Towards a Classification of Contextuality

Hardy is almost everyowhere
Nom-Locality without inegualities for almost all emtangled multipartite states

Sarmson Abramsky, Carmen Maria Constamtim, Shenggang Ying

Towards a Classification of Contextuality

Hardy is almost everyowhere
Nom-Locality without inegualities for almost all emtangled multipartite states

Sarmson Abramsky, Carmen Maria Constamtim, Shenggang Ying

Towards a Classification of Contextuality
(Weak < Logical < Strong)
Hardy is almost everywhere
Nom-Locality without inequalities for almost all entangled multipartite states

Samson Abramsky, Carmen Maria Constamtim, Shenggang Ming

Towards a Classification of Contextuality
(Weak < Logical < Strong)
Hardy is almost everywhere
Nom-Locality without inequalities
for almost all entangled multipartite states

Samson Abramsky, Carmen Maria Constamtim, Shenggang Ming

Towards a Classification of Contextuality
(Weak < Logical < Strong)
Hardy is almost everywhere
Nom-Locality without inequalities
for almost all entangled multipartite states

Samson Abramsky, Carmen Maria Constamtim, Shenggang Ming
800

Setting the Scene


Setting the Scene


Setting the Scene


Setting the Scene


Recording Empirical Observations


Idea: Keep track of what CAN/ CAN'T happen (NOT how likely it is to happen)

Empirical Models

|  | ++ | +- | -+ | -- |
| :--- | :--- | :--- | :--- | :--- |
| $M M$ |  |  |  |  |
| MV |  |  |  |  |
| $V M$ |  |  |  |  |
| $V V$ |  |  |  |  |

Empirical Models

|  | ++ | +- | -+ | -- |
| :--- | :--- | :--- | :--- | :--- |
| $M M$ |  |  |  |  |
| $M V$ |  |  |  |  |
| $V M$ |  |  |  |  |
| $\rightarrow V V$ |  |  |  |  |



Empirical Models

|  | ++ | + | - | - |
| :--- | :--- | :--- | :--- | :--- |
| $M M$ |  |  |  |  |
| MV |  |  |  |  |
| $V M$ |  |  |  |  |
|  |  |  |  |  |
| contexts |  |  |  |  |

This cell specifies a function $s:\left\{M_{A}, V_{B}\right\} \longrightarrow\{+,-\}$

Empirical Models

|  | ++ | + | - | - |
| :--- | :--- | :--- | :--- | :--- |
| $M M$ |  |  |  |  |
| MV |  |  |  |  |
| $V M$ |  |  |  |  |
|  |  |  |  |  |
| contexts |  |  |  |  |

This cell specifies a function $s:\left\{M_{A}, V_{B}\right\} \rightarrow\{+,-\}$
AND an atomic logical formula $\varphi_{S}=M_{A} \wedge \neg V_{B}$

Empirical Models

(determines the SUPPORT of the E.M.)

Global to Local

|  | ++ | +- | -+ | -- |
| :--- | :--- | :--- | :--- | :--- |
| $M M$ |  |  |  |  |
| $M V$ |  |  |  |  |
| $V M$ |  |  |  |  |
| $V V$ |  |  |  |  |

Global sections:

$$
\begin{array}{c|c|c|c|c|c|c}
M_{A} & M_{B} & V_{A} & V_{B} \\
\hline+ & + & - & +
\end{array} \quad ; \quad \begin{aligned}
& M_{A}
\end{aligned} M_{B} V_{A} V_{B} .
$$

Global to Local

|  | ++ | +- | -+ | -- |
| :---: | :---: | :---: | :---: | :---: |
| $M M$ | 1 | 0 | 0 | 1 |
| $M V$ | 1 | 0 | 0 | 1 |
| $V M$ | 1 | 0 | 0 | 1 |
| $V V$ | 1 | 0 | 0 | 1 |

Global sections:

$$
\begin{array}{c|c|c}
\hline M_{A} & M_{B} & V_{A} \\
V_{B} \\
\hline+ & + & - \\
\hline
\end{array} ; \quad \begin{array}{c|c|c|c}
M_{A} & M_{B} & V_{A} & V_{B} \\
\hline- & - & -
\end{array}
$$

