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Closing Bell: Boxing black box simulations in the resource theory of contextuality

Rui Soares Barbosa, Martti Karvonen, Shane Mansfield

This chapter contains an exposition of the sheaf-theoretic framework for i ising resource-th aspects, as well as
some original results on this topic. In particular, we consider functions that transform empirical models on a scenario S to empirical
models on another scenario T, and characterise those that are induced by classical procedures between S and T corresponding to 'free’
operations in the (non-adaptive) resource theory of ity. We proceed by expressing such functions as empirical models
themselves, on a new scenario built from S and T. Our characterisation then boils down to the non-contextuality of these models. We also
show that this construction on scenarios provides a closed structure in the category of measurement scenarios.

Comments: 36 pages. To appear as part of a volume dedicated to Samson Abramsky in Springer's Outstanding Contributions to Logic series
Subjects:  Quantum Physics (quant-ph); Logic in Computer Science (cs.LO); Category Theory (math.CT)
Cite as: arXivi2104.11241 [quant-ph]

(or arXiv:2104.11241v1 [quant-ph] for this version)
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Context of this talk

» Samson's quantum turn (QCM in 2004),
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Samson's quantum turn (QCM in 2004),

and then contextuality (2011):
‘The sheaf-theoretic structure of non-locality and contextality’
Abramsky & Brandenburger, NJP 2011.

‘Contextuality: at the borders of paradox’
Abramsky, Categories for the working philosopher 2020.



Recent work with Samson on algebraic-logic view of contextuality,
revisiting Kochen & Specker’s partial Boolean algebras.

‘The logic of contextuality’
Abramsky & B, CSL 2021.

‘Contextuality in logical form: Duality for transitive partial CABAS’
Abramsky & B, TACL 2022, QPL 2023.

Joint work in progress with Samson Abramsky, Martti Karvonen, Raman Choudhary; ...
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» Central object of study of quantum information and computation theory:
the advantage afforded by quantum resources in information-processing tasks.
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Contextuality and advantage in quantum computation

» Central object of study of quantum information and computation theory:
the advantage afforded by quantum resources in information-processing tasks.

» A range of examples are known and have been studied ... but a systematic understanding
of the scope and structure of quantum advantage is lacking.

» A hypothesis: this is related to non-classical features of quantum mechancics.

» Contextuality is a quintessential marker of non-classicality, an empirical phenomenon
distinguishing QM from classical physical theories.
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Contextuality and advantage in quantum computation

It's been established as a useful resource conferring quantum advantage in informatic tasks.

» Measurement-based quantum computation (MBQC)

‘Contextuality in measurement-based quantum computation’
Raussendorf, Physical Review A, 2013.

» Magic state distillation

‘Contextuality supplies the ‘magic’ for quantum computation’
Howard, Wallman, Veitch, Emerson, Nature, 2014.

» Shallow circuits

‘Quantum advantage with shallow circuits’
Bravyi, Gossett, Koenig, Science, 2018.

» Contextuality analysis: Aasnaess, Forthcoming, 2020.

/33



The essence of contextuality

» Not all properties may be observed simultaneously.
» Sets of jointly observable properties provide partial, classical snapshots.
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The essence of contextuality

» Not all properties may be observed simultaneously.
» Sets of jointly observable properties provide partial, classical snapshots.

Local consistency but Global inconsistency
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Logic and quantum theory



From states to properties

I would like to make a confession which may seem immoral: I do not believe absolutely
in Hilbert space any more. After all, Hilbert space (as far as quantum mechanical
things are concerned) was obtained by generalizing Euclidean space, footing on the
principle of ‘conserving the validity of all formal rules’ [...]. Now we begin to
believe that it is not the vectors which matter, but the lattice of all linear (closed)
subspaces. Because: 1) The vectors ought to represent the physical states, but they
do it redundantly, up to a complex factor, only 2) and besides, the states are merely
a derived notion, the primitive (phenomenologically given) notion being the qualities
which correspond to the linear closed subspaces [von Neumann (1935) as quoted in
Birkhoff (1966))



From classical to quantum

John von Neumann (1932), ‘Mathematische Grundlagen der Quantenmechanik’.
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From classical to quantum

John von Neumann (1932), ‘Mathematische Grundlagen der Quantenmechanik’.

Classical mechanics

» Described by commutative C*-algebras or von Neumann algebras.

