Lambek-Grishin Calculus:

Focusing, Display and Full Polarization

$\frac{\text { Giuseppe Greco }^{1}}{\text { Michael Moortgat }^{2}}$
Valentin D. Richard 3
Apostolos Tzimoulis

UCL workshop, 19 Sep. 2023

Identity of proofs

Identifying or telling apart proofs has far-reaching consequences.

- Philosophy and math: when two proofs correspond to the same argument?
\square Computer science: when two algorithms correspond to the same program?
\square Linguistics: how to capture different readings of the same sentence?

Identity of proofs

Identifying or telling apart proofs has far-reaching consequences.

- Philosophy and math: when two proofs correspond to the same argument?
\square Computer science: when two algorithms correspond to the same program?
\square Linguistics: how to capture different readings of the same sentence?

Sequent calculi: different proofs often due to trivial permutations of rules.
Natural deduction calculi or proof nets: less sensitive to rule permutations \leadsto benchmarks for defining identity of proofs.

Identity of proofs

Identifying or telling apart proofs has far-reaching consequences.

- Philosophy and math: when two proofs correspond to the same argument?
\square Computer science: when two algorithms correspond to the same program?
- Linguistics: how to capture different readings of the same sentence?

■...
Sequent calculi: different proofs often due to trivial permutations of rules.
Natural deduction calculi or proof nets: less sensitive to rule permutations $\leadsto \rightarrow$ benchmarks for defining identity of proofs.
Focused sequent calculi [And92, And01, Mil04]: syntactic restrictions on rules:
I the proof search space is reduced retaining completeness;
[every cut-free proof comes in a special normal form;
s criterion for defining identity of sequent calculi proofs.

Identity of proofs

Identifying or telling apart proofs has far-reaching consequences.

- Philosophy and math: when two proofs correspond to the same argument?
- Computer science: when two algorithms correspond to the same program?
- Linguistics: how to capture different readings of the same sentence?

■...
Sequent calculi: different proofs often due to trivial permutations of rules.
Natural deduction calculi or proof nets: less sensitive to rule permutations $n \rightarrow$ benchmarks for defining identity of proofs.
Focused sequent calculi [And92, And01, Mil04]: syntactic restrictions on rules:
I the proof search space is reduced retaining completeness;
© every cut-free proof comes in a special normal form;
${ }^{3}$ criterion for defining identity of sequent calculi proofs.

What is the mathematical underpinning of focalization?
Looking for:

- (uniform and modular structural) proof theory and
- (algebraic and categorical) semantics.

Our contributions

Lambek-Grishin logic:

- fully polarized algebraic semantics $\mathbb{F P}$. $\mathbb{L G}$
\square focused display calculus fD.LG:

■ canonical cut-elimination, strong focalization, complete w.r.t. $\mathbb{F P}$.LG

- also complete w.r.t. LG-algebras
\leadsto semantic proof of completeness of focusing
- effective translation between fD.LG- and fLG-proofs [MM12]
\leadsto operational semantics
General theory:
■ heterogenous display calculi
■ fully polarized algebras
- analytic-inductive extensions

Basic Lambek-Grishin algebra

- Poset with 6 operations [Moo09]:

$$
\begin{align*}
& A \leq C / B \quad \text { iff } \quad A \otimes B \leq C \quad \text { iff } \quad B \leq A \backslash C \\
& C \oslash B \leq A \quad \text { iff } \quad C \leq A \oplus B \quad \text { iff } \quad A \otimes C \leq B \tag{1}\\
& \frac{\text { John }}{n p} \otimes \frac{\text { sleeps }}{n p \backslash s} \leq \frac{\text { is a sentence }}{s}
\end{align*}
$$

Multi-type Proper Display Calculi $1 / 2$

Display calculi are a natural generalization of Gentzen's calculi [BJ82]
■ Display property
\leadsto semantically justified by adjunction/residuation

$$
\begin{aligned}
& \text { If } \varepsilon_{f, i}=1 \text { and } \varepsilon_{g, j}=1: \quad \hat{f}_{\rightarrow}+\breve{f}_{i}^{\sharp} \frac{\hat{f}(\bar{\Sigma})[\Gamma]_{i} \vdash \Delta}{\Gamma \vdash \check{f}_{i}^{\sharp}(\bar{\Sigma})[\Delta]_{i}}
\end{aligned}
$$

■ Canonical cut elimination;

■ Properness: all rules closed under uniform substitution [Wan98];

■ Multi-type: syntactic types $\leadsto \rightarrow$ subalgebras $\leadsto \rightarrow$ uniform substitution within each type [FGK $\left.{ }^{+} 16\right]$.