Global to Local

|  | ++ | +- | -+ | -- |
| :---: | :---: | :---: | :---: | :---: |
| $M M$ | 1 | 0 | 0 | 1 |
| $M V$ | 1 | 0 | 0 | 1 |
| $V M$ | 1 | 0 | 0 | 1 |
| $V V$ | 1 | 0 | 0 | 1 |

Global sections:

$$
\begin{aligned}
& \begin{array}{l|l|l}
M_{A} & M_{B} & V_{A} \\
\hline+ & V_{B} \\
\hline & - & +
\end{array} ; \\
& M_{A}\left|M_{B}\right| V_{A} V_{B} \quad \begin{array}{c}
\text { may be } \\
\text { incomsistemt }
\end{array} \\
& \text { with the support }
\end{aligned}
$$

Local to Global

|  | ++ | +- | -+ | -- |
| :---: | :---: | :---: | :---: | :---: |
| $M M$ | 1 |  |  | 1 |
| $M V$ | 1 |  |  | 1 |
| $V M$ | 1 |  |  | 1 |
| $V V$ | 1 |  |  | 1 |



Local to Global

|  | ++ | +- | -+ | -- |
| :---: | :---: | :---: | :---: | :---: |
| $M M$ | 1 |  |  | 1 |
| $M V$ | 1 |  |  | 1 |
| $V M$ | 1 |  |  | 1 |
| $V V$ | 1 |  |  | 1 |



Global sections:

$$
\begin{array}{c|c|c|c|c|c|c}
\hline M_{A} & M_{B} & V_{A} & V_{B} \\
\hline+ & + & + & +
\end{array} ; \quad \begin{aligned}
& M_{A} \\
& \hline
\end{aligned} M_{B} V_{A} V_{B} .
$$

Local to Global

|  | ++ | +- | -+ | -- |
| :---: | :---: | :---: | :---: | :---: |
| $M M$ | 1 |  |  | 1 |
| $M V$ | 1 |  |  | 1 |
| $V M$ | 1 |  |  | 1 |
| $V V$ | 1 |  |  | 1 |



Global sections:

$$
\begin{array}{c|c|c|c|c|c|c}
M_{A} & M_{B} & V_{A} & V_{B} \\
\hline+ & + & + & +
\end{array} \quad ; \quad \begin{gathered}
M_{A}
\end{gathered} M_{B} V_{A} V_{B}
$$

Not contextual (in the logical sense)

Local to Global

|  | ++ | +- | -+ | -- |
| :---: | :---: | :---: | :---: | :---: |
| $M M$ | 1 |  |  | 1 |
| $M V$ | 1 |  |  | 1 |
| $V M$ | 1 |  |  | 1 |
| $V V$ |  | 1 | 1 |  |



Local to Global

|  | ++ | +- | -+ | -- |
| :---: | :---: | :---: | :---: | :---: |
| $M M$ | 1 |  |  | 1 |
| $M V$ | 1 |  |  | 1 |
| $V M$ | 1 |  |  | 1 |
| $V V$ |  | 1 | 1 |  |



Global sections:

$$
\begin{array}{c|c|c|c}
\hline M_{A} & M_{B} & V_{A} & V_{B} \\
\hline \times & \times & \times & \times
\end{array}
$$

Local to Global

|  | ++ | +- | -+ | -- |
| :---: | :---: | :---: | :---: | :---: |
| $M M$ | 1 |  |  | 1 |
| $M V$ | 1 |  |  | 1 |
| $V M$ | 1 |  |  | 1 |
| $V V$ |  | 1 | 1 |  |



Global sections:

$$
\begin{array}{l|l|l}
M_{A} & M_{B} & V_{A} \\
\hline \times \times \times \times
\end{array} \quad \text { "Strong Comtextuality" }
$$



Local to Global

|  | ++ | +- | -+ | -- |
| :---: | :---: | :---: | :---: | :---: |
| $M M$ | 1 | 1 | 1 | 1 |
| $M V$ |  | 1 | 1 | 1 |
| $V M$ |  | 1 | 1 | 1 |
| $V V$ | 1 | 1 | 1 |  |



