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Identity of proofs

Identifying or telling apart proofs has far-reaching consequences.
Philosophy and math: when two proofs correspond to the same argument?
Computer science: when two algorithms correspond to the same program?
Linguistics: how to capture different readings of the same sentence?
. . .

Sequent calculi: different proofs often due to trivial permutations of rules.

Natural deduction calculi or proof nets: less sensitive to rule permutations
 benchmarks for defining identity of proofs.

Focused sequent calculi [And92, And01, Mil04]: syntactic restrictions on rules:
1 the proof search space is reduced retaining completeness;
2 every cut-free proof comes in a special normal form;
3 criterion for defining identity of sequent calculi proofs.

What is the mathematical underpinning of focalization?

Looking for:
(uniform and modular structural) proof theory and
(algebraic and categorical) semantics.
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Our contributions

Lambek-Grishin logic:

fully polarized algebraic semantics FP.LG

focused display calculus fD.LG:

canonical cut-elimination, strong focalization, complete w.r.t. FP.LG

also complete w.r.t. LG-algebras
 semantic proof of completeness of focusing
effective translation between fD.LG- and fLG-proofs [MM12]
 operational semantics

General theory:

heterogenous display calculi
fully polarized algebras
analytic-inductive extensions
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Basic Lambek-Grishin algebra

Poset with 6 operations [Moo09]:

A ≤ C /B iff A ⊗ B ≤ C iff B ≤ A \C

C � B ≤ A iff C ≤ A ⊕ B iff A � C ≤ B
(1)

John sleeps is a sentence
np ⊗ np \ s ≤ s
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Multi-type Proper Display Calculi 1/2

Display calculi are a natural generalization of Gentzen’s calculi [BJ82]

Display property
 semantically justified by adjunction/residuation

If εf ,i = 1 and εg,j = 1:
f̂ (Σ)[Γ]i ` ∆

f̂ a f̌ ]i
Γ ` f̌ ]i (Σ)[∆]i

Γ ` ǧ (Σ)[∆]j
ĝ [j a ǧ

ĝ [
j (Σ)[Γ]j ` ∆

If εf ,i = ∂ and εg,j = ∂:
f̂ (Σ)[∆]i ` ∆′

(̂f , f̂ ]i )

f̂ ]i (Σ)[∆′]i ` ∆

Γ′ ` ǧ (Σ)[Γ]j
(ǧ, ǧ [j )

Γ ` ǧ [
j (Σ)[Γ′]j

Canonical cut elimination;

Properness: all rules closed under uniform substitution [Wan98];

Multi-type: syntactic types ! subalgebras
 uniform substitution within each type [FGK+16].
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Multi-type proper display calculi 2/2

Definition

A proper DC verifies each of the following conditions:
1 structures can disappear, formulas are forever;
2 tree-traceable formula-occurrences, via suitably defined congruence relation

(same shape, position, non-proliferation)
3 principal = displayed
4 rules are closed under uniform substitution of congruent parameters within

each type (Properness!);
5 reduction strategy exists when cut formulas are principal.
6 type-uniformity of derivable sequents;
7 strongly uniform cuts in each/some type(s).

Theorem (Canonical!)

Cut elimination and subformula property hold for any proper m.DC.
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Basic Lambek-Grishin logic

D.LG consists of the following rules (we consider only the Lambek fragment for brevity).

Axioms and cuts:

Idp ` p
X ` A A ` Y

Cut
X ` Y

Logical rules (i.e. translation vs tonicity rules, cfr. asynchronous vs synchronous [And01]):

A ⊗̂B ` X
⊗L

A ⊗ B ` X
X ` A Y ` B

⊗R

X ⊗̂Y ` A ⊗ B

X ` A B ` Y
\ L

A \B ` X \̌Y
X ` A \̌B

\R
X ` A \B

B ` Y X ` A
/ L

B /A ` Y /̌X
X ` B /̌A

/R
X ` B /A

Display postulates:

Y ` X \̌Z
⊗̂ a \̌

X ⊗̂Y ` Z
⊗̂ a /̌

X ` Z /̌Y

We may expand the calculus with so-called Structural rules, e.g.:

(X ⊗̂Y) ⊗̂Z ` W
a, a−1

X ⊗̂ (Y ⊗̂Z) ` W
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Everybody needs somebody

Everybody needs somebody is a sentence
s / (np \ s) ⊗ (((np \ s) / ((s / np) \ s)) ⊗ (s / np) \ s) ` s

7 sequent derivations, but only 3 ND (or proof net) derivations in normal form!

