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Why are we here?

▶ The workshop and the volume are manifestations of a community.

▶ This is not an obvious community organised by topic.

▶ Topics represented include: logic, category theory, semantics of programming languages,
game comonads and finite model theory, foundations of quantum mechanics and
quantum computation, computational linguistics, . . .

▶ I deeply believe that this is not haphazard, that there is a “community of spirit” in these
endeavours, and also guiding ideas (Cf. Yoshiro Maruyama’s contribution to the volume).

▶ My own recent work has led to some striking and unexpected connections between many
of the strands represented here:
▶ work with Rui and Amy on combining contextuality and causality (game semantics and

contextuality)
▶ work with Adam Ó Conghaile, Anuj and Rui, on connections between cohomological

characterizations of contextuality, and constraint satisfaction and Weisfeiler-Leman.
▶ work with Rui on a quantum duality, to be described here
▶ more speculatively, ongoing work with Luca on arboreal categories, which I believe will make

connections with game semantics and differential types
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Contextuality

The key foundational question in quantum computation is to characterize those information
tasks where there is provable quantum advantage - i.e. the task can be performed better
using quantum resources than with purely classical resources.

This focusses attention on the non-classical aspects of quantum theory.

In particular, it brings contextuality into the picture.

▶ Contextuality is a key signature of non-classicality on quantum mechanics

▶ Non-locality (as in Bell’s theorem) is a special case

▶ Key role in many of the known cases of quantum advantage:
shallow circuits, measurement-based quantum computation, VQE . . .
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The essence of contextuality

▶ Not all properties may be observed simultaneously.
▶ Sets of jointly observable properties provide partial, classical snapshots.
▶ Contextuality arises where there is a family of data which is

locally consistent but globally inconsistent



Contextuality Analogy: Local Consistency



Contextuality Analogy: Global Inconsistency



Background: traditional quantum logic

John von Neumann, in his seminal
Mathematical Foundations of Quantum Mechanics (1932), identified quantum properties
or propositions as projectors on a Hilbert Space H, i.e. linear operators P on H which are
bounded, self-adjoint (P = P†) and idempotent (P2 = P).

Projectors correspond 1–1 to the closed subspaces of Hilbert space.

Subsequently, Birkhoff and von Neumann, in The Logic of Quantum Mechanics (1936), pro-
posed the lattice of closed subspaces as a non-classical logic to serve as the logical founda-
tions of quantum mechanics.

▶ Interpret ∧ (infimum) and ∨ (supremum) as logical operations.

▶ Distributivity fails: p ∧ (q ∨ r) ̸= (p ∧ q) ∨ (p ∧ r).

▶ Only commuting measurements can be performed together.
So, what is the operational meaning of p ∧ q, when p and q do not commute?
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Quantum physics and logic

An alternative approach

Kochen & Specker (1965), ‘The problem of hidden variables in quantum mechanics’.

▶ The seminal work on contextuality used partial Boolean algebras.

▶ Only admit physically meaningful operations.

▶ Represent incompatibility by partiality.

Kochen (2015), ‘A reconstruction of quantum mechanics’.
▶ Kochen develops a large part of foundations of quantum theory in this framework.
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Partial Boolean algebras
Partial Boolean algebra ⟨A,⊙,0, 1,¬,∨,∧⟩:

▶ a set A

▶ a reflexive, symmetric binary relation ⊙ on A, read commeasurability or compatibility

▶ constants 0, 1 ∈ A

▶ (total) unary operation ¬ : A −→ A

▶ (partial) binary operations ∨,∧ : ⊙ −→ A

such that every set S of pairwise-commeasurable elements is contained in a set T of pairwise-
commeasurable elements which is a Boolean algebra under the restriction of the operations.

The key example: P(H), the projectors on a Hilbert space H.
Conjunction, i.e. meet of projectors, becomes partial, defined only on commuting projectors.

Morphisms of pBAs are maps preserving commeasurability, and the operations wherever
defined. This gives the category pBA.
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Contextuality, or the Kochen–Specker theorem

Kochen & Specker (1965).

Let H be a Hilbert space with dimH ≥ 3, and P(H) its pBA of projectors.

There is no pBA homomorphism P(H) −→ 2.

▶ No assignment of truth values to all propositions that respects the logical operations on
jointly testable propositions.