Global sections:

$$
\begin{array}{c|c|c|c}
\hline M_{A} & M_{B} & V_{A} & V_{B} \\
\hline- & - & + & +
\end{array}
$$

Local to Global

|  | ++ | +- | -+ | -- |
| :--- | :---: | :---: | :---: | :---: |
| $M M$ | 1 | 1 | 1 | 1 |
| $M V$ |  | 1 | 1 | 1 |
| $V M$ |  | 1 | 1 | 1 |
| $V V$ | 1 | 1 | 1 |  |



Global sections:

$$
\begin{array}{c|c|c|c|c|c|c}
\hline M_{A} & M_{B} & V_{A} & V_{B} \\
\hline- & - & + & +
\end{array} \quad \begin{gathered}
M_{A}
\end{gathered} M_{B} V_{A} V_{B}
$$

Local to Global

|  | ++ | +- | -+ | -- |
| :---: | :---: | :---: | :---: | :---: |
| $M M$ | 1 | 1 | 1 | 1 |
| $M V$ |  | 1 | 1 | 1 |
| $V M$ |  | 1 | 1 | 1 |
| $V V$ | 1 | 1 | 1 |  |



Global sections:

$$
\begin{array}{c|c|c|c}
\hline M_{A} & M_{B} & V_{A} & V_{B} \\
\hline- & - & +
\end{array}
$$

"Logical Comtextuality"

Hardy's Angument

|  | ++ | +- | -+ | -- |
| :---: | :---: | :---: | :---: | :---: |
| $M M$ | 1 | 1 | 1 | 1 |
| $M V$ |  | 1 | 1 | 1 |
| $V M$ |  | 1 | 1 | 1 |
| $V V$ | 1 | 1 | 1 |  |

Hardy's Angument
Schmidt decomposition:

|  | ++ | +- | -+- |  |
| :---: | :---: | :---: | :---: | :---: |
| $M M$ | 1 | 1 | 1 | 1 |
| $M V$ |  | 1 | 1 | 1 |
| $V M$ |  | 1 | 1 | 1 |
| $V V$ | 1 | 1 | 1 |  |

$$
|\Psi\rangle=\alpha|a\rangle_{1}|a\rangle_{2}-\beta|b\rangle_{1}|b\rangle_{2}
$$

Hardy's Argument
Schmidt decomposition:

|  | ++ | +- | -+- |  |
| :---: | :---: | :---: | :---: | :---: |
| $M M$ | 1 | 1 | 1 | 1 |
| $M V$ |  | 1 | 1 | 1 |
| $V M$ |  | 1 | 1 | 1 |
| $V V$ | 1 | 1 | 1 |  |

$$
|\Psi\rangle=\alpha|a\rangle_{1}|a\rangle_{2}-\beta|b\rangle_{1}|b\rangle_{2}
$$

Chose observables

$$
M_{i}=\left|m_{i}\right\rangle\left\langle m_{i}\right| \quad V_{i}=\left|v_{i}\right\rangle\left\langle v_{i}\right|
$$

Hardy's Argument
Schmidt decomposition:

|  | ++ | +- | -+ | - |
| :--- | :---: | :---: | :---: | :---: |
| $M M$ | 1 | 1 | 1 | 1 |
| $M V$ |  | 1 | 1 | 1 |
| $V M$ |  | 1 | 1 | 1 |
| $V V$ | 1 | 1 | 1 |  |

$$
|\Psi\rangle=\alpha|a\rangle_{1}|b\rangle_{1}-\beta|a\rangle_{2}|b\rangle_{2}
$$

Chose observables

$$
M_{i}=\left|m_{i}\right\rangle\left\langle m_{i}\right| \quad V_{i}=\left|v_{i}\right\rangle\left\langle v_{i}\right|
$$

where the + eigenvectors are

$$
\begin{aligned}
& \left|m_{a}\right\rangle=\frac{1}{\sqrt{|\alpha|+|\beta|}}\left(\sqrt{\beta}|a\rangle_{1}+\sqrt{\alpha}|a\rangle_{2}\right) \\
& \left|v_{b}\right\rangle=\frac{1}{\sqrt{|\alpha|+|\beta|}}\left(\sqrt{\beta}|b\rangle_{1}-\sqrt{\alpha}|b\rangle_{2}\right)
\end{aligned}
$$