Moving to a focused sequent system (fLG or fD.LG) again 3 derivations!

Two derivations use associativity and correspond to the following readings:

∀-∃ reading: Everybody > somebody > needs
∃-∀ reading: Somebody > everybody > needs
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Focalization

The key idea relies on the following distinction.

A focused phase is a proof-section where a formula is decomposed "as much as possible" only
by means of tonicity logical rules.

A neutral phase is a non-focused phase, i.e. a proof section built by translation logical rules
(applied greedily) or structural rules.

A strongly focalized proof exhibits a strict alternation between focused and neutral phases:

. . .

...
...

focused phase

neutral phase

...

Definition

A sequent proof π is strongly focalized if cut-free and, for every formula A occurring in π,
every PIA subtree of A is constructed by a proof-section of π containing only tonicity rules.
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Focalization via polarization

Two focalized phases

Positive phase: only tonicity rules for positive connectives are applied;
Negative phase: only tonicity rules for negative connectives are applied.

How to categorize a connective as "positive" or "negative"?

Positive formulas: the main connective is a left-adjoint/residual (�,⊗,�);
Negative formulas: the main connective is a right-adjoint/residual ( / ,⊕, \ ).

The key idea of polarization "naturally" calls for a type distinction:

multi-type calculi seem good candidates, but we need a further generalization!
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A step back: focalization via "implicit" polarization

State of the art: fLG by Moortgat and Moot [MM12]

Every proof is strongly focalized

Focus implemented by a meta-linguistical marker A
Restrictions on the applicability of rules

If A is positive:

Axiom Focusing Defocusing

A ` A
A ` ∆↽
A ` ∆

X ` A
⇀

X ` A
If A is negative:

Co-axiom Focusing Defocusing

A ` A
X ` A ⇁

X ` A
A ` X

↼
A ` X

Tonicity rules have auxiliary and principal formulas in focus.
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∀-∃ reading: fLG

Bias assignment: np :: positive, s :: negative.

s0 ` s11

np1 ` np3 s4 ` s8

np \ s ` np \̌ s

s5 ` s7 np9 ` np6

s / np ` s /̌ np
�

np ` (s / np) \ s

(np \ s) / ((s / np) \ s) ` (np \̌ s) /̌ np
�, a

np ⊗̂ ((np \ s) / ((s / np) \ s)) ` s / np s10 ` s2

(s8 / np9) \ s10 ` (np ⊗̂ ((np \ s) / (s / np) \ s))) \̌ s
�, a−1

((np \ s) / ((s / np) \ s)) ⊗̂ ((s / np) \ s) ` np \ s

s0 / (np1 \ s2) ` s /̌ (((np \ s) / ((s / np) \ s)) ⊗̂ ((s / np) \ s))
�

s0 / (np1 \ s2)︸            ︷︷            ︸
Everybody

⊗̂ (((np3 \ s4) / ((s5 / np6) \ s7))︸                                  ︷︷                                  ︸
needs

⊗̂ ((s8 / np9) \ s10)︸                ︷︷                ︸
somebody

) ` s11
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Focalization via "explicit" polarization

In proof-theory, shift operators have been considered:
if A is negative, then ↓A is positive;
if A is positive, then ↑A is negative.

 but their status as operators is obscure.

In algebraic/categorical polarized semantics:
↑ a ↓

↑↓↑ ϕ = ↑ ϕ

↓↑↓ ϕ = ↓ ϕ

↓↑ ϕ = ϕ

↑↓ ϕ = ϕ.

Problem: the focusing policy could be destroyed.
 the usual solution is to consider only sequents where ↑ (resp. ↓) are not nested.

Our solution: 4 types:
positive and negative formulas belong to different sorts;
pure and shifted formulas belong to different sorts.
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Weakening relations

W.R. are the order-theoretic equivalents of profunctors (aka distributors or bimodules) [Ben73].

W.R. are generalizations of partial orders: take A = B and ≤A = ≤B.

Definition

A weakening relation is a relation 4⊆ A × B on two partially ordered set (A,≤A) and (B,≤B)
that is compatible with the orders ≤A and ≤B in the following sense

A ′ ≤A A A 4 B B ≤B B′

A ′ 4 B′

Definition

Given two w.r. 4A ⊆ A×A′ and 4B ⊆ B×B′, we say that the order-preserving functions L : A → B

and R : B′ → A′ form a heterogeneous adjoint pair L a4B4A R if for every A ∈ A and B′ ∈ B′,

L(A) 4B B′ iff A 4A R(B′)

A B

A′ B′

4A 4B

R

L

`

If A′ = A, 4A = ≤A, B′ = B and 4B = ≤B, we recover the usual definition of adjunction.