▶ Spectrum of a pBA cannot have points. . .
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Conditions of impossible experience

Using this terminology, we can express a (physically) remarkable result from Kochen and
Specker as follows:

Theorem
let A be a pba. Then the following are equivalent:
1. A is K-S (i.e. no homomorphism to 2)
2. For some propositional contradiction φ(⃗x) and assignment x⃗ 7→ a⃗,

A |= φ(⃗a)

Thus the event algebra P(H) of quantum mechanics cannot be interpreted globally in a
consistent fashion.

Our local observations– real observations of realmeasurements–cannot be pieced together
globally by reference to a single underlying objective reality. The values that they reveal are
inherently contextual.

How can the world be this way? Still an ongoing debate, an enduring mystery . . .
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Mysteries of partiality

Partial Boolean algebras can behave very differently to the total case.

It is a standard fact that every finitely-generated boolean algebra is finite.

Conway and Kochen (2002) show the following:

Theorem
In P(C4), there is a set of five projectors (local Paulis) which generate a uniformly dense
(infinite) subalgebra.

Some elaborate geometry and algebra is used to show this.

Is there a “logical” proof?
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Tensor product and the emergence of non-classicality

As already remarked, the K-S property arises in P(H) when dimH ≥ 3.

Note that P(C2) ∼=
⊕

i∈I 4i, where I is a set of the power of the continuum, and each 4i is the
four-element Boolean algebra.

One of the key points at which non-classicality emerges in quantum theory is the passage
from P(C2), which does not have the K–S property, to P(C4) = P(C2 ⊗ C2), which does.

Can we capture the Hilbert space tensor product in logical form?

Question
Is there a monoidal structure ⊛ on the category pBA such that the functor P : Hilb −→ pBA is
strong monoidal with respect to this structure, i.e. such that P(H)⊛ P(K) ∼= P(H⊗K)?

A positive answer to this question would offer a complete logical characterisation of the
Hilbert space tensor product, and provide the remaining step towards giving compositional
logical foundations for quantum theory in a form useful for quantum information and com-
putation.



Tensor product and the emergence of non-classicality
As already remarked, the K-S property arises in P(H) when dimH ≥ 3.

Note that P(C2) ∼=
⊕

i∈I 4i, where I is a set of the power of the continuum, and each 4i is the
four-element Boolean algebra.

One of the key points at which non-classicality emerges in quantum theory is the passage
from P(C2), which does not have the K–S property, to P(C4) = P(C2 ⊗ C2), which does.

Can we capture the Hilbert space tensor product in logical form?

Question
Is there a monoidal structure ⊛ on the category pBA such that the functor P : Hilb −→ pBA is
strong monoidal with respect to this structure, i.e. such that P(H)⊛ P(K) ∼= P(H⊗K)?

A positive answer to this question would offer a complete logical characterisation of the
Hilbert space tensor product, and provide the remaining step towards giving compositional
logical foundations for quantum theory in a form useful for quantum information and com-
putation.
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Duality for partial Boolean Algebras?

Our aim is to get a duality theory for pBA’s.

At first sight, this looks hopeless:
▶ classical Stone duality for boolean algebras B builds the Stone space of B from the

points, i.e. homomorphisms B −→ 2
▶ by Kochen-Specker, for interesting cases of pBA’s, there are no points!

We will instead generalize the Tarski duality for complete atomic Boolean algebras (CABAs)
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CABAs
Definition (Complete Boolean algebra)
A Boolean algebra A is said to be complete if any subset of elements S ⊆ A has a supremum∨

S in A (and consequently an infimum
∧

S, too). It thus has additional operations∧
,
∨

: P(A) −→ A .

Definition (Atomic Boolean algebra)
An atom of a Boolean algebra is a minimal non-zero element, i.e. an element x ̸= 0 such that
a ≤ x implies a = 0 or a = x.

Atoms are “state descriptions” or “possible worlds”.

A Boolean algebra A is called atomic if every non-zero element sits above an atom, i.e. for all
a ∈ A with a ̸= 0 there is an atom x with x ≤ a.