» By Gel'fand duality, these are algebras of continuous (or measurable) functions on
topological spaces, the state spaces.

» All measurements have well-defined values on any state.

» Properties or propositions are identified with (measurable) subsets of the state space.

Quantum mechanics

» Described by noncommutative C*-algebras or von Neumann algebras.

» By GNS, algebras of bounded operators on a Hilbert space #, i.e. subalgebras of B(H).
» Measurements are self-adjoint operators.

» Quantum properties or propositions are projectors (dichotomic measurements):

p:H—H st p=p =p?

which correspond to closed subspaces of #.



Quantum physics and logic

Traditional quantum logic

Birkhoff & von Neumann (1936), ‘The logic of quantum mechanics’.

» The lattice P(#), of projectors on a Hilbert space #, as a non-classical logic for QM.
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Quantum physics and logic

Traditional quantum logic

Birkhoff & von Neumann (1936), ‘The logic of quantum mechanics’.

v

The lattice P(#), of projectors on a Hilbert space #, as a non-classical logic for QM.

v

Interpret A (infimum) and Vv (supremum) as logical operations.

v

Distributivity fails: p A (g Vv r) £ (pAQ) V(P AT).

v

Taking the phenomenological requirement seriously:
in QM, only commuting measurements can be performed together.

So, what is the operational meaning of p A g, when p and g do not commute?



Quantum physics and logic

An alternative approach

Kochen & Specker (1965), ‘The problem of hidden variables in quantum mechanics’.
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Quantum physics and logic

An alternative approach

Kochen & Specker (1965), ‘The problem of hidden variables in quantum mechanics’.

» The seminal work on contextuality used partial Boolean algebras.
» Only admit physically meaningful operations.

» Represent incompatibility by partiality.

Kochen (2015), ‘A reconstruction of quantum mechanics'.

» Kochen develops a large part of foundations of quantum theory in this framework.
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Boolean algebras

Boolean algebra (A,0,1,—,V, A):
» asetA

» constants 0,1€ A

» aunary operation -: A — A

» binary operations V, A : A2 — A
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Boolean algebra (A, 0,1, -, V, A):
asetA
constants 0,1 A
a unary operation - : A — A
binary operations V, A : A2 — A

satisfying the usual axioms: (A, Vv, 0) and (A, A, 1) are commutative monoids,
Vv and A distribute over each other,
av-a=1landaA-a=0.

E.g.: (P(X),2,X,U,N), in particular 2 = {0,1} = P({*}).



Partial Boolean algebras

Partial Boolean algebra (A, ®,0,1,—,V, A):

> asetA

» a reflexive, symmetric binary relation ® on A, read commeasurability or compatibility
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» (total) unary operation —: A — A
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Partial Boolean algebras

Partial Boolean algebra (A, ®,0,1, =, V, A):
» asetA

» a reflexive, symmetric binary relation ® on A, read commeasurability or compatibility

v

constants 0,1 A
» (total) unary operation —: A — A
» (partial) binary operations V,A : © — A

such that every set S of pairwise-commeasurable elements is contained in a set T of pairwise-
commeasurable elements which is a Boolean algebra under the restriction of the operations.

E.g.: P(%), the projectors on a Hilbert space .
Conjunction, i.e. meet of projectors, becomes partial, defined only on commuting projectors.
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Partial Boolean algebras

A more concrete formulation of the defining axioms is:

» operations preserve commeasurability: for each n-ary operation f,

aiocC, ...,aocC
f(ar,...,an) ®¢C
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A more concrete formulation of the defining axioms is:

operations preserve commeasurability: for each n-ary operation f,

aiocC, ...,aocC
f(ar,...,an) ®¢C

aoc acce, boc
0,1®a —a@®c avb,anboc

for any triple a, b, ¢ of pairwise-commeasurable elements, the axioms of Boolean algebra
are satisfied, e.g.

acb acb,acc, boc
anb=bAa an(bve) =(anb)v(anc)




Morphisms of partial Boolean operations are maps preserving commeasurability, and the
operations wherever defined.This gives a category pBA.
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The category pBA

Morphisms of partial Boolean operations are maps preserving commeasurablllty, and the
operations wherever defined.This gives a category pBA.

Heunen & van der Berg (2012), ‘Non-commutativity as a colimit'.

b /
» Every partial Boolean algebra is the colimit (in pBA) of its Boolean subalgebras.