Hardy's Argument
Schmidt decomposition:

|  | ++ | +- | -+- |  |
| :---: | :---: | :---: | :---: | :---: |
| $M M$ | 1 | 1 | 1 | 1 |
| $M V$ |  | 1 | 1 | 1 |
| $V M$ |  | 1 | 1 | 1 |
| $V V$ | 1 | 1 | 1 |  |

$$
|\Psi\rangle=\alpha|a\rangle_{1}|b\rangle_{1}-\beta|a\rangle_{2}|b\rangle_{2}
$$

Chose observables

$$
M_{i}=\left|m_{i}\right\rangle\left\langle m_{i}\right| \quad V_{i}=\left|v_{i}\right\rangle\left\langle v_{i}\right|
$$

where the + eigenvectors are

$$
\begin{aligned}
& \left|m_{a}\right\rangle=\frac{1}{\sqrt{|\alpha|+|\beta|}}\left(\sqrt{\beta}|a\rangle_{1}+\sqrt{\alpha}|a\rangle_{2}\right) \\
& \left|v_{b}\right\rangle=\frac{1}{\sqrt{|\alpha|+|\beta|}}\left(\sqrt{\beta}|b\rangle_{1}-\sqrt{\alpha}|b\rangle_{2}\right)
\end{aligned}
$$

and their orthogonal eigenvectors are

$$
\begin{aligned}
& \left|n_{a}\right\rangle=\frac{1}{\sqrt{|\alpha|+|\beta|}}\left(-\sqrt{\alpha^{*}}|a\rangle_{1}+\sqrt{\beta^{*}}|a\rangle_{2}\right) \\
& \left|u_{b}\right\rangle=\frac{1}{\sqrt{|\alpha|+|\beta|}}\left(\sqrt{\alpha^{*}}|b\rangle_{1}+\sqrt{\beta^{*}}|b\rangle_{2}\right)
\end{aligned}
$$

Hardy's Argument
Schmidt decomposition:

|  | ++ | +- | -+ | - |
| :--- | :---: | :---: | :---: | :---: |
| $M M$ | 1 | 1 | 1 | 1 |
| $M V$ |  | 1 | 1 | 1 |
| $V M$ |  | 1 | 1 | 1 |
| $V V$ | 1 | 1 | 1 |  |

$$
|\Psi\rangle=\alpha|a\rangle_{1}|b\rangle_{1}-\beta|a\rangle_{2}|b\rangle_{2}
$$

Chose observables

$$
M_{i}=\left|m_{i}\right\rangle\left\langle m_{i}\right| \quad V_{i}=\left|v_{i}\right\rangle\left\langle v_{i}\right|
$$

where the + eigenvectors are

$$
\begin{aligned}
& \left|m_{a}\right\rangle=\frac{1}{\sqrt{|\alpha|+|\beta|}}\left(\sqrt{\beta}|a\rangle_{1}+\sqrt{\alpha}|a\rangle_{2}\right) \\
& \left|v_{b}\right\rangle=\frac{1}{\sqrt{|\alpha|+|\beta|}}\left(\sqrt{\beta}|b\rangle_{1}-\sqrt{\alpha}|b\rangle_{2}\right)
\end{aligned}
$$

and their orthogonal eigenvectors are

$$
\left\langle\Psi \mid m_{a}\right\rangle\left|m_{b}\right\rangle \neq 0
$$

$$
\begin{aligned}
& \left|n_{a}\right\rangle=\frac{1}{\sqrt{|\alpha|+|\beta|}}\left(-\sqrt{\alpha^{*}}|a\rangle_{1}+\sqrt{\beta^{*}}|a\rangle_{2}\right) \\
& \left|u_{b}\right\rangle=\frac{1}{\sqrt{|\alpha|+|\beta|}}\left(\sqrt{\alpha^{*}}|b\rangle_{1}+\sqrt{\beta^{*}}|b\rangle_{2}\right)
\end{aligned}
$$