Definition

A proper DC verifies each of the following conditions:
it structures can disappear, formulas are forever;
[2 tree-traceable formula-occurrences, via suitably defined congruence relation (same shape, position, non-proliferation)
s principal = displayed
4 rules are closed under uniform substitution of congruent parameters within each type (Properness!);
E reduction strategy exists when cut formulas are principal.
ब type-uniformity of derivable sequents;
r strongly uniform cuts in each/some type(s).

Theorem

Cut elimination and subformula property hold for any proper m.DC.

Basic Lambek-Grishin logic

D.LG consists of the following rules (we consider only the Lambek fragment for brevity).

Axioms and cuts:

$$
\overline{p \vdash p}^{\text {ld }} \frac{X \vdash A \quad A \vdash Y}{X \vdash Y} \mathrm{cut}
$$

Logical rules (i.e. translation vs tonicity rules, cfr. asynchronous vs synchronous [And01]):

$$
\begin{aligned}
& \otimes_{\llcorner } \frac{A \hat{\otimes} B \vdash X}{A \otimes B \vdash X} \quad \frac{X \vdash A \quad Y \vdash B}{X \hat{\otimes} Y \vdash A \otimes B} \otimes_{R} \\
& \iota_{\llcorner } \frac{X \vdash A \quad B \vdash Y}{A \backslash B \vdash X \backslash Y} \quad \frac{X \vdash A\lceil B}{X \vdash A \backslash B} \backslash_{R} \quad \iota \frac{B \vdash Y \quad X \vdash A}{B / A+Y / X} \frac{X \vdash B / A}{X \vdash B / A} /_{R}
\end{aligned}
$$

Display postulates:

We may expand the calculus with so-called Structural rules, e.g.:

$$
\frac{(X \hat{\otimes} Y) \hat{\otimes} Z \vdash W}{X \hat{\otimes}(Y \hat{\otimes} Z) \vdash W}
$$

Everybody needs somebody

$\frac{\text { Everybody }}{s /(n p \backslash s)} \otimes \frac{\text { needs }}{(((n p \backslash s) /((s / n p) \backslash s))} \otimes \frac{\text { somebody }}{(s / n p) \backslash s)} \stackrel{\text { is }}{\vdash} \frac{\text { a sentence }}{s}$

7 sequent derivations, but only 3 ND (or proof net) derivations in normal form! Moving to a focused sequent system (fLG or fD.LG) again 3 derivations!

Two derivations use associativity and correspond to the following readings:
■ $\forall-\exists$ reading: Everybody > somebody > needs
$\square \exists-\forall$ reading: Somebody $>$ everybody $>$ needs

Focalization

The key idea relies on the following distinction.

- A focused phase is a proof-section where a formula is decomposed "as much as possible" only by means of tonicity logical rules.
- A neutral phase is a non-focused phase, i.e. a proof section built by translation logical rules (applied greedily) or structural rules.

A strongly focalized proof exhibits a strict alternation between focused and neutral phases:

neutral phase focused phase

Definition

A sequent proof π is strongly focalized if cut-free and, for every formula A occurring in π, every PIA subtree of A is constructed by a proof-section of π containing only tonicity rules.

Focalization via polarization

Two focalized phases
■ Positive phase: only tonicity rules for positive connectives are applied;
■ Negative phase: only tonicity rules for negative connectives are applied.

How to categorize a connective as "positive" or "negative"?

■ Positive formulas: the main connective is a left-adjoint/residual $(\varnothing, \otimes, \otimes)$;
\square Negative formulas: the main connective is a right-adjoint/residual $(/, \oplus, \backslash)$.

The key idea of polarization "naturally" calls for a type distinction:
multi-type calculi seem good candidates, but we need a further generalization!

A step back: focalization via "implicit" polarization

State of the art: fLG by Moortgat and Moot [MM12]
■ Every proof is strongly focalized

- Focus implemented by a meta-linguistical marker A
\square Restrictions on the applicability of rules
If A is positive:

$$
\begin{array}{ccc}
\text { Axiom } & \text { Focusing } & \text { Defocusing } \\
\frac{A+\sqrt{A}}{A+\Delta} & \leftharpoondown \frac{X+\boxed{A}}{X+\Delta} & \frac{X+A}{\boxed{A}+\triangle}
\end{array}
$$

If A is negative:

$$
\begin{array}{lll}
\text { Co-axiom } & \text { Focusing } & \text { Defocusing } \\
\bar{A}+A & \frac{X+A}{X+\sqrt{A}} \rightharpoondown & \leftharpoonup \frac{A+X}{A+X}
\end{array}
$$

Tonicity rules have auxiliary and principal formulas in focus.

