In fact, the Gelfand-Neumark representation theorem states that every (commutative,

unital) C∗-algebra is of the kind C(X) for some compact Hausdorff space X. Further,

there is a canonical choice for the space X: this is the maximal spectrum Σ of the

algebra.

Lemma 6.2.3. Let A be a C∗-algebra, and let u ∈ A be a self-adjoint element. Then,

for all f ∈ Σ, f(u) ∈ R. In other words, σu ⊆ R.

Proof. Let α, β ∈ R be such that f(u) = α + βi. We shall prove that β = 0. Upon

considering the element z = u+ it e ∈ A, where t ∈ R, we have

z∗ = u∗ + it e∗ = u− ite,

and

zz∗ = (u+ it e)(u− it e) = u2 + t2 e2 = u2 + t2 e .

Now, consider the real number |f(z)|2. On the one hand,

|f(z)|2 = |f(u+ it e)|2 = |f(u) + h(it e)|2 = |f(u) + ith(e)|2

= |f(u) + it · 1|2 = |f(u) + it|2 = |α+ βi+ it|2 = |α+ (β + t)i|2

= α2 + (β + t)2 = α2 + β2 + 2βt+ t2.

On the other hand, |f(z)|2 6 ‖z‖2 by Corollary 6.1.45, and

‖z‖2 = ‖zz∗‖ = ‖u2 + t2 e ‖ 6 ‖u2‖+ ‖t2 e ‖ = ‖u2‖+ t2.

Therefore α2 + β2 + 2βt + t2 6 ‖u2‖ + t2, i.e. α2 + β2 + 2βt 6 ‖u2‖. Since u is fixed,

the right-hand side of the inequality is constant, while the left-hand side depends on

t ∈ R. If we suppose by contradiction that β 6= 0, then the inequality does not hold for

t→ +∞ (if β > 0) or for t→ −∞ (if β < 0). Hence β = 0, that is f(u) ∈ R.

Lemma 6.2.4. If A is a C∗-algebra, then the Gelfand transform

Λ: A→ C(Σ)

is an injective isometric ∗-homomorphism.

Proof. We must prove that Λ is an injective isometric homomorphism of complex alge-

bras, preserving the involution. It is elementary that it is a homomorphism of complex

algebras; in particular, it preserves the unit by Proposition 6.1.43.(1). By the very defi-

nition of the Gelfand transform, Λ preserves the involution if, and only if, for all x ∈ A,

x̂∗ = x̂. By Proposition 6.1.65 we can find self-adjoint elements u, v ∈ A such that
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x = u+ iv. Then x∗ = u∗ + iv∗ = u− iv and, since Λ is a linear operator, x̂∗ = û− iv̂.

We remark that Lemma 6.2.3 entails that, if u ∈ A is a self-adjoint element, then

û(f) = f(u) = f(u) = û(f),

for all multiplicative functionals f ∈ Σ. In other terms, û = û for any self-adjoint

element u ∈ A, whence

x̂∗ = û− iv̂ = û+ iv̂ = x̂.

Stating that the Gelfand transform Λ: A → C(Σ) is an isometry, means that, for all

x ∈ A, ‖Λx‖ = ‖x‖. Assume that y ∈ A is self-adjoint; we claim that ‖y2n‖ = ‖y‖2n ,

for all n ∈ N. If n = 1, then ‖y2‖ = ‖yy∗‖ = ‖y‖2. For an arbitrary positive integer n,

we have ‖y2n‖ = ‖(y2n−1
)2‖. Observe that the element y2n−1

is self-adjoint, since(
y2n−1

)∗
= (y∗)2n−1

= y2n−1
.

Thus ‖(y2n−1
)2‖ = ‖y2n−1‖2 and, by the inductive hypothesis,

‖y2n−1‖2 =
(
‖y‖2n−1

)2
= ‖y‖2n .

Now, Proposition 6.1.59 shows that

‖Λy‖ = ‖ŷ‖ = lim
n→∞

n
√
‖yn‖ = lim

n→∞
2n
√
‖y2n‖ = lim

n→∞
2n
√
‖y‖2n = ‖y‖.

If x ∈ A is an arbitrary element, we obtain a self-adjoint element by considering y := xx∗.

In this case, ‖y‖ = ‖ŷ‖ if, and only if,

‖xx∗‖ = ‖x̂x∗‖ = ‖x̂x̂∗‖ = ‖x̂x̂‖ = ‖|x̂|2‖ = ‖x̂‖2,

where we used the fact that Λ is a multiplicative operator. It follows that ‖x‖2 =

‖xx∗‖ = ‖x̂‖2, whence

‖x‖ = ‖x̂‖ = ‖Λx‖.

To conclude, it suffices to show that the Λ is injective. Let x ∈ A satisfy Λx = 0 or,

equivalently, ‖Λx‖ = 0. Since Λ is an isometry, ‖x‖ = ‖Λx‖ = 0, i.e. x = 0.

Then, Lemma 6.1.58 entails

Corollary 6.2.5. Every C∗-algebra is semisimple.

The following representation result, due to Gelfand and Neumark [32, Lemma 1], is

central in the theory of C∗-algebras.

Theorem 6.2.6 (Gelfand-Neumark). If A is a C∗-algebra, then the Gelfand transform

Λ: A→ C(Σ)

is an isometric ∗-isomorphism.
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Proof. Lemma 6.2.4 states that the operator Λ is an injective isometric ∗-homomorphism.

Now, we shall prove that it is surjective. In fact, it suffices to show that the range

Â := Λ(A) is dense in C(Σ), since an isometric linear operator between Banach spaces

has closed range. To prove the latter claim, assume that Λxn → y in Â. Then,

‖Λxn − Λxm‖ = ‖Λ(xn − xm)‖ = ‖xn − xm‖.

The sequence {xn}n∈N is convergent in A, hence there exists x ∈ A such that xn → x. By

the continuity of the operator Λ, we have Λxn → Λx. Therefore y = Λx, and the range Â

is closed. In order to prove that Â is dense in C(Σ), we check that the hypotheses of the

Stone-Weierstrass theorem [38, Theorem 7.34] are satisfied. Firstly, if f ∈ Â then f̂ ∈ Â,

indeed f̂ = f̂∗ (since Λ preserves the involution operation). The constant function 1Σ

belongs to Â because 1Σ = Λ e = ê (since Λ preserves the unit). To see that Â separates

points of Σ, suppose that f1, f2 ∈ Σ are distinct multiplicative functionals. This means,

in particular, that there exists x ∈ A such that x̂(f1) = f1(x) 6= f2(x) = x̂(f2), i.e. the

continuous function x̂ separates the points f1 and f2. Lastly, Â is clearly closed under

addition and scalar multiplication, and it is closed under multiplication because Λ is a

multiplicative operator (see [22, Theorem 8.9 p. 220]).

Before proceeding to the next step, that is giving a functorial formulation of Gelfand-

Neumark representation for C∗-algebras, we provide a brief account of the automatic

continuity of some maps between classes of Banach algebras. Recall that a Banach
∗-homomorphism is a function between Banach algebras (with involution) that is a non-

extensive complex algebra homomorphism, preserving the involution. If the condition

that the function be non-extensive is dropped, we speak of a ∗-homomorphism. Finally,

by a homomorphism between Banach algebras (possibly with involution), we understand

a complex algebra homomorphism. The first result is

Lemma 6.2.7. Let A be a (possibly non-commutative) Banach algebra, and let B be

a semisimple Banach algebra. Then every homomorphism f : A → B is automatically

continuous.