A CABA is a complete, atomic Boolean algebra.
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Tarski duality

CABA Setop

At

P

∼=

P : Setop −→ CABA is the contravariant powerset functor:
▶ on objects: a set X is mapped to its powerset PX (a CABA).
▶ on morphisms: a function f : X −→ Y yields a complete Boolean algebra homomorphism

P(f) : P(Y) −→ P(X)

(T ⊆ Y) 7−→ f−1(T) = {x ∈ X | f(x) ∈ T}



Tarski duality

CABA Setop

At

P

∼=

At : CABAop −→ Set is defined as follows:
▶ on objects: a CABA A is mapped to its set of atoms.
▶ on morphisms: a complete Boolean homomorphism h : A −→ B yields a function

At(h) : At(B) −→ At(A)

mapping an atom y of B to the unique atom x of A such that y ≤ h(x).
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Partial CABAs
Definition (partial complete BA)
A partial complete Boolean algebra is a pBA with an additional (partial) operation∨

:
⊙

−→ A

satisfying the following property: any set S ∈
⊙

is contained in a set T ∈
⊙

which forms a
complete Boolean algebra under the restriction of the operations.

Definition (Atomic Boolean algebra)
A partial Boolean algebra A is called atomic if every non-zero element sits above an atom,
i.e. for all a ∈ A with a ̸= 0 there is an atom x with x ≤ a.

A partial CABA is a complete, atomic partial Boolean algebra.

Note that P(H) is a partial CABA. Atoms are the rank-1 projectors (one-dimensional sub-
spaces), i.e. the pure states.
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Duality for partial CABAs: the idea

▶ The key idea is to replace sets by certain graphs.

▶ Adjacency generalizes ̸=, thus sets embed as complete graphs.

▶ These exclusivity graphs are the “non-commutative spaces” in this duality.

▶ Morphism of graphs are certain relations, generalizing the functional relations which
appear in classical Tarski duality.
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Graph theory notions

Definition
A graph (X,#) is a set equipped with a symmetric irreflexive relation.

Elements of X are called vertices, while unordered pairs {x, y} with x # y are called edges.

Given a vertex x ∈ X and sets of vertices S,T ⊂ X, we write:
▶ x # S when for all y ∈ S, x # y;
▶ S # T when for all x ∈ S and y ∈ T, x # y;
▶ x# := {y ∈ X | y#x} for the neighbourhood of the vertex x;
▶ S# :=

⋂
x∈S x# = {y ∈ X | y # S} for the common neighbourhood of the set S.

A clique is a set of pairwise-adjacent vertices, i.e. a set K ⊂ X with x # K \ {x} for all x ∈ K.

A graph (X,#) has finite clique cardinal if all cliques are finite sets.
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Graph of atoms

Definition (Graph of atoms)
The graph of atoms of a partial Boolean algebra A, denoted At(A), has as vertices the atoms
of A and an edge between atoms x and x′ if and only if x⊙ x′ and x ∧ x′ = 0.

▶ At(A) is the set of atomic events with an exclusivity relation.
▶ Can interpret these as worlds of maximal information and incompatibility between them.

▶ If A is a Boolean algebra, then At(A) is the complete graph on the set of atoms (# is ̸=).

Recall that in a CABA, any element is uniquely written as a join of atoms, viz. a =
∨

Ua with

Ua := {x ∈ At(A) | x ≤ a}

In a pBA, Ua may not be pairwise commeasurable, hence their join need not even be defined.
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Elements from atoms
Proposition
Let A be a transitive partial CABA. For any element a ∈ A, it holds that a =

∨
K for any clique

K of At(A) which is maximal in Ua.

So an element a is the join of any clique that is maximal in Ua.

Given two maximal cliques K and L, this yields an equality∨
K =

∨
L

where the elements in
∨

K and those in
∨

L are not commeasurable.

The key to reconstructing a partial CABA from its atoms lies in characterising such equalities,

Proposition
Let K and L be cliques in At(A). Then

∨
K =

∨
L iff K# = L#.
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Partial CABA from its graph of atoms
Writing

K ≡ L : ⇔ K# = L#,
elements of A are in 1-to-1 correspondence with ≡-equivalence classes of cliques of At(A).

Alternatively, take the double neighbourhood closures of cliques K##, yielding the sets Ua.

We can describe the algebraic structure of a partial CABA A from its graph of atoms:

▶ 0 = [∅].

▶ 1 = [M] for any maximal clique M.

▶ ¬[K] = [L] for any L maximal in K#, i.e. for any L#K such that L ⊔ K is a maximal clique.

▶ [K]⊙ [L] iff there exist K′ ≡ K and L′ ≡ L such that K′ ∪ L′ is a clique.

▶ [K] ∨ [L] = [K′ ∪ L′].

▶ [K] ∧ [L] = [K′ ∩ L′].

Which conditions on a graph (X,#) allow for such reconstruction?
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We can describe the algebraic structure of a partial CABA A from its graph of atoms:

▶ 0 = [∅].
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▶ ¬[K] = [L] for any L maximal in K#, i.e. for any L#K such that L ⊔ K is a maximal clique.