Heterogeneous adjunctions also appear in the theory of Chu spaces.
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Full polarization

P Ṅ

Ṗ N

�·+

≤+

�

�·

·�−

·≤·−

·�

·≤·+ ≤−

P̊ N̊
�̊

≤̊
+

≤̊
−
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Fully polarized LG-algebras FP.LG

Operators and their residuals (we consider the Lambek fragment for brevity):

/ : N̊ × P̊∂ → N, ⊗ : P̊ × P̊→ P, \ : P̊∂ × N̊→ N.

P̊ �̊ N̊ / Q̊ iff P̊ ⊗ Q̊ �̊ N̊ iff Q̊ �̊ P̊ \ N̊.
(2)

Shifts:

P Ṅ Ṗ N

↑ �

↓�
` `

(3)

For all P ∈ P and N ∈ N, �·+ ⊆ P × Ṗ, � ⊆ P ×N and ·�− ⊆ Ṅ ×N are s.t.:

↑P ·�− N iff P � N iff P �·+ ↓N (4)

i.e. � is the weakening relation represented by the heterogeneous adjunction ↑ a�·
+

·�−
↓.

Collage posets: (P̊, ≤̊+
) := (P t Ṗ, ≤+ t �·+ t ·≤·+ ), (N̊, ≤̊− ) := (N t Ṅ, ≤− t ·�− t ·≤·− ).

Collage weakening relation: �̊ := �· t � t ·� ⊆ P̊ × N̊.
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(Heterogeneous multi-type proper) focused display calculus fD.LG

Notation: P̊ ∈ {P, Ṗ}, resp. N̊ ∈ {N, Ṅ}.

P := p | P̊ ⊗ P̊ | (P̊ � N̊) | (N̊ � P̊) Pure positive formulas (�̌ ∆̇)
N := n | (N̊ ⊕ N̊) | P̊ \ N̊ | N̊ / P̊ Pure negative formulas (�̂ Ẋ )
Ṗ := ↓N Shifted positive formulas
Ṅ := ↑P Shifted negative formulas

Well-formed sequents (sequents in grey cells are not derivable):

Positive sequents X `+ Y Ẋ ·`+ Y X `·+ Ẏ Ẋ ·`·+ Ẏ

Negative sequents ∆ `− Γ ∆̇ ·`− Γ ∆ `·− Γ̇ ∆̇ ·`·− Γ̇

Neutral sequents X ` ∆ Ẋ ·` ∆ X `· ∆̇ Ẋ ·`· ∆̇

(5)

Each consequence relation is interpreted by a W.R. as follows:

t `+ `·+ ·`·+ `− ·`− ·`·− ` ·` `· ˚̀+ ˚̀− ˚̀

tFP.LG ≤+ �·+ ·≤·+ ≤− ·�− ·≤·− � ·� �· ≤̊
+

≤̊
−

�̊

(6)
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Axioms and cuts

p-Id

p `+ p
n-Id

n `− n

X̊ ˚̀+ P̊ P̊ ˚̀+ Y̊
P-Cut

X̊ ˚̀+ Y̊
Γ̊ ˚̀− N̊ N̊ ˚̀− ∆̊

N-Cut

Γ̊ ˚̀− ∆̊

X̊ ˚̀+ P̊ P̊ ˚̀ ∆̊
Pn-Cut

X̊ ˚̀ ∆̊

X̊ ˚̀ N̊ N̊ ˚̀− ∆̊
nN-Cut

X̊ ˚̀ ∆̊

(7)
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Logical rules

P̊ ⊗̂ Q̊ ˚̀ ∆̊
⊗L

P̊ ⊗ Q̊ ˚̀ ∆̊

X̊ ˚̀+ P̊ Y̊ ˚̀+ Q̊
⊗R

X̊ ⊗̂ Y̊ `+ P̊ ⊗ Q̊

X̊ ˚̀+ P̊ N̊ ˚̀− ∆̊
\ L

P̊ \ N̊ `− X \̌∆

X̊ ˚̀ P̊ \̌ N̊
\R

X̊ ˚̀ P̊ \ N̊
N̊ ˚̀− ∆̊ X̊ ˚̀+ P̊

/ L

N̊ / P̊ `− ∆̊ /̌ X̊
X̊ ˚̀ N̊ /̌ P̊

/R

X̊ ˚̀ N̊ / P̊

N `− ∆
↓L

↓N ·`·+ ↓̌∆

X̊ ˚̀+
↓̌N

↓R

X̊ ˚̀+
↓N

↑̂P ˚̀− ∆̊
↑L

↑P ˚̀− ∆̊

X `+ P
↑R

↑̂X ·`·− ↑P
(8)
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Structural rules