Proof. See [23, Proposition 5.1.1].

Combining with Corollary 6.2.5, we see that every homomorphism between C∗-algebras

is continuous. In particular, every ∗-homomorphism between C∗-algebras is continuous.

In fact, the following stronger result holds.

Proposition 6.2.8. Every ∗-homomorphism between C∗-algebras is non-extensive, i.e.

is a Banach ∗-homomorphism.

Proof. See [22, Proposition 1.11 p. 234].

Let us denote by C∗ the category that has (complex, commutative, and unital) C∗-

algebras as objects, and ∗-homomorphisms (=Banach ∗-homomorphisms, by Proposition

6.2.8) as morphisms. As usual, KHaus denotes the category of compact Hausdorff spaces
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and continuous maps. The following easy fact was observed in Example 6.2.2. Here,

recall that C(X) stands for C(X,C), the family of all continuous C-valued functions on

X.

Lemma 6.2.9. If X is a compact Hausdorff space, then C(X) := C(X) is a C∗-algebra.

The next result is elementary.

Lemma 6.2.10. If ϕ : X → Y is a continuous function between compact Hausdorff

spaces, then

C(ϕ) := − ◦ ϕ : C(Y )→ C(X)

is a ∗-homomorphism.

It can be easily seen that

Corollary 6.2.11. C : KHaus → C∗ is a contravariant functor from the category of

compact Hausdorff spaces to the category of C∗-algebras.

In the converse direction,

Lemma 6.2.12. If A is a C∗-algebra, then S(A) := ΣA is a compact Hausdorff space,

where ΣA denotes the maximal spectrum of A.

Proof. The space ΣA, equipped with the weak-star topology, is compact by Proposition

6.1.51. The complex field C is Hausdorff, so is the product CA, with respect to the

product topology. Every subspace of a Hausdorff space is itself Hausdorff, whence ΣA

is a Hausdorff space.

Lemma 6.2.13. If f : A→ B is a ∗-homomorphism between C∗-algebras, then

S(f) := − ◦ f : ΣB → ΣA

is a continuous map.

Proof. Assume that the sequence {hn}n∈N ⊆ ΣB converges to the multiplicative func-

tional h0 ∈ ΣB. We must prove that the sequence {S(f)(hn)}n∈N ⊆ ΣA converges to

the element S(f)(h0) ∈ ΣA. By Lemma 6.1.50 this happens if, and only if

S(f)(hn)(x)→ S(f)(h0)(x)

for all x ∈ A, that is

(hn ◦ f)(x)→ (h0 ◦ f)(x).

However, by hypothesis we know that hn(y) → h0(y) for all y ∈ B, whence, for all

x ∈ A,

hn(f(x))→ h0(f(x)).
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It is easy to verify that

Corollary 6.2.14. S : C∗ → KHaus is a contravariant functor from the category of

C∗-algebras to the category of compact Hausdorff spaces.

Proposition 6.2.15. There exists a natural isomorphism

µ : IdKHaus → S ◦ C,

where IdKHaus is the identity functor on the category KHaus.

Proof. Let X be a compact Hausdorff space, and let x0 ∈ X. It is clear that the map

hx0 : C(X) → C defined by hx0(f) := f(x0), for all f ∈ C(X), is a multiplicative

functional. In other words, hx0 ∈ ΣC(X). Define the map

µX : X → ΣC(X), µX(x0) := hx0 .

In view of the bijection between maximal ideals and multiplicative functionals, Example

6.1.36 entails that µX is bijective. Since the latter is a continuous function from a

compact space to a Hausdorff space, it is closed. To prove that µX is a homeomorphism,

it is enough to show that it is continuous. Assume that {xn}n∈N ⊆ X is a sequence

converging to x0 ∈ X. Then the sequence {µX(xn)}n∈N ⊆ ΣC(X) converges to µX(x0) if,

and only if, hxn → hx0 . By Lemma 6.1.50, this happens if, and only if, hxn(f)→ hx0(f)

for all f ∈ C(X), i.e. f(xn) → f(x0). However, this is true because f is continuous.

We conclude that µX is a continuous map. For each compact Hausdorff space X, let

(µ)X := µX be the component of µ at X. We have proved that every such component

is an isomorphism in the category KHaus, therefore what is left to prove is that µ is

a natural transformation. That is, for every continuous function ϕ : X → Y between

compact Hausdorff spaces, the following diagram commutes.

X ΣC(X)

Y ΣC(Y )

µX

ϕ (S◦C)(ϕ)

µY

Upon observing that, for every multiplicative functional f ∈ ΣC(X),

(S ◦ C)(ϕ)(f) = f ◦ (− ◦ ϕ),

we see that, for all x0 ∈ X,

((S ◦ C)(ϕ) ◦ µX)(x0) = (S ◦ C)(ϕ)(hx0)

= hx0 ◦ (− ◦ ϕ).

Now, for every multiplicative functional g ∈ ΣC(Y ),

hx0 ◦ (− ◦ ϕ)(g) = hx0(g ◦ ϕ)
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= (g ◦ ϕ)(x0)

= g(ϕ(x0))

= hϕ(x0)(g)

= (µY ◦ ϕ)(x0)(g).

In other words, (S ◦ C)(ϕ) ◦ µX = µY ◦ ϕ.

Proposition 6.2.16. There exists a natural isomorphism

ν : IdC∗ → C ◦ S,

where IdC∗ is the identity functor on the category C∗.

Proof. If A is a C∗-algebra, recall by Theorem 6.2.6 that the Gelfand transform

ΛA : A→ C(ΣA)

is a ∗-isomorphism. Define the component of ν at A as the isomorphism (ν)A := ΛA in

the category C∗. To prove the statement it suffices to show that ν is a natural transfor-

mation, i.e. for every ∗-homomorphism of C∗-algebras f : A → B, the next diagram is

commutative.

A C(ΣA)

B C(ΣB)

ΛA

f (C◦S)(f)

ΛB

We remark that, for every continuous function g ∈ C(ΣA),

(C ◦ S)(f)(g) = g ◦ (− ◦ f).

Then, for all x ∈ A,

((C ◦ S)(f) ◦ ΛA)(x) = (C ◦ S)(f)(x̂)

= x̂ ◦ (− ◦ f).

For all ψ ∈ C(ΣB), we have

x̂ ◦ (− ◦ f)(ψ) = x̂(ψ ◦ f)

= (ψ ◦ f)(x)

= ψ(f(x))

= f̂(x)(ψ)

= (ΛB ◦ f)(x)(ψ).

We conclude that (C ◦ S)(f) ◦ ΛA = ΛB ◦ f .

We have proved that C and S are quasi-inverse functors:



6.2. Gelfand-Neumark duality 137

Theorem 6.2.17 (Gelfand-Neumark duality). The category KHaus of compact Haus-

dorff spaces is dually equivalent to the category C∗ of (complex, commutative, and unital)

C∗-algebras via the functors C and S.