$\forall-\exists$ reading: fLG

Bias assignment: $n p::$ positive, $s::$ negative.

ق-V reading: fLG

Bias assignment: $n p::$ positive, $s::$ negative.

Focalization via "explicit" polarization

In proof-theory, shift operators have been considered:
\square if A is negative, then $\downarrow A$ is positive;
\square if A is positive, then $\uparrow A$ is negative.
\leadsto but their status as operators is obscure.

In algebraic/categorical polarized semantics:

- $\uparrow \uparrow \downarrow$
- $\uparrow \downarrow \uparrow \varphi=\uparrow \varphi$
$\square \downarrow \uparrow \downarrow \varphi=\downarrow \varphi$
$\square \downarrow \uparrow \varphi=\varphi$
$\square \uparrow \downarrow \varphi=\varphi$.

Problem: the focusing policy could be destroyed.
\leadsto the usual solution is to consider only sequents where \uparrow (resp. \downarrow) are not nested.
Our solution: 4 types:

- positive and negative formulas belong to different sorts;
- pure and shifted formulas belong to different sorts.

Weakening relations

W.R. are the order-theoretic equivalents of profunctors (aka distributors or bimodules) [Ben73]. W.R. are generalizations of partial orders: take $\mathcal{A}=\mathcal{B}$ and $\leq_{\mathcal{A}}=\leq_{\mathcal{B}}$.

Definition

A weakening relation is a relation $\leqslant \subseteq \mathcal{A} \times \mathcal{B}$ on two partially ordered set $\left(\mathcal{A}, \leq_{\mathcal{A}}\right)$ and ($\mathcal{B}, \leq_{\mathcal{B}}$) that is compatible with the orders $\leq_{\mathcal{A}}$ and $\leq_{\mathcal{B}}$ in the following sense

$$
\begin{array}{ccc}
A^{\prime} \leq_{\mathcal{A}} A & A \leqslant B & B \leq_{\mathcal{B}} B^{\prime} \\
\hline A^{\prime} \leqslant B^{\prime}
\end{array}
$$

Definition

Given two w.r. $\leqslant \mathcal{A} \subseteq \mathcal{A} \times \mathcal{H}^{\prime}$ and $\leqslant \mathcal{B} \subseteq \mathcal{B} \times \mathcal{B}^{\prime}$, we say that the order-preserving functions $L: \mathcal{A} \rightarrow \mathcal{B}$ and $R: \mathcal{B}^{\prime} \rightarrow \mathcal{A}^{\prime}$ form a heterogeneous adjoint pair $L \vdash_{\leqslant \mathcal{A}}^{\leqslant \mathcal{B}} R$ if for every $A \in \mathcal{A}$ and $B^{\prime} \in \mathcal{B}^{\prime}$,

$$
L(A) \leqslant_{\mathcal{B}} B^{\prime} \text { iff } A \leqslant \mathcal{A} R\left(B^{\prime}\right)
$$

If $\mathcal{A}^{\prime}=\mathcal{A}, \leqslant_{\mathcal{A}}=\leq_{\mathcal{A}}, \mathcal{B}^{\prime}=\mathcal{B}$ and $\leqslant_{\mathcal{B}}=\leq_{\mathcal{B}}$, we recover the usual definition of adjunction. Heterogeneous adjunctions also appear in the theory of Chu spaces.

Full polarization

$$
\begin{aligned}
& . \leq^{+} \longrightarrow \dot{\mathbb{P}} \xrightarrow{\leq} \mid \mathbb{N} \underset{\sim}{-} \\
& \text { - } \underset{\leq}{+}
\end{aligned}
$$

Fully polarized LG-algebras $\mathbb{F P} . L \mathbb{G}$

Operators and their residuals (we consider the Lambek fragment for brevity):

$$
\begin{gather*}
1: \stackrel{N}{N} \times \mathscr{P}^{\partial} \rightarrow \mathbb{N}, \quad \otimes: \stackrel{P}{P} \times \mathscr{P} \rightarrow \mathbb{P}, \quad \backslash: \mathbb{P}^{\partial} \times \dot{\mathbb{N}} \rightarrow \mathbb{N} . \\
\dot{P} \leq \dot{N} / \dot{Q} \quad \text { iff } \quad \dot{P} \otimes \dot{Q} \leq \dot{N} \quad \text { iff } \quad \dot{Q} \leq \dot{P} \backslash \dot{N} . \tag{2}
\end{gather*}
$$

