Variables, Pebbles, Width and Support

Anuj Dawar

Department of Computer Science and Technology, University of Cambridge

WSV 2023 London, 19 September 2023

Pebbling Co-Monad

(Abramsky, D., Wang 2017) introduced the *pebbling comonad* \mathbb{P}_k on the category of σ -relational structures.

Morphisms $\mathbb{P}_k(\mathbb{A}) \longrightarrow \mathbb{B}$ describe *winning strategies* for Duplicator in a *k*-pebble one-sided game.

 $\mathbb{P}_k(\mathbb{A}) \longrightarrow \mathbb{B}$ if, and only if, $\mathbb{A} \Rightarrow^k \mathbb{B}$ where,

 $\mathbb{A} \Rightarrow^k \mathbb{B}$ denotes that every k-variable formula of existential positive first-order logic that is true in \mathbb{A} is true in \mathbb{B} .

Counting Logic

Isomorphisms $\mathbb{P}_k(\mathbb{A}) \cong \mathbb{P}_k(\mathbb{B})$ describe *winning strategies* for Duplicator in the *k*-pebble bijection game $\mathbb{P}_k(\mathbb{A}) \cong \mathbb{P}_k(\mathbb{B})$ if, and only if, $\mathbb{A} \equiv^k \mathbb{B}$ where, $\mathbb{A} \equiv^k \mathbb{B}$ denotes that every *k*-variable formula of first-order logic with counting that is true in \mathbb{A} is true in \mathbb{B} .

Why the focus on the number of variables?

Conjunctive Queries

Existential positive formulas are the closure under disjunctions of primitive positive formulas, also known as *conjunctive queries*.

Consider the query (in the language of *directed graphs*) saying *"there is a walk of length five"*. In *prenex normal form* this requires *six* variables

 $\exists x_1 \cdots \exists x_6 (E(x_1, x_2) \land \cdots \land E(x_5, x_6)).$

but, can be formulated with just *two*:

 $\exists x \exists y (E(x,y) \land \exists x (E(y,x) \land \exists y (\cdots))).$

Query Plans

Formulating the query with a small number of variables allows for a *query plan* with small *intermediate relations*.

 $\exists x \exists y (E(x,y) \land \exists x (E(y,x) \land \exists y (\cdots))).$

Tree Width

In general, for any structure \mathbb{A} , given a *tree decomposition* of \mathbb{A} of width k, we can construct a *conjunctive query* $Q_{\mathbb{A}}$ with no more than k + 1 variables such that

 $\mathbb{B} \models Q_{\mathbb{A}}$ if, and only if, $\mathbb{A} \longrightarrow \mathbb{B}$.

(Kolaitis, Vardi)

In the pebbling comonad \mathbb{P}_k , from a *coalgebra* of \mathbb{A} , we can obtain a *tree decomposition* of \mathbb{A} of width k-1.

Counting Logic

```
C^k is the k-variable fragment of first-order logic with counting quantifiers: \exists^i x \theta
```

Recall, $\mathbb{P}_k(\mathbb{A}) \cong \mathbb{P}_k(\mathbb{B})$ if, and only if, $\mathbb{A} \equiv^k \mathbb{B}$ where, $\mathbb{A} \equiv^k \mathbb{B}$ denotes that the two structures agree on all sentences of C^k

The equivalence is characterised by the k-pebble *bijection game*.

Circuits

Given a formula φ of C^k and $n \in \mathbb{N}$, we can define a *Boolean Circuit* with *threshold gates* of size $O(n^k)$ that takes as input a structure \mathbb{A} on universe $\{1, \ldots, n\}$ and outputs True *iff* $\mathbb{A} \models \varphi$.

The inputs are labelled with *atomic facts*

$$R(a_1,\ldots,a_r) \quad a_1,\ldots,a_r \in \{1,\ldots,n\}$$

For every subformula $\theta(\vec{x})$ of φ and any assignment α of values from $\{1, \ldots, n\}$ to its free variables \vec{x} we have a gate $\theta[\alpha]$.

Symmetric Circuits

If $\mathbb{A} \models \varphi$ for an *n*-element structure \mathbb{A} then the circuit C_{φ} accepts the input for any mapping of the elements of \mathbb{A} to the inputs $\{1, \ldots, n\}$.

The output of the circuit C_{φ} is *invariant* under permutations of $\{1, \ldots, n\}$.

Every permutation $\pi \in \text{Sym}_n$ extends to an *automorphism* of C_{φ} .

We say that the circuit is Sym_n -symmetric.