Remark 6.2.18. Consider a complex Banach algebra with involution. Upon substituting

the complex field C with the real field R, we obtain what is called a real Banach algebra

with involution. Now, define a real C∗-algebra to be a real Banach algebra A with

involution such that, for all x ∈ A,

‖xx∗‖ = ‖x‖2, and e +xx∗ is invertible.

Unlike the complex case, the invertibility of the elements 1+xx∗ does not follow from the

other axioms. If the involution operation is allowed to be non-trivial, then every complex

C∗-algebra is a real C∗-algebra. For instance, if we forget scalar multiplication by non-

real numbers, the field C is a real C∗-algebra with complex conjugation as involution.

However, if we require that the involution operation is the identity map, then C is not

a real C∗-algebra anymore, because the element

1 + ii∗ = 1 + i2 = 0

is not invertible. An example of real C∗-algebra, with trivial involution, is provided

by the family C(X,R) of all continuous R-valued functions on some compact Hausdorff

space X. Henceforth, by a real C∗-algebra, we understand a real C∗-algebra with trivial

involution. For this class of algebras, an analogue of Gelfand-Neumark representation

theorem holds. In fact, every real C∗-algebra A is isomorphic and isometric to a real

C∗-algebra C(X,R), for some compact Hausdorff space X [36, Theorem 11.5]. As in the

complex case, X can be taken to be the maximal spectrum of A. This representation

theorem gives rise to a duality between KHaus and the category of real C∗-algebras and

Banach homomorphisms. Composing with Gelfand-Neumark duality between KHaus

and C∗, the category of real C∗-algebras is seen to be equivalent to the category of

complex C∗-algebras. The functor from the former category to the latter, mapping a

real C∗-algebra to a complex C∗-algebra, provides a complexification of an arbitrary real

C∗-algebra (see [36, p. 71]). Going back to the complex case, we remark that Gelfand-

Neumark duality can be seen as a specific duality between algebra and geometry: it

relates a certain class of commutative algebras with a class of spaces. From this point of

view, we are lead to think of compact Hausdorff spaces as commutative spaces. Conse-

quently, the dual of the category of (possibly non-commutative) C∗-algebras identifies a

class of mathematical objects that can be regarded as non-commutative spaces. For this

reason, the study of the dual of the category of (possibly non-commutative) C∗-algebras

goes under the name of non-commutative geometry . The latter is a topic of great in-

terest in mathematics: sophisticated techniques have been developed, and deep results

have been proved in this regard. However, a concrete realisation of the dual category at

hand, is still lacking.
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6.3 Monadicity of C∗

In 1971 Negrepontis showed [58] that the category C∗ of (complex, commutative, and

unital) C∗-algebras is monadic over Set with respect to the unit ball functor , mapping

a C∗-algebra A to the set

{x ∈ A | ‖x‖ 6 1}.

Remarkably, Van Osdol proved in [66] that the obvious extension of the latter functor to

the category of (possibly non-commutative and non-unital) C∗-algebras is monadic. In

the same work, van Osdol showed that the unit ball functor from the category of (pos-

sibly non-commutative, unital) C∗-algebras is monadic. Concerning the latter category,

Pelletier and Rosický proved in [59] that it is monadic over Set with respect to two more

functors: the hermitian unit ball functor, and the positive unit ball functor. If A is a

(possibly non-commutative) C∗-algebra, the hermitian unit ball functor associates to A

the set

{x ∈ A | ‖x‖ 6 1, x = x∗}.

The name is due to the fact that self-adjoint elements are also called hermitian elements.

To define the positive unit ball functor, we need to introduce the notion of positive

element in a C∗-algebra. In fact, this notion will lead to the definition of a partial order

on an arbitrary C∗-algebra.

Notation 6.3.1. An order in a C∗-algebra can be defined in a natural way, for both

commutative and non-commutative C∗-algebras. In this section we shall restrict to

commutative C∗-algebras only when necessary, hence by a C∗-algebra we mean a possibly

non-commutative unital C∗-algebra. When the commutativity property is assumed, we

state it explicitly.

A generalisation of Lemma 6.2.3 to the non-commutative case is needed. Here the

spectrum of an element is defined as in the commutative case.

Lemma 6.3.2. Let A be a C∗-algebra, and let x ∈ A be a self-adjoint element. Then

σx ⊆ R.

Proof. See [36, Proposition 4.3].

Notation 6.3.3. The symbol R>0 will denote the set of non-negative real numbers.

Definition 6.3.4. Let A be a C∗-algebra. A self-adjoint element x ∈ A is called positive,

written as x > 0, if σx ⊆ R>0.

Example 6.3.5. Consider the commutative C∗-algebra C(X), for some compact Haus-

dorff space X. An easy generalisation of Example 6.1.55 shows that, for all f ∈ C(X),

σf = f(X). Therefore f is a positive element of C(X) if, and only if, f(X) ⊆ R>0 if,

and only if, f is a positive continuous R-valued function on X.

Positive elements in a C∗-algebra can be characterised in different ways.

Proposition 6.3.6. If A is a C∗-algebra and x ∈ A is a self-adjoint element, the

following are equivalent.
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1. x > 0.

2. There exists a self-adjoint element y ∈ A such that x = y2.

3. There exists an element z ∈ A such that x = zz∗.

Proof. See [22, Theorem 3.6 p. 241].

Definition 6.3.7. Let A be a C∗-algebra, and let x, y ∈ A. We set x 6 y if x, y are

self-adjoint elements and y − x > 0.

If A is a C∗-algebra, then the positive unit ball functor maps A to the set

{x ∈ A | ‖x‖ 6 1, x > 0}.

Example 6.3.8. Let X be a compact Hausdorff space, and consider the commutative

C∗-algebra C(X). It is clear that the unit ball of C(X) is the set of all functions that

take values in the complex unit disc {λ ∈ C | |λ| 6 1}, while its hermitian unit ball is

the set of functions whose range is contained in the real interval [−1, 1]. Finally, the

positive unit ball of C(X) is the family of functions taking values in the unit interval

[0, 1].

It is easy to see that every ∗-homomorphism between C∗-algebras is order-preserving

(but, in general, not order-reflecting):

Lemma 6.3.9. Let f : A → B be a ∗-homomorphism between C∗-algebras, and let

x, y ∈ A be self-adjoint elements. If x 6 y, then f(x) 6 f(y).

Proof. If x 6 y, then Proposition 6.3.6 entails that there exists a self-adjoint element

z ∈ A such that z2 = y − x. Now,

f(y)− f(x) = f(y − x) = f(z2) = f(z)2,

where f(z) ∈ B is self-adjoint since f(z)∗ = f(z∗) = f(z). In other words, f(x) 6
f(y).

Gelfand-Neumark duality (see Theorem 6.2.17) states that the category C∗ is dually

equivalent to KHaus via the functor S. On the other hand, by Theorem 4.4.25, the

category KHaus is dually equivalent to the category ∆ of δ-algebras, which form a variety

of infinitary algebras, via the functor C. Given the correspondence between categories

that are monadic over Set and varieties of possibly infinitary algebras (see [49], or [54,

Theorem 5.40 p. 66, Theorem 5.45 p. 68]), it follows at once that C∗ is monadic over

Set with respect to the composition of the underlying-set functor U : ∆→ Set with the

equivalence C ◦ S : C∗ → ∆. The aim of this section is to give a direct proof of the

monadicity of the category C∗ of commutative C∗-algebras, with no reference to the

dual category of KHaus. The key fact is that the monadic functor U ◦ C ◦ S : C∗ → Set

is naturally isomorphic to the positive unit ball functor.
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Recall that, if x is an element of a commutative C∗-algebra, then x̂ : ΣA → C represents

the Gelfand transform of x, defined on the maximal spectrum ΣA of A.