Hardy's Argument
Schmidt decomposition:

|  | ++ | +- | -+ | - |
| :--- | :---: | :---: | :---: | :---: |
| $M M$ | 1 | 1 | 1 | 1 |
| $M V$ |  | 1 | 1 | 1 |
| $V M$ |  | 1 | 1 | 1 |
| $V V$ | 1 | 1 | 1 |  |

$$
|\Psi\rangle=\alpha|a\rangle_{1}|b\rangle_{1}-\beta|a\rangle_{2}|b\rangle_{2}
$$

Chose observables

$$
M_{i}=\left|m_{i}\right\rangle\left\langle m_{i}\right| \quad V_{i}=\left|v_{i}\right\rangle\left\langle v_{i}\right|
$$

where the + eigenvectors are

$$
\begin{aligned}
& \left|m_{a}\right\rangle=\frac{1}{\sqrt{|\alpha|+|\beta|}}\left(\sqrt{\beta}|a\rangle_{1}+\sqrt{\alpha}|a\rangle_{2}\right) \\
& \left|v_{b}\right\rangle=\frac{1}{\sqrt{|\alpha|+|\beta|}}\left(\sqrt{\beta}|b\rangle_{1}-\sqrt{\alpha}|b\rangle_{2}\right)
\end{aligned}
$$

and their orthogonal eigenvectors are

$$
\begin{aligned}
& \left\langle\Psi \mid m_{a}\right\rangle\left|m_{b}\right\rangle \neq 0 \\
& \left\langle\Psi \mid m_{a}\right\rangle\left|r_{b}\right\rangle=0
\end{aligned}
$$

$$
\begin{aligned}
& \left|n_{a}\right\rangle=\frac{1}{\sqrt{|\alpha|+|\beta|}}\left(-\sqrt{\alpha^{*}}|a\rangle_{1}+\sqrt{\beta^{*}}|a\rangle_{2}\right) \\
& \left|u_{b}\right\rangle=\frac{1}{\sqrt{|\alpha|+|\beta|}}\left(\sqrt{\alpha}|b\rangle_{1}+\sqrt{\beta^{*}}|b\rangle_{2}\right)
\end{aligned}
$$

Our Argument

|  | ++ | +- | -+ | -- |
| :---: | :---: | :---: | :---: | :---: |
| $M M$ | 1 | 1 | 1 | 1 |
| $M V$ |  | 1 | 1 | 1 |
| $V M$ |  | 1 | 1 | 1 |
| $V V$ | 1 | 1 | 1 |  |

Just add one suitably chosen, additional observable $D_{i}$ for each additional it gubit

Our Argument

|  | +++ | ++- | +-+ | +-- | -++ | -+- | --+ | --- |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $D_{1} M M$ | 1 | 1 | 1 | 1 | $\cdot$ | $\cdot$ | $\cdot$ | $\cdot$ |
| $D_{1} M V$ |  | 1 | 1 | 1 | $\cdot$ | $\cdot$ | $\cdot$ | $\cdot$ |
| $D_{1} V M$ |  | 1 | 1 | 1 | $\cdot$ | $\cdot$ | $\cdot$ | $\cdot$ |
| $D_{1} V V$ | 1 | 1 | 1 |  | $\cdot$ | $\cdot$ | $\cdot$ | $\cdot$ |

Just add one suitably chosen, additional observable $D_{i}$ for each additional $i^{\text {th }}$ quit (the "Going Up" lemmas)

## ALGORITHM

Input $\quad$ An $n$-qubit state $|\omega\rangle$
Output Either
Yes if $|\omega\rangle$ is logically contextual,
together with a list of $n+2$ local observables, or
No if $|\omega\rangle$ is in $\mathcal{P}_{n}$.

## Base Cases

1. If $n=1$, output No.
2. If $n=2$, apply the Hardy procedure of the Base Case Lemma to the Schmidt decomposition of $|\omega\rangle$.