From Circuits to Formulas

A family of Sym_n -symmetric circuits $(C_n)_{n\in\mathbb{N}}$, of size $O(n^k)$, taking as input σ -structures on n elements can be transformed into a family $(\varphi_n)_{n\in\mathbb{N}}$ of formulas of C^{2k} such that for any σ -structure \mathbb{A} with n elements, $\mathbb{A} \models \varphi_n$ if, and only if, C_n accepts \mathbb{A} .

Supports

Each gate g in C_n has an *invariance group*

$$\mathsf{Inv}_g = \{\pi \in \operatorname{Sym}_n \mid g(x^\pi) = g(x)\}$$

 $[\operatorname{Sym}_n:\operatorname{Inv}_g]\in O(n^k)$

We can show that for each such gate, there is a *support*, i.e. a set $X \subseteq \{1, \ldots, n\}$ with $|X| \le k$ such that Any π that fixes X pointwise is in Inv_q .

Supports and Bijection Games

We can use *bijection games* and the *supports* to establish lower bounds for symmetric circuits.

The key is the following connection.

If *C* is a symmetric circuit on *n*-vertex graphs such that every gate of *C* has a support of size at most k, and \mathbb{A} and \mathbb{B} are structures such that $\mathbb{A} \equiv^{2k} \mathbb{B}$ then:

C accepts \mathbb{A} if, and only if, *C* accepts \mathbb{B} .

This can be proved by showing that if C distinguishes A from B, then it provides a *winning strategy* for *Spoiler* in the 2k-pebble bijection game.

Arithmetic Circuits

An Arithmetic Circuit over a field K computes (or represents) a polynomial in K[X].

Matrix Inputs

We are often interested in inputs which are entries of *a matrix*.

 $X = \{x_{ij} \mid 1 \le i \le m; 1 \le j \le n\}$

Especially, when the input is a square matrix, so m = n.

$$\det(X) = \sum_{\sigma \in \operatorname{Sym}_n} \operatorname{sgn}(\sigma) \prod_{i \in [n]} x_{i\sigma(i)}$$

$$\operatorname{per}(X) = \sum_{\sigma \in \operatorname{Sym}_n} \prod_{i \in [n]} x_{i\sigma(i)}$$

Valiant's conjecture $VP \neq VNP$ is that there are no *polynomial-size arithmetic circuits* for computing the *permanent*.

Symmetries of the Permanent

The permanent

$$per(X) = \sum_{\sigma \in Sym_n} \prod_{i \in [n]} x_{i\sigma(i)}$$

is invariant under independent row and column permutations.

That is, under the action of $\operatorname{Sym}_{[n]} \times \operatorname{Sym}_{[n]}$ given by

 $x_{ij}^{(\sigma,\pi)} = x_{\sigma(i)\pi(j)}.$

We say that per(X) is *matrix symmetric*.

det(X) has fewer symmetries.

Determinant

The invariance group of

$$\det(X) = \sum_{\sigma \in \operatorname{Sym}_n} \operatorname{sgn}(\sigma) \prod_{i \in [n]} x_{i\sigma(i)}$$

includes

$$D = \{(\sigma, \pi) \in \operatorname{Sym}_{[n]} \times \operatorname{Sym}_{[n]} | \operatorname{sgn}(\sigma) = \operatorname{sgn}(\pi)\} \ltimes \mathbb{Z}_2.$$

In particular, it is $Alt_{[n]} \times Alt_{[n]}$ -symmetric.

The defining expression yields a circuit with these symmetries, but of $\Omega(n!)$ size.

Results

From (D., Wilsenach 2020 and 2022).

Г	${id}$	$\operatorname{Sym}_{[n]}$	$\operatorname{Alt}_{[n]} \times \operatorname{Alt}_{[n]}$	$\operatorname{Sym}_{[n]} \times \operatorname{Sym}_{[n]}$
Det	$O(n^4)$	<i>O</i> (<i>n</i> ⁴) (char 0)	$\frac{2^{\Omega(n)}}{(char \ 0)}$	N/A
Perm	$O(n^2 2^n)$ VP = VNP?	$2^{\Omega(n)}$ (char 0)	$rac{2^{\Omega(n)}}{(ext{char} eq 2)}$	$rac{2^{\Omega(n)}}{(char eq 2)}$

Actually, all lower bounds are not just on the *size* of the circuit, but on *orbit size*.

Conclusion

The *grading* in the pebbling comonad is a fundamental resource that finds expression as:

- the number of *variables* in a formula;
- the number of *pebbles* in a model-comparison game;
- the *arity* of relations in a query plan;
- the *width* of tree decompositions of a structure;
- the *dimension* in Weisfeiler-Leman algorithms;
- the *support* of invariance groups in symmetric circuits.

Thank you!

28/03/2009, ETAPS