Lemma 6.3.10. Let A be a commutative C∗-algebra, and let x ∈ A. Then x is self-

adjoint if, and only if, x̂ is R-valued.

Proof. If the element x ∈ A is self-adjoint, then the continuous function x̂ : ΣA → C is

clearly R-valued by Theorem 6.1.54 and Lemma 6.2.3. In the opposite direction, if x̂ is

R-valued, then

x̂∗ = x̂ = x̂

because the Gelfand transform is a ∗-homomorphism. The latter is also injective, hence

we conclude that x∗ = x.

The next result states that the Gelfand transform of a commutative C∗-algebra, re-

stricted to the family of self-adjoint elements, is order-preserving and order-reflecting.

Lemma 6.3.11. Let A be a commutative C∗-algebra. If x, y ∈ A are self-adjoint ele-

ments, then

x 6 y if, and only if, x̂ 6 ŷ.

Proof. One of the two directions follows at once from Lemma 6.3.9, because the Gelfand

transform is a ∗-homomorphism. Conversely, assume that x, y ∈ A are self-adjoint

elements satisfying ΛA(x) 6 ΛA(y). Then there exists a self-adjoint element f ∈ C(ΣA),

i.e. a continuous R-valued function, such that

ΛA(y − x) = ΛA(y)− ΛA(x) = f2.

Recall that the map ΛA is surjective by Theorem 6.2.6. If z ∈ A satisfies ΛA(z) = f ,

then the injectivity of ΛA entails that y − x = z2. The element z is self-adjoint by

Lemma 6.3.10, therefore x 6 y by Proposition 6.3.6.

Given a C∗-algebra A, denote the set of self-adjoint elements of A by

HA := {x ∈ A | x∗ = x}.

Lemma 6.3.12. For every C∗-algebra A, HA is a partially ordered abelian group. More-

over, HA is norm-closed in A.

Proof. It is clear that, with respect to the sum of A, HA is a partially ordered abelian

group. We claim that the map ∗ : A → A is an isometry. Indeed, for all x ∈ A,

‖x‖2 = ‖xx∗‖ 6 ‖x‖ · ‖x∗‖, that is ‖x‖ 6 ‖x∗‖. The latter inequality holds for the

element x := x∗ as well, therefore ‖x∗‖ 6 ‖x∗∗‖ = ‖x‖. Then the involution function

is continuous, and so is the map f : A → A defined by f(x) := x − x∗. Therefore,

HA = f−1(0) is closed in the topology induced by the norm.

Proposition 6.3.13. If A is a commutative C∗-algebra, then HA is a unital `-group.
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Proof. The set HA is a partially ordered abelian group by Lemma 6.3.12. Now we prove

that, for every pair of elements x, y ∈ HA, there exist a greatest lower bound x∧ y ∈ HA

and a least upper bound x∨ y ∈ HA. Consider the element w := x̂∧ ŷ. It is elementary

that w ∈ C(ΣA) and it is R-valued. By Theorem 6.2.6, the Gelfand transform ΛA : x 7→ x̂

is surjective, so that there exists z ∈ A such that ẑ = w. The element z belongs to HA

by Lemma 6.3.10, and it is clear from Lemma 6.3.11 that z is the greatest lower bound

for the pair x, y. In a similar fashion, it is possible to define the least upper bound of x

and y. The translation invariance property (see item 3 in Definition 2.1.1) is easily seen

to hold, thus HA is an `-group. Notice that, if e is the unit of A, then e is a strong order

unit for HA. Indeed, we know that ê is the constant function 1ΣA of value 1 on ΣA, and

the latter is a strong order unit for the `-group C(ΣA,R). Pick x ∈ HA, and consider

its Gelfand transform x̂ ∈ C(ΣA,R). Then there exists n ∈ N such that x̂ 6 nê: this is

equivalent, by Lemma 6.3.11, to x 6 n e (here nê = n̂ e by the linearity of the Gelfand

transform). This proves that HA is a unital `-group.

Remark 6.3.14. In fact, HA is a vector lattice (=lattice-ordered real vector space), since

it is closed under multiplication by real numbers. Indeed, if λ ∈ R and x ∈ HA, then

(λx)∗ = λx∗ = λx.

Proposition 6.3.13 states, in particular, that the set of self-adjoint elements of a com-

mutative unital C∗-algebra is a lattice. Remarkably, in 1951 Sherman proved

Theorem 6.3.15. If A is a (possibly non-unital) C∗-algebra, then A is commutative if,

and only if, HA is lattice-ordered.

Proof. See [63, Theorem 2].

In the unital case, a generalisation of the previous theorem can be proved by means of the

Riesz decomposition property. Recall that a partially ordered vector space V satisfies

the Riesz decomposition property if, for all positive elements f, g1, g2 ∈ V satisfying

f 6 g1 + g2, there exist positive elements f1, f2 ∈ V such that f1 6 g1, f2 6 g2, and

f = f1 + f2. It is easy to see that

Lemma 6.3.16. If A is a (unital) commutative C∗-algebra, then HA satisfies the Riesz

decomposition property.

Proof. Proposition 6.3.13 and Remark 6.3.14 show that HA is a vector lattice. If

x, y1, y2 ∈ A are positive elements satisfying x 6 y1 + y2, then x̂, ŷ1, ŷ2 ∈ C(ΣA) are

positive R-valued functions satisfying x̂ 6 ŷ1 + ŷ2 by Lemma 6.3.11. Define

f1 := x̂ ∧ ŷ1, and f2 := x̂− f1.

The elements f1, f2 ∈ C(ΣA) are positive, and

f1 + f2 = (x̂ ∧ ŷ1) + x̂− (x̂ ∧ ŷ1) = x̂.
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We shall prove that f1 6 ŷ1 and f2 6 ŷ2. The first inequality is obvious, for the second

one assume, by contradiction, that there exists p ∈ ΣA such that ŷ2(p) < f2(p). Then

ŷ2(p) < f2(p) = x̂(p)− f1(p) = x̂(p)−min (x̂(p), ŷ1(p)).

However, min (x̂(p), ŷ1(p)) = ŷ1(p), for otherwise ŷ2(p) < 0 that cannot be. Hence

ŷ1(p) + ŷ2(p) < ŷ1(p) + x̂(p)−min (x̂(p), ŷ1(p)) = ŷ1(p) + x̂(p)− ŷ1(p) = x̂(p),

that is a contradiction because x̂ 6 ŷ1 + ŷ2. The Gelfand transform is surjective by

Theorem 6.2.6, thus there exist z1, z2 ∈ A such that ẑ1 = f1 and ẑ2 = f2. Lemma 6.3.11,

along with the injectivity of the Gelfand transform, entail that the elements z1, z2 satisfy

the Riesz decomposition property.

More generally, it can be proved that the condition above is sufficient.

Theorem 6.3.17. A (unital) C∗-algebra A is commutative if, and only if, HA satisfies

the Riesz decomposition property.