Recursive Case: $n+1, n>1$

1. We apply Test $\mathcal{P}_{n+1}$ to $|\omega\rangle$. If $|\omega\rangle$ is in $\mathcal{P}_{n+1}$, return No.
2. Otherwise, we write

$$
|\omega\rangle=\alpha|\psi\rangle|0\rangle+\beta|\phi\rangle|1\rangle .
$$

Explicitly, if $|\omega\rangle$ is represented by a $2^{n+1}$-dimensional complex vector

$$
\sum_{\sigma \in\{0,1\}^{n+1}} a_{\sigma}|\sigma\rangle
$$

in the computational basis, we can define

$$
\begin{array}{rlrl}
\alpha & =\sqrt{\sum_{\sigma \in\{0,1\}^{n}}\left|a_{\sigma 0}\right|^{2}}, & \beta=\sqrt{\sum_{\sigma \in\{0,1\}^{n}}\left|a_{\sigma 1}\right|^{2}} \\
|\psi\rangle & =\frac{1}{\alpha} \sum_{\sigma \in\{0,1\}^{n}} a_{\sigma 0}|\sigma\rangle, & |\phi\rangle & =\frac{1}{\beta} \sum_{\sigma \in\{0,1\}^{n}} a_{\sigma 1}|\sigma\rangle .
\end{array}
$$

3. We apply Test $\mathcal{P}_{n}$ to $|\psi\rangle$. If $|\psi\rangle$ is not in $\mathcal{P}_{n}$, we proceed recursively with $|\psi\rangle$, and then extend the observables using the construction of the Going Up Lemma I.
4. Otherwise, we proceed similarly with $|\phi\rangle$.
5. Otherwise, both $|\psi\rangle$ and $|\phi\rangle$ are in $\mathcal{P}_{n}$.

For $a$ in $(0,1)$, we define

$$
\tau(a):=a|\psi\rangle+\sqrt{1-a^{2}}|\phi\rangle .
$$

For 19 distinct values in $(0,1)$, we assign these values to $a$, and apply Test $\mathcal{P}_{n}$ to $\tau(a)$.
If we find a value of $a$ for which $\tau(a)$ is not in $\mathcal{P}_{n}$, we use that value to compute the local observable $B\left(\frac{\alpha}{a}, \frac{\beta}{\sqrt{1-a^{2}}}\right)$ for the $n+1$-th party, as specified in the Going Up Lemma II, and continue the recursion with the $n$-qubit state $\tau(a)$.
6. Otherwise, by the 21 Lemma and the Small Difference Lemma, the only remaining case is where $|\psi\rangle$ and $|\phi\rangle$ differ in one qubit. We have these qubits $\left|\psi_{1}\right\rangle,\left|\phi_{1}\right\rangle$ from our previous applications of Test $\mathcal{P}_{n}$. In this final case, we can write $|\omega\rangle$ as

$$
|\omega\rangle=|\Psi\rangle \otimes|\xi\rangle
$$

where $|\Psi\rangle$ is in $\mathcal{P}_{n-1}$, and $|\xi\rangle$ is a 2 -qubit state. Moreover, we have

$$
|\xi\rangle=\alpha\left|\psi_{1}\right\rangle|0\rangle+\beta\left|\phi_{1}\right\rangle|1\rangle .
$$

7. We apply the Base Case procedure to $|\xi\rangle$, which we know cannot be maximally entangled, by Step 1 . We output Yes, together with the two local observables for each party produced by the Hardy construction, and the $n-2$ local observables for $|\Psi\rangle$ produced by the Corollary to the Going Up lemmas.

## SUBROUTINE Test $\mathcal{P}_{n}$

Input $\quad n$-qubit quantum state $|\theta\rangle$
Output Either
Yes, and entanglement type of $|\theta\rangle$, or
No

1. Compute the $n-1$ partial traces $\rho_{i}$ over $n-1$ qubits of $|\theta\rangle$. If any $\rho_{i}$ is not a maximally mixed state, compute $\operatorname{Tr} \rho_{i}^{2}$. If $\operatorname{Tr} \rho_{i}^{2} \neq 1$, return No. We now have the list $\left\{i_{1}, \ldots, i_{k}\right\}$ of indices for which the maximally mixed state was returned.
2. For each $i_{p}$ in the list, find its "partner" $i_{q}$ by computing the partial traces $\rho_{i_{p}, i_{q}}$ over $n-2$ qubits, and then testing if $\operatorname{Tr} \rho_{i_{p}, i_{q}}^{2}=1$.
If we cannot find the partner for some $i_{p}$, return No.
3. Otherwise, we return Yes. We also have the complete entanglement type of $|\theta\rangle$, and we have computed all the single-qubit components.
