Variables, Pebbles, Width and Support

Anuj Dawar
Department of Computer Science and Technology, University of Cambridge

Pebbling Co-Monad

(Abramsky, D., Wang 2017) introduced the pebbling comonad \mathbb{P}_{k} on the category of σ-relational structures.

Morphisms $\mathbb{P}_{k}(\mathbb{A}) \longrightarrow \mathbb{B}$ describe winning strategies for Duplicator in a k-pebble one-sided game.
$\mathbb{P}_{k}(\mathbb{A}) \longrightarrow \mathbb{B}$ if, and only if, $\mathbb{A} \Rightarrow^{k} \mathbb{B}$
where,
$\mathbb{A} \Rightarrow^{k} \mathbb{B}$ denotes that every k-variable formula of existential positive first-order logic that is true in \mathbb{A} is true in \mathbb{B}.

Counting Logic

Isomorphisms $\mathbb{P}_{k}(\mathbb{A}) \cong \mathbb{P}_{k}(\mathbb{B})$ describe winning strategies for Duplicator in the k-pebble bijection game
$\mathbb{P}_{k}(\mathbb{A}) \cong \mathbb{P}_{k}(\mathbb{B})$ if, and only if, $\mathbb{A} \equiv^{k} \mathbb{B}$
where,
$\mathbb{A} \equiv^{k} \mathbb{B}$ denotes that every k-variable formula of first-order logic with counting that is true in \mathbb{A} is true in \mathbb{B}.

Why the focus on the number of variables?

Conjunctive Queries

Existential positive formulas are the closure under disjunctions of primitive positive formulas, also known as conjunctive queries.

Consider the query (in the language of directed graphs) saying "there is a walk of length five".
In prenex normal form this requires six variables

$$
\exists x_{1} \cdots \exists x_{6}\left(E\left(x_{1}, x_{2}\right) \wedge \cdots \wedge E\left(x_{5}, x_{6}\right)\right) .
$$

but, can be formulated with just two:

$$
\exists x \exists y(E(x, y) \wedge \exists x(E(y, x) \wedge \exists y(\cdots))) .
$$

Query Plans
Formulating the query with a small number of variables allows for a query plan with small intermediate relations.

$$
\exists x \exists y(E(x, y) \wedge \exists x(E(y, x) \wedge \exists y(\cdots)))
$$

Tree Width

In general, for any structure \mathbb{A}, given a tree decomposition of \mathbb{A} of width k, we can construct a conjunctive query $Q_{\mathbb{A}}$ with no more than $k+1$ variables such that
$\mathbb{B} \models Q_{\mathbb{A}}$ if, and only if, $\mathbb{A} \longrightarrow \mathbb{B}$.
(Kolaitis, Vardi)
In the pebbling comonad \mathbb{P}_{k}, from a coalgebra of \mathbb{A}, we can obtain a tree decomposition of \mathbb{A} of width $k-1$.

Counting Logic

C^{k} is the k-variable fragment of first-order logic with counting quantifiers: $\exists^{i} x \theta$

Recall, $\mathbb{P}_{k}(\mathbb{A}) \cong \mathbb{P}_{k}(\mathbb{B})$ if, and only if, $\mathbb{A} \equiv^{k} \mathbb{B}$ where, $\mathbb{A} \equiv^{k} \mathbb{B}$ denotes that the two structures agree on all sentences of C^{k}

The equivalence is characterised by the k-pebble bijection game.

Circuits

Given a formula φ of C^{k} and $n \in \mathbb{N}$, we can define a Boolean Circuit with threshold gates of size $O\left(n^{k}\right)$ that takes as input a structure \mathbb{A} on universe $\{1, \ldots, n\}$ and outputs True iff $\mathbb{A} \models \varphi$.

The inputs are labelled with atomic facts

$$
R\left(a_{1}, \ldots, a_{r}\right) \quad a_{1}, \ldots, a_{r} \in\{1, \ldots, n\}
$$

For every subformula $\theta(\vec{x})$ of φ and any assignment α of values from $\{1, \ldots, n\}$ to its free variables \vec{x} we have a gate $\theta[\alpha]$.

Symmetric Circuits

If $\mathbb{A} \vDash \varphi$ for an n-element structure \mathbb{A} then the circuit C_{φ} accepts the input for any mapping of the elements of \mathbb{A} to the inputs $\{1, \ldots, n\}$.

The output of the circuit C_{φ} is invariant under permutations of $\{1, \ldots, n\}$.

Every permutation $\pi \in \operatorname{Sym}_{n}$ extends to an automorphism of C_{φ}.
We say that the circuit is Sym_{n}-symmetric.