Proof. See [29, Theorem 1].

Lemma 6.3.18. If f : A→ B is a ∗-homomorphism between commutative C∗-algebras,

then

H(f) := f|HA : HA → HB

is a unital `-homomorphism.

Proof. It is elementary that the map H(f) is well-defined, since f preserves the involution

operation, and that it is a group homomorphism. We check that H(f) is also a lattice

homomorphism. Since the Gelfand transform ΛB : B → C(ΣB) is injective, for all

x, y ∈ HA, the condition f(x) ∧ f(y) = f(x ∧ y) is equivalent to

̂f(x) ∧ f(y) = ̂f(x ∧ y). (6.1)

Since f(x)∧ f(y) is defined as the unique element of HB such that ̂f(x) ∧ f(y) = f̂(x)∧
f̂(y), (6.1) is equivalent to

(f̂(x) ∧ f̂(y))(h) = ̂f(x ∧ y)(h) for all h ∈ ΣB.

In turn, this happens if, and only if,

h(f(x)) ∧ h(f(y)) = h(f(x ∧ y)) for all h ∈ ΣB. (6.2)

However, it is clear that h ◦ f ∈ ΣA, so that

h(f(x)) ∧ h(f(y)) = x̂(h ◦ f) ∧ ŷ(h ◦ f) = x̂ ∧ y(h ◦ f) = h(f(x ∧ y)),
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since x∧y is the unique element of HA satisfying x̂ ∧ y = x̂∧ŷ. Then (6.2) is proved. The

equality f(x∨ y) = f(x)∨ f(y) can be proved in a similar way. Finally, it is elementary

that the `-homomorphism H(f) is unital.

It is easy to see that compositions and identity are preserved, hence:

Corollary 6.3.19. H: C∗ → `Grpu, mapping a commutative C∗-algebra A to the unital

`-group HA of its self-adjoint elements, is a functor.

By composing with the functor Γ: `Grpu → MV (see Section 2.3), we obtain a functor

B+ := Γ ◦H: C∗ → MV

that sends a commutative C∗-algebra A, with unit e, to the MV-algebra with underlying

set

{x ∈ A | x∗ = x, 0 6 x 6 e}.

Observe that every positive element is self-adjoint by definition. Furthermore, a positive

element x ∈ A satisfies x 6 e if, and only if, ‖x‖ 6 1. Indeed, by Lemma 6.3.11, x 6 e

if, and only if x̂ 6 1ΣA if, and only if,

sup
f∈ΣA

x̂(f) 6 sup
f∈ΣA

1ΣA(f).

Upon recalling that the Gelfand transform is an isometry by Theorem 6.2.6 and Remark

6.1.10, the latter inequality is equivalent to ‖x‖ = ‖x̂‖ 6 1. In other words,

{x ∈ A | x∗ = x, 0 6 x 6 e} = {x ∈ A | ‖x‖ 6 1, x > 0}.

This shows that the positive unit ball of a commutative C∗-algebra admits a structure

of MV-algebra. We will now prove that, in fact, it admits a structure of δ-algebra.

Remark 6.3.20. Notice that the set of positive elements in the unit ball of a C∗-algebra

A is closed under multiplication by real numbers in [0, 1]. Indeed, if λ ∈ [0, 1] and x ∈ A
belongs to the positive unit ball, then

‖λx‖ = |λ| · ‖x‖ 6 ‖x‖ 6 1.

Further, by Proposition 6.3.6 there exists a self-adjoint element y ∈ A such that x = y2.

Then, it is elementary that the element
√
λy is self-adjoint and satisfies (

√
λy)2 = λx.

Again by Proposition 6.3.6, we conclude that λx is a positive element in the unit ball.

Let A be a commutative C∗-algebra, and consider the MV-algebra B+(A). Define an

infinitary operation δ : B+(A) → B+(A), for all the countable sequences {xn}n∈N ⊆
B+(A), as

δ(~x) :=

∞∑
i=1

xi
2i
.
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In order to prove that δ is a well-defined operation, observe that xi
2i

belongs to B+(A),

for all i ∈ N, by Remark 6.3.20. Moreover,

lim
n→∞

n∑
i=1

xi
2i

=

∞∑
i=1

xi
2i
> 0

because the set of positive elements of a C∗-algebra is a closed cone [22, Proposition 3.7

p. 241]. To conclude, it suffices to show that the norm of ‖δ(~x)‖ does not exceed 1:∥∥∥∥∥
∞∑
i=1

xi
2i

∥∥∥∥∥ = lim
n→∞

∥∥∥∥∥
n∑
i=1

xi
2i

∥∥∥∥∥ 6 lim
n→∞

n∑
i=1

∥∥xi
2i

∥∥ 6 lim
n→∞

n∑
i=1

1
2i

= 1.

Proposition 6.3.21. If A is a commutative C∗-algebra, then B+(A) is a δ-algebra.

Proof. Upon defining the infinitary operation δ on B+(A) as shown above, the proposi-

tion follows at once by Theorem 6.2.17 and Proposition 4.4.4.

In view of the foregoing result, we adopt the notation B+ : C∗ → ∆.

With reference to Theorems 4.4.25 and 6.2.17,

Corollary 6.3.22. The functor B+ : C∗ → ∆ is naturally isomorphic to the equivalence

C ◦ S : C∗ → KHaus→ ∆.

Proof. Let A be a commutative C∗-algebra. By Theorem 6.2.6, we know that there

exists an isomorphisms A ∼= C(ΣA,C) in the category C∗. Therefore,

B+(A) ∼= B+(C(ΣA,C))

= {f ∈ C(ΣA,C) | ‖f‖ 6 1, f > 0}
= {f ∈ C(ΣA,C) | f(ΣA) ⊆ [0, 1]}
= C(ΣA, [0, 1]).

This shows that there exists an isomorphism µA : B+(A) → C ◦ S(A) in the category

∆. Define µ : B+ → C ◦ S by setting, for every commutative C∗-algebra A, (µ)A := µA.

Every such component is an isomorphism in ∆. The proof of the fact that µ is a natural

transformation is left to the reader. It is clear that µA is nothing but the restriction of

the Gelfand transform, sending a ∈ B+(A) to â ∈ C ◦ S(A) = C(ΣA, [0, 1]).

Theorem 6.3.23. The category C∗ of commutative (unital) C∗-algebras is monadic over

Set with respect to the positive unit ball functor.

Proof. Denote by U+ : C∗ → Set the positive unit ball functor, mapping a commutative

C∗-algebra A to the set

{x ∈ A | ‖x‖ 6 1, x > 0}.
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The category ∆ is a variety of infinitary algebras (of bounded arity), hence the underlying-

set functor U : ∆ → Set is monadic [54, Theorem 5.45 p. 68] (in fact, it is strictly

monadic). This means the following. First, there is an adjoint pair F a U , where

F : Set→ ∆ maps a set of generators X to the free δ-algebra over X. In fact, we know

that FX ∼= C([0, 1]X , [0, 1]) by Proposition 5.2.8. Secondly, the category ∆ is equivalent

to the category SetU◦F of Eilenberg-Moore algebras for the monad U ◦ F : Set → Set.