Display postulates:

Y̊ ˚̀ X̊ \̌ ∆̊
⊗̂ a \̌

X̊ ⊗̂ Y̊ ˚̀ ∆̊
⊗̂ a /̌

X̊ ˚̀ ∆̊ /̌ Y̊

X̊ �̂ ∆̊ ˚̀ Γ̊
�̂ a ⊕̌

X̊ ˚̀ Γ̊ ⊕̌ ∆̊
�̂ a ⊕̌

Γ̊ �̂ X̊ ˚̀ ∆̊

↑̂X ·`·− ∆̇
↑̂ a �̌

X `+ �̌ ∆̇

↑̂X ·`− ∆
↑̂ a ↓̌

X `·+ ↓̌∆

Ẋ ·`·+ ↓̌∆
�̂ a ↓̌

�̂ Ẋ `− ∆

(9)

Structural rules for shifts:

X̊ ˚̀ ∆
↓̌

X̊ ˚̀+
↓̌∆

X ˚̀ ∆̊
↑̂

↑̂X ˚̀− ∆̊
(10)
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Phases and phase transitions 1/2

FOCUSED PHASE

NON-FOCUSED PHASE

Positive
sequents

defocusing on P focusing on P

focusing on N defocusing on N

Negative
sequents

↑R

↓R ↓L

↑L

×

× ×

×
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Phases and phase transitions 2/2

↑̂X ·`·− ↑PX `+ P

X `· ∆̇ ↑̂P ·`·− ∆̇

↑̂P ·`− ∆

↑P ·`·− ∆̇

X ` ∆X `·+ ↓̌N

Ẋ ·`·+ ↓̌N

X `·+ ↓N ↑P ·`− ∆

Ẋ ·` ∆Ẋ ·`·+ ↓N

N `− ∆↓N ·`·+ ↓̌∆

p-Id

n-Id↓L

↑R

↓R

↓R

↑L

↑L

↑̂

↓̌

↑̂

↓̌

↓̌

↑̂
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∀-∃ reading: fD.LG

Bias assignment: np :: positive, s :: negative.

s0 `
− s11

np1 `
+ np3 s4 `

− s8

np \ s `− np \̌ s

s5 `
− s7 np9 `

+ np6

s / np `− s /̌ np
�

np `·+ ↓(↓(s / np) \ s)

(np \ s) / ↓(↓(s / np) \ s) `− (np \̌ s) /̌ np
�, a

np ⊗̂ ↓((np \ s) / ↓(↓(s / np) \ s)) `·+ ↓(s / np) s10 `
− s2

↓(s8 / np9) \ s10 `
− (np ⊗̂ ↓((np \ s) / ↓(↓(s / np) \ s))) \̌ s

�, a−1
↓((np \ s) / ↓(↓(s / np) \ s)) ⊗̂ ↓(↓(s / np) \ s) `·+ ↓(np \ s)

s0 / ↓(np1 \ s2) `− s /̌ (↓((np \ s) / ↓(↓(s / np) \ s)) ⊗̂ ↓(↓(s / np) \ s))
�

↓(s0 / ↓(np1 \ s2))︸                  ︷︷                  ︸
Everybody

⊗̂ (↓((np3 \ s4) / ↓(↓(s5 / np6) \ s7))︸                                       ︷︷                                       ︸
needs

⊗̂ ↓(↓(s8 / np9) \ s10)︸                   ︷︷                   ︸
somebody

) ` s11
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Conclusions

What we did.

Lambek-Grishin logic:

focused display calculus fD.LG
 canonical cut-elimination and strong focalization
fully polarized algebraic semantics FP.LG
 semantic proof of completeness of focusing

Future work.

We expect that the present approach:
(1) extends to every (first-order) displayable logic;
(2) can be lifted to categories (profunctors instead of w.r.).

(2.a) So far, we defined a categorical Lindenbaum-Tarsky construction
producing the free residuated category generated by D.L;

(2.b) we defined an algorithm transfoming
sequent derivations  diagrams  natural deduction derivations.
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