From Circuits to Formulas

A family of Sym_{n}-symmetric circuits $\left(C_{n}\right)_{n \in \mathbb{N}}$, of size $O\left(n^{k}\right)$, taking as input σ-structures on n elements
can be transformed into a family $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ of formulas of $C^{2 k}$
such that for any σ-structure \mathbb{A} with n elements,

$$
\mathbb{A} \models \varphi_{n} \text { if, and only if, } C_{n} \text { accepts } \mathbb{A} .
$$

Supports

Each gate g in C_{n} has an invariance group

$$
\operatorname{lnv}_{g}=\left\{\pi \in \operatorname{Sym}_{n} \mid g\left(x^{\pi}\right)=g(x)\right\}
$$

$$
\left[\operatorname{Sym}_{n}: \operatorname{lnv}_{g}\right] \in O\left(n^{k}\right)
$$

We can show that for each such gate, there is a support, i.e. a set $X \subseteq\{1, \ldots, n\}$ with $|X| \leq k$ such that Any π that fixes X pointwise is in Inv_{g}.

Supports and Bijection Games

We can use bijection games and the supports to establish lower bounds for symmetric circuits.

The key is the following connection.
If C is a symmetric circuit on n-vertex graphs such that every gate of C has a support of size at most k, and \mathbb{A} and \mathbb{B} are structures such that $\mathbb{A} \equiv^{2 k} \mathbb{B}$ then:

$$
C \text { accepts } \mathbb{A} \text { if, and only if, } C \text { accepts } \mathbb{B} \text {. }
$$

This can be proved by showing that if C distinguishes \mathbb{A} from \mathbb{B}, then it provides a winning strategy for Spoiler in the $2 k$-pebble bijection game.

Arithmetic Circuits
An Arithmetic Circuit over a field K computes (or represents) a polynomial in $K[X]$.

Matrix Inputs

We are often interested in inputs which are entries of a matrix.

$$
X=\left\{x_{i j} \mid 1 \leq i \leq m ; 1 \leq j \leq n\right\}
$$

Especially, when the input is a square matrix, so $m=n$.

$$
\begin{gathered}
\operatorname{det}(X)=\sum_{\sigma \in \operatorname{Sym}_{n}} \operatorname{sgn}(\sigma) \prod_{i \in[n]} x_{i \sigma(i)} \\
\operatorname{per}(X)=\sum_{\sigma \in \operatorname{Sym}_{n}} \prod_{i \in[n]} x_{i \sigma(i)}
\end{gathered}
$$

Valiant's conjecture VP $\neq \mathrm{VNP}$ is that there are no polynomial-size arithmetic circuits for computing the permanent.

Symmetries of the Permanent

The permanent

$$
\operatorname{per}(X)=\sum_{\sigma \in \operatorname{Sym}_{n}} \prod_{i \in[n]} x_{i \sigma(i)}
$$

is invariant under independent row and column permutations.
That is, under the action of $\operatorname{Sym}_{[n]} \times \operatorname{Sym}_{[n]}$ given by

$$
x_{i j}^{(\sigma, \pi)}=x_{\sigma(i) \pi(j)} .
$$

We say that $\operatorname{per}(X)$ is matrix symmetric.
$\operatorname{det}(X)$ has fewer symmetries.

Determinant

The invariance group of

$$
\operatorname{det}(X)=\sum_{\sigma \in \operatorname{Sym}_{n}} \operatorname{sgn}(\sigma) \prod_{i \in[n]} x_{i \sigma(i)}
$$

includes

$$
D=\left\{(\sigma, \pi) \in \operatorname{Sym}_{[n]} \times \operatorname{Sym}_{[n]} \mid \operatorname{sgn}(\sigma)=\operatorname{sgn}(\pi)\right\} \ltimes \mathbb{Z}_{2} .
$$

In particular, it is $\mathrm{Alt}_{[n]} \times \mathrm{Alt}_{[n]}$-symmetric.
The defining expression yields a circuit with these symmetries, but of $\Omega(n!)$ size.

Results

From (D., Wilsenach 2020 and 2022).

Γ	$\{\mathrm{id} \mathrm{\}}$	$\operatorname{Sym}_{[n]}$	$\operatorname{Alt}_{[n]} \times \operatorname{Alt}_{[n]}$	$\operatorname{Sym}_{[n]} \times \operatorname{Sym}_{[n]}$
Det	$O\left(n^{4}\right)$	$O\left(n^{4}\right)$ $($ char 0)	$2^{\Omega(n)}$ $($ char 0)	N / A
Perm	$O\left(n^{2} 2^{n}\right)$ $\mathrm{VP}=$ VNP?	$2^{\Omega(n)}$ (char 0)	$2^{\Omega(n)}$ $($ char $\neq 2)$	$2^{\Omega(n)}$ $($ char $\neq 2)$

Actually, all lower bounds are not just on the size of the circuit, but on orbit size.

Conclusion

The grading in the pebbling comonad is a fundamental resource that finds expression as:

- the number of variables in a formula;
- the number of pebbles in a model-comparison game;
- the arity of relations in a query plan;
- the width of tree decompositions of a structure;
- the dimension in Weisfeiler-Leman algorithms;
- the support of invariance groups in symmetric circuits.

Thank you!

28/03/2009, ETAPS