Denote by E the equivalence C ◦ M : ∆ → C∗ (see Theorems 4.4.25 and 6.2.17). By

Corollary 6.3.22, E and B+ : C∗ → ∆ are quasi-inverse functors. Since adjoint functors

are stable under composition [52, Theorem 1 p. 101], the functor U ◦B+ is right adjoint

to E ◦ F .

C∗ ∆ Set
B+

U+

U

E F

Let SetT be the Eilenberg-Moore category for the monad T := U ◦B+◦E◦F on Set. The

functor B+ ◦E is naturally isomorphic to the identity functor 1∆, so that U ◦B+ ◦E ◦F
is naturally isomorphic to U ◦ F . This natural isomorphism extends to an isomorphism

of monads which induces a (concrete) isomorphism of the categories of algebras SetT

and SetU◦F [2, A.26]. Therefore,

SetT ∼= SetU◦F ' ∆ ' C∗.

In other words, the functor U ◦ B+ : C∗ → Set is monadic. However, it is elementary

that U ◦ B+ = U+, hence we conclude that the positive unit ball functor U+ : C∗ → Set

is monadic.



Chapter 7

Epilogue

In Chapter 1 we presented some results concerning the axiomatisability of the dual

category KHausop. On the one hand, there are the negative results due to Rosický

and Banaschewski. They proved Bankston’s conjecture, i.e. that KHaus is not dually

equivalent to any elementary P-class of finitary algebras. Remarkably, Banaschewski

proved that there is no full subcategory of KHaus extending the category St of Stone

spaces that is dually equivalent to an elementary P-class of finitary algebras (see Theorem

1.2.11). In this respect, in Section 7.1 we prove an analogue of Banaschewski’s theorem,

i.e. that no full subcategory of KHaus extending the category St is dually equivalent

to the category of models of a geometric theory of presheaf type. On the other hand,

there are the positive results stating that the category KHausop can be axiomatised in a

certain extension of first-order logic (see Theorem 1.2.10). In this direction, we give an

explicit axiomatisation of the category KHausop in the infinitary language Lω1,ω1 over an

algebraic signature, i.e. a signature with no relation symbols.

7.1 Axiomatisability of KHausop: one negative result

We prove that KHausop is not axiomatisable by a geometric theory of presheaf type. A

key step of the proof consists in showing that every finitely copresentable object in a

full subcategory F of KHaus that extends St, is a finite discrete space. In the particular

case in which F = KHaus, Gabriel and Ulmer proved that finitely copresentable objects

coincide precisely with finite sets [30, p. 66]. Here we give a different proof which relies

on the classical construction of the Gleason cover of a compact Hausdorff space.

Recall that a Stone space (or Boolean space) is a compact Hausdorff space whose topol-

ogy admits a basis of clopen sets, i.e. sets that are both open and closed. For an arbitrary

topological space, it is elementary that the collection of its clopen sets, endowed with

set-theoretical operations, is a Boolean algebra. In 1936, in his seminal work [65], Stone

proved that every Boolean algebra arises as the algebra of clopen sets of a Stone space,

namely the space of its ultrafilters. This representation theorem, which extends to a

categorical equivalence known as Stone duality, shows that every Boolean algebra is

146
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associated to a unique (up to homeomorphism) Stone space — the dual space of the

Boolean algebra — and the converse holds as well.

A topological space is extremally disconnected if the closure of every open set is again

open. It is clear that every compact extremally disconnected space is a Stone space.

The following is a consequence of Stone’s representation theorem.

Proposition 7.1.1. A Boolean algebra is complete if, and only if, its dual space is

extremally disconnected.

Proof. See for example [35, p. 485].

Recall that a closed subset of a topological space is regular closed if it coincides with the

closure of its interior. For example, any clopen subset is regular closed. It is well known

that, given a topological space X, the collection of all regular closed subsets of X is a

complete Boolean algebra with respect to inclusion (a proof can be found in [35, Lemma

3.1]). Denote by GX the dual space of this Boolean algebra. By Proposition 7.1.1 not

only is this a Stone space, but also an extremally disconnected space. Amongst other

things, Gleason proved in [35, Theorem 3.2]

Theorem 7.1.2. A compact Hausdorff space X is a continuous image of the extremally

disconnected space GX .

The space GX is called the Gleason cover (or absolute) of the compact Hausdorff space

X, and the continuous surjection GX � X may be characterised by appropriate prop-

erties.

Lemma 7.1.3. Let X be a topological space. Then X is a Stone space if, and only if,

it is a cofiltered limit of finite discrete spaces.

Proof. See [44, p. 236].

Recall that an object A of a category C is λ-copresentable if the contravariant functor

C(−, A) : C→ Set preserves λ-cofiltered limits. If λ = ℵ0, then we speak of copresentable

object. Unfolding this definition, we find:

Lemma 7.1.4. An object A is λ-copresentable in C precisely when, for every λ-cofiltered

limit G = limi∈I Gi, the following conditions hold.

1. For every morphism h : G→ A there exists a canonical morphism αj : G→ Gj of

the limit such that h factors through αj.

2. If φ1, φ2 : Gj → A are such that φ1 ◦ αj = φ2 ◦ αj for some canonical morphism

αj : G→ Gj of the limit, then there exists a morphism gij : Gi → Gj in the diagram

such that φ1 ◦ gij = φ2 ◦ gij.

Proof. Direct inspection.
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Theorem 7.1.5. Assume that F is a full subcategory of KHaus extending St. If F is

dually equivalent to a finitely accessible category, then F = St.

Proof. Let C be a finitely accessible category which is dually equivalent to F. Every

object in C is the filtered colimit of finitely presentable objects, so that every object in

F is the cofiltered limit of finitely copresentable objects. We show that every finitely

copresentable object in F is a finite set. Let F be an object of F, and denote by G its

Gleason cover (see Theorem 7.1.2). The latter is, in particular, a Stone space, hence it

is the cofiltered limit in KHaus of finite sets {Gi}i∈I by Lemma 7.1.3. Note that, since

G is also an object of F and the full embedding F ↪→ KHaus reflects limits, G is the

cofiltered limit in F of the finite sets {Gi}i∈I .

F G

Gi

Gj

γ

αi

αj

gij

φ

If F is finitely copresentable, by Lemma 7.1.4 there exists a map φ : Gj → F for some

j, such that γ = φ ◦ αj . But γ is surjective, hence so is φ. This shows that F is finite,

being the epimorphic image of a finite set. Thus, every object in F is the cofiltered limit

of finite discrete sets. However, Stone spaces coincide with cofiltered limits in KHaus of

finite discrete sets, and we have seen that cofiltered limits of finite sets in F are computed

exactly as in KHaus. Hence an arbitrary object of F is a Stone space. Since St is a full

subcategory of KHaus, we conclude that F = St.

It turns out that finitely accessible categories coincide, up to equivalence, with the cat-

egories of models of certain theories. Let Σ be a signature with no infinitary function

symbols and no infinitary relation symbols. Denote by Lg
∞,ω the fragment of the infini-

tary language L∞,ω over the signature Σ in which only finitary conjunctions are allowed.