» Coproduct: A @ B is the disjoint union of A and B with identifications 04 = 0g and 14 = 1.
No other commeasurabilities hold between elements of A and elements of B.

» Coequalisers, and general colimits: shown to exist via Adjoint Functor Theorem.

Abramsky & B (2020), ‘The logic of contextality’.

» We give a direct construction of colimits.

» More generally, we show how to freely generate from a given partial Boolean algebra A a
new one satisfying prescribed additional commeasurability relations o, denoted A[®)].
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Contextuality, or the Kochen—Specker theorem

Kochen & Specker (1965).

Let H be a Hilbert space with dim # > 3, and P(#) its pBA of projectors.
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Contextuality, or the Kochen—Specker theorem

Kochen & Specker (1965).

Let H be a Hilbert space with dim # > 3, and P(#) its pBA of projectors.

There is no pBA homomorphism P(#) — 2. ‘

» No assignment of truth values to all propositions which respects logical operations on
jointly testable propositions.
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An apparent contradiction

» BAis a full subcategory of pBA.
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BA is a full subcategory of pBA.

Given a partial Boolean algebra A, consider the diagram C(A) of its Boolean subalgebras.
A= Ii_}mpBA C(A) is the colimit in pBA of the diagram C(A).

Let B := lim,, C(A) be the colimit of the same diagram C(A) but in BA.

The cone in BA from C(A) to B is also a cone in pBA, hence thereis A — B!

But note that BA is an equational variety of algebras over Set.

As such, it is complete and cocomplete, but it also admits the one-element algebra 1, in
which 0 = 1. This Boolean algebra does not have a homomorphism to 2.

If a partial Boolean algebra A has no homomorphism to 2, then Ii_)mBAC(A) =1



Kochen—-Specker and conditions of ‘impossible’ experience

We could say that such a diagram is “implicitly contradictory”: in trying to combine all the
information in a colimit, we obtain the manifestly contradictory 1.

Contextuality: partial views are locally consistent but globally inconsistent!
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We could say that such a diagram is “implicitly contradictory”: in trying to combine all the
information in a colimit, we obtain the manifestly contradictory 1.

Contextuality: partial views are locally consistent but globally inconsistent!

Let A be a partial Boolean algebra. The following are equivalent:
A has the K-S property, i.e. it has no morphism to 2.
The colimit in BA of the diagram C(A) of boolean subalgebras of A is 1.
A[A?] =1.

There is a Boolean term o(X) with o(X) =goo 0 and an assignment X — a such that (@) is
well-defined and equals 1.



At the borders of paradox

» There is a Boolean term ((X) with ¢(X) =goo 0 and an assignment X — & such that ¢(3d)
is well-defined and equals 1.

to be sincere contradicting oneself’
(Alvaro de Campos, Passagem das Horas, 1916)
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At the borders of paradox

» There is a Boolean term ((X) with ¢(X) =goo 0 and an assignment X — & such that ¢(3d)
is well-defined and equals 1.

to be sincere contradicting oneself’
(Alvaro de Campos, Passagem das Horas, 1916)

At the borders of paradox:
the contradiction is never directly observed!
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Quantum realisation
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Quantum realisation
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Compound systems

DISCUSSION OF PROBABILITY RELATIONS BETWEEN <&
SEPARATED SYSTEMS

By E. SCHRODINGER
[Communicated by Mr M. Born]

[Received 14 August, read 28 October 1935]

1. When two'systems, of which we know the states by their respective repre-
sentatives, enter into temporary physical interaction due to known forces between
them, and when after a time of mutual influence the systems separate again, then
they can no longer be described in the same way as before, viz. by endowing each
of them with a representative of its own. I would not call that one but rather the
characteristic trait of quantum mechanics,  the one that enforces its entire
departure from classical lines of thought. By the interaction the two repre-
sentatives (or y-functions) have become entangled. To disentangle them we must’
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Question

How do properties of systems compose?
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A [first] tensor product by generators and relations

Heunen & van den Berg show that pBA has a monoidal structure:

A®B:=colim{C+D|CeC(A),DecC(B)}

where C + D is the coproduct of Boolean algebras.
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Heunen & van den Berg show that pBA has a monoidal structure:

A®B:=colim{C+D|CeC(C(A),D e C(B)}
where C + D is the coproduct of Boolean algebras.