▶ [K]⊙ [L] iff there exist K′ ≡ K and L′ ≡ L such that K′ ∪ L′ is a clique.

▶ [K] ∨ [L] = [K′ ∪ L′].

▶ [K] ∧ [L] = [K′ ∩ L′].

Which conditions on a graph (X,#) allow for such reconstruction?



Complete exclusivity graphs
Definition
A complete exclusivity graph is a graph (X,#) such that for K, L cliques and x, y ∈ X:
1. If K ⊔ L is a maximal clique, then K# # L#, i.e. x # K and y # L implies x # y.
2. x# ⊆ y# implies x = y.
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1. If K ⊔ L is a maximal clique, then K# # L#, i.e. x # K and y # L implies x # y.
2. x# ⊆ y# implies x = y.

A helpful intuition is to see these as generalising sets with a ̸= relation (the complete graph).

▶ A graph is symmetric and irreflexive.
▶ To be an inequivalence relation, we need cotransitivity: x # z implies x # y or y # z.

▶ Condition 1. is a weaker version of cotransitivity.
▶ Condition 2. eliminates redundant elements: cotransitive + 2. implies ̸=.
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Graph of atoms is complete exclusivity graph

Proposition
Let A be a partial Boolean algebra. Then At(A) is a complete exclusivity graph.

Proof.
Let K, L ⊂ X such that K ⊔ L is a maximal clique, and let x, y be atoms of A.
c :=

∨
K = ¬

∨
L.

x # K means x ≤ ¬
∨

K = ¬c and x # L means y ≤ ¬
∨

L = c.
By transitivity, we conclude that x ⊙ y,
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Morphisms of complete exclusivity graphs
What about morphisms?

Definition
A morphism (X,#) −→ (Y,#) is a relation R : X −→ Y satisfying:
1. x R y, x′ R y′, and y # y′ implies x # x′

2. if K is a maximal clique in Y , R−1(K) contains a maximal clique.
3. for each y ∈ Y , (R−1({y}))## = R−1({y}).

For complete graphs:
1. xRy, x′Ry′, and
2. R−1(Y) = X. (left-total)
3. trivialises.

Given h : A −→ B define y R x iff y ≤ h(x).
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Morphisms of CE graphs and pCABA homomorphisms
Proposition
Let A and B be transitive partial CABAs. Given h : A −→ B a partial complete Boolean algebra
homomorphism, the relation Rh : At(B) −→ At(A) given by

xRhy iff x ≤ h(y)

is a morphism of complete exclusivity graphs. Moreover, the assignment h 7→ Rh is functorial.

Proposition
Let X and Y be complete exclusivity graphs. Given R : X −→ Y a morphism of complete
exclusivity graphs, the function hR : K(Y) −→ K(X) given by hR([K]) := [L] where L is any
clique maximal in R−1(K) is a well-defined partial CABA homomorphism.

Proposition
For any A and B be transitive partial CABAs, epCABA(A,B) ∼= XGph(At(B),At(A)).
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Global points

Homomorphism A −→ 2 corresponds to morphism K1 −→ At(A),

i.e. a subset of atoms of A satisfying:
1. it is an independent (or stable) set
2. it is a maximal clique transversal, i.e. it has a vertex in each maximal clique

The extensive literature on Kochen-Specker constructions is concerned with building graphs
which have no such transversals, thus showing that the corresponding pBA’s have no points.
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Free-forgetful adjunction for CABAs

CABA Setop

Set

At

U

P

PF

P

∼=

⊣ ⊣

▶ Under the duality, it corresponds to the contravariant powerset self-adjunction.
▶ It gives the construction of the free CABA as a double powerset.
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Free-forgetful adjunction for partial CABAs

epCABA XGphop

RGph

At

U

K

KF

V

∼=

⊣ ⊣

▶ Universe of a pCABA is a reflexive (compability) graph ⟨A,⊙⟩

▶ Under duality it corresponds to adjunction between compatibility and exclusivity graphs.
▶ This gives a concrete construction of the free CABA. A compatibility ⟨P,⊙⟩ to a graph

with vertices ⟨C, γ : C −→ {0, 1}⟩ where C maximal compatible set, and edges

⟨C, γ⟩ # ⟨D, δ⟩ iff ∃x ∈ C ∩ D. γ(x) ̸= δ(x) .
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