A geometric formula is a formula in the language Lg
∞,ω with only finitely many free

variables, which is constructed by using only finitary conjunctions, possibly infinitary

disjunctions, and existential quantifications. A geometric theory over the signature Σ is

a set T of pairs (ϕ,ψ), called axioms, where ϕ,ψ are geometric formulæ. The pair (ϕ,ψ)

can be thought of as the sentence

∀x1x2 · · ·xn(ϕ⇒ ψ),

where the free variables of ϕ and ψ are amongst x1, x2, . . . , xn. We shall now assume

some knowledge of topos theory. It is possible to show that the geometric language is

weak enough to be interpreted in any Grothendieck topos. Thus, we can consider the

category of models of a geometric theory in an arbitrary Grothendieck topos. Given a
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geometric theory T, we say that a Grothendieck topos ET is a classifying topos for T
if, for any Grothendieck topos E , the category of models of T in E is equivalent to the

category of geometric morphisms from E to ET. The following result is due to Joyal,

Reyes and Makkai.

Theorem 7.1.6. Every geometric theory T has a (unique up to equivalence) classifying

topos ET.

Proof. See [43, p. 247].

In fact, every Grothendieck topos is the classifying topos of some geometric theory T
(see for example [20, Theorem 7.11]). Recall that an example of Grothendieck topos is

provided by the presheaf topos on a category C, i.e. the category of functors Cop → Set.

Definition 7.1.7. A geometric theory T is of presheaf type if its classifying topos is

equivalent to a presheaf topos.

Notation 7.1.8. Let T be a geometric theory. We denote by ModT the category whose

objects are models of T in the topos Set, and whose morphisms are homomorphisms

preserving operations and relations.

We can now characterise finitely accessible categories as categories of models.

Theorem 7.1.9. A category C is finitely accessible if, and only if, it is equivalent to

ModT for some geometric theory of presheaf type T.

Proof. See for example [12, Proposition 0.1].

Specializing Theorem 7.1.5 for F = KHaus,

Corollary 7.1.10. The dual category KHausop is not axiomatisable by any geometric

theory of presheaf type.

7.2 Axiomatisability of KHausop: one positive result

In Chapter 1 we saw that, as a consequence of Theorem 1.2.10, the dual category KHausop

can be axiomatised in the infinitary language Lω1,ω1 . Specifically, KHausop is equivalent

to ModT for some limit theory T in Lω1,ω1 whose language possibly admits both function

symbols and relation symbols. In this section we prove that T can be taken as a theory

in Lω1,ω1 whose language does not contain relation symbols. However, we remark that

the latter theory is not a limit theory.

Let X be an arbitrary topological space, and denote by Ω(X) the family of open sets in

X. It is elementary that Ω(X) is a bounded distributive lattice with respect to inclusion.

Recall that a subset I of a lattice A is an ideal if it satisfies the following conditions: I

is non-empty, if a, b ∈ I then a ∨ b ∈ I, and b ∈ I whenever a ∈ I and b 6 a. A proper

ideal m of A is maximal if there is no proper ideal in A which strictly contains m.
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Remark 7.2.1. A standard application of Zorn’s Lemma shows that every non-trivial

bounded distributive lattice has a maximal ideal [24, p. 237]. In fact, every lattice

we will be dealing with in this section is bounded and distributive. For this reason,

henceforth by a lattice we understand a bounded distributive lattice.

The set MaxA of all the maximal ideals of a lattice A can be equipped with the Stone-

Zariski topology . A subbasis of closed sets for the latter is given by the sets of the

form

Fa := {m ∈ MaxA | a ∈ m},

for all a ∈ A (see [37, pp. 99–102] for more details).

Theorem 7.2.2. If A is a lattice, then MaxA is a compact Hausdorff space with respect

to the Stone-Zariski topology.

Proof. See [44, p. 66].

If X is any T1-space, we shall see that it is possible to define a compactification of X

by means of a sublattice of Ω(X). If X satisfies additional topological properties, then

the latter compactification coincides with the usual Stone-Čech compactification (see

Theorem 7.2.11 below).

Definition 7.2.3. Let X be a topological space. A Wallman basis for X is a sublattice

A of Ω(X) which is a basis for the topology of X and such that, whenever U ∈ A and

x ∈ U , there exists V ∈ A such that U ∪ V = X and x /∈ V .

Example 7.2.4. If X is a T1-space, then every singleton in X is a closed subset. Thus

Ω(X) is a Wallman basis for X, since the open set V in Definition 7.2.3 can be taken as

V := X \ {x}. This shows that every T1-space has a Wallman basis.

Lemma 7.2.5. If X is a T0-space and A is a Wallman basis for X, then the map

ηA : X → MaxA, ηA(x) := {U ∈ A | x /∈ U}

is an embedding with dense image.

Proof. See [44, p. 136].

Every possible choice of a Wallman basis A for a T0-space X provides an embedding

of X in the compact Hausdorff space MaxA (cf. Theorem 7.2.2), called the Wallman

compactification of X relative to A. We remark that there are topological spaces that

do not admit any Wallman basis. However, in view of Example 7.2.4,

Corollary 7.2.6. Every T1-space has a Wallman compactification. In particular, every

T1-space can be embedded in a compact Hausdorff space.
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We now turn to the investigation of a specific class of open subsets of a topological space

X. Let us consider the set C(X,R) of all the continuous R-valued functions on X. For

every element f ∈ C(X,R), the cozero-set of f is defined as

coz f := {x ∈ X | f(x) 6= 0} = f−1(R \ {0}).

The family of all the cozero-sets of the space X is denoted by

Coz(X) := {coz f ⊆ X | f ∈ C(X,R)}.

We remark that, for any topological space X, we have ∅, X ∈ Coz(X) since ∅ = coz 0X
and X = coz 1X .

Lemma 7.2.7. If X is a topological space, then the following hold.

1. For every coz f ∈ Coz(X) there exists a continuous function g : X → [0, 1] such

that coz f = coz g.

2. Coz(X) ⊆ Ω(X).

3. The family Coz(X) is closed under finite intersections and countable unions. In

particular, Coz(X) is a sublattice of Ω(X).

Proof. In order to prove item 1, let f : X → R be a continuous function on the space

X. We define the function g : X → [0, 1] as

g := min (1, |f |).

It is elementary that g is a continuous functions with values in [0, 1] such that coz f =

coz g. For item 2 it is sufficient to observe that every cozero-set is a continuous preimage

of the open subset R\{0} of R. Lastly, suppose coz f, coz g ∈ Coz(X). Then it is easy to

see that coz fg = coz f ∩ coz g. Moreover, if {fi}i∈N ⊆ C(X,R) is a countable sequence

of continuous functions (in view of the preceding item, we can assume fi(X) ⊆ [0, 1] for

every i ∈ N), set f :=
∑∞

i=1
fi
2i

. The function f is continuous since the latter series is

uniformly convergent. It is clear that, for all x ∈ X, f(x) = 0 if, and only if, fi(x) = 0

for each i ∈ N. In other words,

∞⋃
i=1

coz fi = coz f = coz

∞∑
i=1

fi
2i
.

As shown in Lemma 7.2.7.(2), a cozero-set in a topological space X is always an open

subset. The converse is not true: in general, there exist open subsets of X that are

not of the form coz f for any f ∈ C(X,R). We shall restrict our attention to a special

class of topological spaces whose structure is reflected in the lattice Coz(X). Recall

that a topological space is completely regular provided that it is a Hausdorff space such

that, for all x ∈ X and for all closed subsets K ⊆ X, there exists a continuous function

f : X → R such that f(x) = 1 and f(y) = 0 for every y ∈ K.
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Remark 7.2.8. We remark that every compact Hausdorff space is completely regular.