Not constructed explicitly: relies on the existence of colimits in pBA, which is proved via the
Adjoint Functor Theorem.

We can use our construction to give an explicit generators-and-relations description.

Let A and B be partial Boolean algebras. Then
A®B = (A9 B)[0]

where @ is the relation on the carrier set of A @ B given by «(a) © j(b) foralla € Aand b € B.



Tracking the quantum mechanical tensor product?
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» There is an embedding P(#) ® P(K) — P(H ® K) induced by the obvious embeddings
PH) - PHRIK):p—pa1
PIK) —PH®K):qr—1®q

» However, his is far from being surjective:
» Take H = K =C?
There are (many) homomorphisms P(C?) — 2,
which lift to homomorphisms P(C?) @ P(C?) — 2.
But, by KS, there are no homomorphisms P(C*) = P(C? @ C?) — 2

v

v vy

» But, from Kochen (2015), ‘A reconstruction of quantum mechanics':
» The images of P(#) and P(K) generate P(H ® K), for any finite-dimensional # and K.
» This is used to justify the claim contradicted above.

» The gap is that more relations hold in P(# ® K) than in P(#) @ P(K).

Indeed, quantum non-classicality emerges in the passage from P(C?) to P(C*) = P(C? ® C?).
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PH) - PHRIK):p—pa1
PIK) —PH®K):qr—1®q

However, his is far from being surjective:
Take # = K = C?
There are (many) homomorphisms P(C?) — 2,
which lift to homomorphisms P(C?) @ P(C?) — 2.
But, by KS, there are no homomorphisms P(C*) = P(C? @ C?) — 2
Indeed, quantum non-classicality emerges in the passage from P(C?) to P(C*) = P(C? ® C?).

But, from Kochen (2015), ‘A reconstruction of quantum mechanics':

The images of P(#) and P(K) generate P(H ® K), for any finite-dimensional # and K.
This is used to justify the claim contradicted above.

The gap is that more relations hold in P(H ® K) than in P(H) ® P(K).
Nevertheless, this result is suggestive.
It poses the challenge of finding a stronger notion of tensor product.



Mysteries of partiality



A slight detour: free partial Boolean algebra

Free partial Boolean algebra on a reflexive graph (X, ~)
(a ‘graphical’ measurement scenario).

» Generators G := {1(x) | x € X}.

» Pre-terms P: closure of G under Boolean operations and constants.
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A slight detour: free partial Boolean algebra

Free partial Boolean algebra on a reflexive graph (X, ~)
(a ‘graphical’ measurement scenario).

» Generators G := {1(x) | x € X}.

v

Pre-terms P: closure of G under Boolean operations and constants.

v

Define inductively:
» apredicate | (definedness or existence)
» a binary relation ® (commeasurability)
» a binary relation = (equivalence)

v

T:={teP|t}).

v

F(X) = T/ =, with obvious definitions for ® and operations.
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Inductive system

xeX X~y
WL (X)) ©(y)
tou tl
04, 1) tAul, tvVul —t)
t) tou tou, tov, ueyVv tou
tot, te0, to1 uot tAuUQV, tvuov -toOu
tl t=u t=u,u=v t=u,uVv
t=t u=t t=v tov
t(X) =sool U(X), Nijvi®Vv; t=t, u=u,tou t=u
t(V) = u(v) tAhust AU, tvu=t vy —t=-u
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Mysteries of partiality

» The free pBA on a finite reflexive graph is finite
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The free pBA on a finite reflexive graph is finite

But the pBA (internally) generated by a subset of a pBA A may be infinite

e.g. P(C? ® C?) generated by 5 local projectors (+1-eigenspaces of local Paulis)
So, for X C A, the map F(X, ©x) — (X)a need not be surjective!

How come? The reason is that new compatibilities arise!

tou, tev, uev

not just
) (thu)ov




A more expressive tensor product

» Consider projectors p; ® p, and g1 ® q».
» to show that they are orthogonal, we have a disjunctive requirement: p;_g; or p, L g,.

» we are entitled to conclude that p; ® p, and g1 ® g, are commeasurable, even though
(say) p2 and g, are not
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Consider projectors p; ® p2 and g ® q».
to show that they are orthogonal, we have a disjunctive requirement: p; 1.g; or p2_ L q».

we are entitled to conclude that p; ® p, and g1 ® g, are commeasurable, even though
(say) p2 and g, are not

Indeed, the idea that propositions can be defined on quantum systems even though
subexpressions are not is emphasized by Kochen.
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This leads us to define a stronger tensor product by forcing logical exclusivity to hold.

a<c, b<-c
acob

This amounts to composing with the reflection to epBA; X := X o ®.
Explicitly, we define the logical exclusivity tensor product by

AKB = (A B)[L]* = (A® B)[0][L]".

This is sound for the Hilbert space model.

It remains to be seen how close it gets us to the full Hilbert space tensor product.



A limitative result

» Can extending commeasurability by a relation ® induce the K-S property in A[®@] when it
did not hold in A?

Theorem (K-S faithfulness of extensions)

Let A be a partial Boolean algebra, and @ C A? a relation on A. Then A is K-S if and only if
Al@] is K-S.
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Theorem (K-S faithfulness of extensions)

Let A be a partial Boolean algebra, and @ C A? a relation on A. Then A is K-S if and only if
Al@] is K-S.

Corollary
If A and B are not K-S, then neither is A @ B[ L.
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Can extending commeasurability by a relation ® induce the K-S property in A[@] when it
did not hold in A?

Let A be a partial Boolean algebra, and @ C A? a relation on A. Then A is K-S if and only if
Al@] is K-S.

If A and B are not K-S, then neither is A @ B[ L.

Under the conjecture that A[_L]* coincides with iterating A[ L] to a fixpoint, this would imply
that the LE tensor product A XI B never induces a K-S paradox if none was present in A or B.

In particular, P(C?) X P(C?) does not have the K-S property.

We need an even stronger tensor product to track the emergent complexity in the quantum
case!



A simpler problem



Restrict the problem

Forget some structure:

» Parity or XOR/NOT logic

> i.e. (-, ®)-fragment

» this is the ‘linear (or actually affine) part’ of Boolean algebra
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Restrict the problem

Forget some structure:

» Parity or XOR/NOT logic

> i.e. (-, ®)-fragment

» this is the ‘linear (or actually affine) part’ of Boolean algebra

Consider the Pauli operators
> P e (C%)n
» StP=aP1®- - -Q®Pp),
with P; € {X,Y,Z,1}, a € {1,-1,i, —i}
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Boolean affine space

Boolean affine space (A, 0, ®, —):
» asetA

» constant0 € A

» unary operation —-: A — A

» binary operations ®: A xA — A
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Boolean affine space (A, 0, ®, —):
asetA
constant0 € A
unary operation - : A — A
binary operations : A x A — A
satisfying the axioms: (A, @, 0) is a commutative monoid,

ada=0
-(a®b)=-aab.

E.g.: from a Boolean algebra, takinga & b := (-a A b) V (a A =b),
in particlar Z7 as a Z-affine space.

Note that —a = a @ 1, so we could define this with 1.



Partial Boolean affine space
Partial Boolean affine space (A, ®, 0, &, —):

» asetA

» areflexive, symmetric binary relation ® on A, read commeasurability or compatibility
» constant0 € A

» (total) unary operation - : A — A

» (partial) binary operation ® : © — A
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Partial Boolean affine space

Partial Boolean affine space (A, ®,0,®, -):
» asetA
» areflexive, symmetric binary relation ® on A, read commeasurability or compatibility

constant0 c A

v

v

(total) unary operation = : A — A
» (partial) binary operation ® : © — A

such that every set S of pairwise-commeasurable elements is contained in a set T of pairwise-
commeasurable elements which is a Boolean affine space under the restriction of the
operations.

E.g.: P(H), the projectors on a Hilbert space H.
But also: (projectors associated with) n-Pauli operators, P, < P((C?)®")
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Recovering the Paulis

tou, tov, uov
(teu)ov

Crucially, Paulis either commute or anticommute

tou, t dv, u pv
(teu)ov
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tou, tov, uev
(teu)ov

Crucially, Paulis either commute or anticommute

tou, t dv, u pv
(teu)ov

This fully characterises commeasurability of ‘@'s of Paulis, without needing to inspect the
concrete Paulis. That is, whether ¢(&) is commeasurable with b does not depend on the
concrete a and b but only on the commeasurability structure of {a4,...,an,b}.

This addresses the compatibility issue in reconstructing P, as a partial Boolean affine space.




Thank you!