Indeed, let X be a compact Hausdorff space, let x ∈ X and let K ⊆ X be a closed

subset. Every compact Hausdorff space is normal [28, Theorem 3.1.9], hence Urysohn’s

lemma [28, Theorem 1.5.11] applies: there exists a continuous function f : X → R such

that f(x) = 1 and f(y) = 0 for all y ∈ K.

Proposition 7.2.9. Let X be a Hausdorff space. Then X is completely regular if, and

only if, Coz(X) is a basis of open sets for the topology of X.

Proof. See [33, p. 38].

Recall that a bounded distributive lattice (A,∧,∨, 0, 1) is normal if, for every pair of

elements b1, b2 ∈ A such that b1 ∨ b2 = 1, there exist elements c1, c2 ∈ A satisfying

c1 ∧ c2 = 0, c1 ∨ b2 = 1, c2 ∨ b1 = 1. Given a Wallman basis A for a space X, we say

that A is a normal Wallman basis for X if A is a normal lattice.

Lemma 7.2.10. If X is a completely regular space, then Coz(X) is a normal Wallman

basis for X.

Proof. The set Coz(X) is a sublattice of Ω(X) by Lemma 7.2.7, and it is a basis of

open sets for X by Proposition 7.2.9. In order to show that Coz(X) is a Wallman basis

for X, it suffices to prove that for all coz f ∈ Coz(X) and for all x ∈ coz f there exists

g : X → R such that coz f∪coz g = X and x /∈ coz g. Consider the closed subset X\coz f

of X. Since X is completely regular, there exists a continuous function h : X → R such

that h(x) = 1 and h(y) = 0 for all y ∈ X \ coz f . Then the function g := h− 1 satisfies

the required properties. For the normality of the lattice Coz(X), see [44, p. 137].

Theorem 7.2.11. Let X be a completely regular space, and let A be a Wallman basis

for X containing Coz(X). Then the Wallman compactification MaxA of X is homeo-

morphic to the Stone-Čech compactification of X.

Proof. See [44, p. 138].

The universal property of the Stone-Čech compactification [28, Theorem 3.6.1] entails

that the Stone-Čech compactification of a compact Hausdorff space X is homeomorphic

to X. Upon recalling that every compact Hausdorff space is completely regular by

Remark 7.2.8, it follows at once

Corollary 7.2.12. If X is a compact Hausdorff space, then Max Coz(X) is homeomor-

phic to X.

Definition 7.2.13. An Alexandroff algebra is a bounded distributive lattice (A,∧,∨, 0, 1)

satisfying the following conditions.

1. A is normal.

2. Countable joins exist in A.
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3. Countable joins distribute over finite meets.

4. For every a ∈ A there exist countable sequences {bn}n∈N, {cn}n∈N in A such that∨
n∈N cn = a, bn ∧ cn = 0 and bn ∨ a = 1 for every n ∈ N.

An Alexandroff algebra A is countably compact if the following holds.

5. Whenever {cn}n∈N is a countable family in A satisfying
∨
n∈N cn = 1, there exists

a finite subset H ⊆ N such that
∨
n∈H cn = 1.

Lemma 7.2.14. If X is a completely regular space, then Coz(X) is an Alexandroff alge-

bra. If X is a compact Hausdorff space, then Coz(X) is a countably compact Alexandroff

algebra.

Proof. The first part of the statement is proved in [44, p. 140]. Now, assume that X is a

compact Hausdorff space, and let {coz fi}i∈N ⊆ Coz(X) be a countable family satisfying⋃∞
i=1 coz fi = X. Since {coz fi}i∈N is a open covering of X, there exists a finite subset

H ⊆ N such that
⋃
i∈H coz fi = X.

Let Alexc denote the category with countably compact Alexandroff algebras as objects,

and lattice homomorphisms preserving countable joins as morphisms. Then, for every

compact Hausdorff space X, one can see that the correspondence X 7→ Coz(X) defines

a functor

C : KHaus→ Alexc.

The functor C sends a continuous map between compact Hausdorff spaces f : X → Y to

the lattice homomorphism preserving countable joins

C(f) := f−1 : Coz(Y )→ Coz(X).

On the other hand, it is possible to prove that the map sending a countably compact

Alexandroff algebra A to the compact Hausdorff space MaxA induces a functor

M : Alexc → KHaus.

A lattice homomorphism preserving countable joins h : A→ B is sent to the continuous

map

M(h) := h−1 : MaxB → MaxA.

The interested reader is referred to [19, Section 3.2] for details.

Theorem 7.2.15 (Alexandroff duality). The category KHaus of compact Hausdorff

spaces is dually equivalent to the category Alexc of countably compact Alexandroff al-

gebras via the functors C and M.

Proof. This theorem is proved in [19, Theorem 3.5] by means of topos-theoretic tech-

niques. We remark that, for every compact Hausdorff space X, the component at X of

the natural isomorphism µ : IdKHaus →M◦ C is provided by Corollary 7.2.12.
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We now give an axiomatisation of countably compact Alexandroff algebras in the lan-

guage Lω1,ω1 over the (algebraic) lattice-theoretic signature given by the constants 0, 1

and by the binary function symbols ∧,∨ (we underline the function symbols in order to

distinguish them from the logical conjunction ∧ and disjunction ∨). We agree to denote

by j(y, {xn}n∈N) the formula( ∧
n∈N

y∧xn = xn

)
∧
(
∀z
(( ∧

n∈N
z∧xn = xn

)
⇒
(
z∧y = y

)))
,

stating (semantically) that the element y is the join of the countable family {xn}n∈N.

Let TAlexc be the theory formed by the (equational) axioms for a bounded distributive

lattice, along with the following five axioms.

(i) ∀x1∀x2

((
x1∨x2 = 1

)
⇒ ∃y1∃y2

((
y1∧y2 = 0

)
∧
(
y1∨x2 = 1

)
∧
(
y2∨x1 = 1

)))
.

(ii) ∀{xn}n∈N∃y
(
j(y, {xn}n∈N)

)
.

(iii) ∀{xn}n∈N∀w∀y∀z
((

j(y, {xn}n∈N) ∧ j(w, {xn∧z}n∈N
)
⇒ y∧z = w

)
.

(iv) ∀x∃{yn}n∈N∃{zn}n∈N
(
j(x, {zn}n∈N) ∧

( ∧
n∈N

yn∧zn = 0

)
∧
( ∧
n∈N

yn∧x = 1

))
.

(v)
∨
n∈N

(
∀{xn}n∈N

(
j(1, {xn}n∈N)⇒ ∃y1 · · · ∃yn

(
j(1, {ỹn}n∈N)∧

( n∧
k=1

∨
i∈N

yk = xi

))))
.

The countable sequence {ỹn}n∈N in axiom (v) is defined by ỹi := yi if 0 < i 6 n and

ỹi := 0 if i > n. A direct inspection shows that axioms (i)–(v) correspond precisely to

items 1–5 of Definition 7.2.13. In other words,

Corollary 7.2.16. The dual category KHausop is equivalent to the category of models

ModTAlexc of the theory TAlexc in the infinitary language Lω1,ω1.
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