Shifts:

For all $P \in \mathbb{P}$ and $N \in \mathbb{N}, \preceq^{+} \subseteq \mathbb{P} \times \dot{\mathbb{P}}, \leq \subseteq \mathbb{P} \times \mathbb{N}$ and $\leq^{-} \subseteq \dot{\mathbb{N}} \times \mathbb{N}$ are s.t.:

$$
\begin{equation*}
\uparrow P \leq \leq^{-} N \text { iff } P \leq N \text { iff } P \leq \cdot^{+} \downarrow N \tag{4}
\end{equation*}
$$

i.e. \leq is the weakening relation represented by the heterogeneous adjunction \uparrow t-

Collage posets: $\left(\mathbb{P}, \stackrel{\circ}{\leq}^{+}\right):=\left(\mathbb{P} \sqcup \dot{P}, \leq^{+} \sqcup \leq r^{+} \sqcup \cdot \leq^{+}\right),\left(\mathbb{N}^{\circ}, \stackrel{\circ}{-}^{-}\right):=\left(\mathbb{N} \sqcup \dot{\mathbb{N}}, \leq^{-} \sqcup \cdot \leq^{-} \sqcup \cdot \leq^{-}\right)$.
Collage weakening relation: $\mathfrak{\circ}:=\leq \sqcup \leq \sqcup \leq \subseteq \mathbb{P} \times \mathbb{N}$.

(Heterogeneous multi-type proper) focused display calculus fD.LG

Notation: $\stackrel{\circ}{P} \in\{P, \dot{P}\}$, resp. $\stackrel{\AA}{N} \in\{N, \dot{N}\}$.

$$
\begin{aligned}
& N:=n|(\stackrel{N}{N} \oplus \stackrel{N}{N})| \dot{P} \backslash \stackrel{N}{N} \mid \grave{N} / P \quad \text { Pure negative formulas }(\hat{1} \dot{X}) \\
& \dot{P}:=\downarrow N \\
& \dot{N}:=\uparrow P \\
& \text { Shifted positive formulas } \\
& \text { Shifted negative formulas }
\end{aligned}
$$

Well-formed sequents (sequents in grey cells are not derivable):

Positive sequents	$X \vdash^{+} Y$	$\dot{X} r^{+} Y$	$X+r^{+} \dot{Y}$	$\dot{X} \cdot+{ }^{+} \dot{Y}$
Negative sequents	$\Delta \vdash^{-} \Gamma$	$\dot{\Delta} \cdot r^{-} \Gamma$	$\Delta+r^{-} \dot{\Gamma}$	$\dot{\Delta} \cdot r^{-} \dot{\Gamma}$
Neutral sequents	$X+\Delta$	$\dot{X}+\Delta$	$X+\dot{\Delta}$	$\dot{X}+\cdot \dot{\Delta}$

Each consequence relation is interpreted by a W.R. as follows:

t	$+^{+}$	+.+	... ${ }^{+}$	\vdash^{-}	${ }^{+}$	-	•	-	F.	${\stackrel{1}{ }{ }^{+}}^{+}$	$\stackrel{\circ}{-}^{-}$	$\stackrel{\circ}{ }$
$t^{\mathbb{F P} . L \mathbb{C}}$	\leq^{+}	.+	..$^{+}$	$\leq-$	$\cdot{ }^{-}$	$\cdot{ }^{-} \cdot$	\leq	.	〕.	$\stackrel{5}{+}^{+}$	$\grave{\circ}^{-}$	¢

Axioms and cuts

$$
\begin{aligned}
& {\bar{p} \vdash^{+} p}^{p-\mathrm{ld}} \quad n \quad n \cdot \mathrm{ld} \overline{n \vdash^{-} n}
\end{aligned}
$$

Logical rules

Structural rules

Display postulates:

Structural rules for shifts:

Phases and phase transitions 1/2

Positive sequents

Negative sequents

Phases and phase transitions 2/2

$\forall-\exists$ reading: fD.LG

Bias assignment: np :: positive, s :: negative.

Conclusions

What we did.

Lambek-Grishin logic:

- focused display calculus fD.LG
$\leadsto \rightarrow$ canonical cut-elimination and strong focalization
- fully polarized algebraic semantics $\mathbb{F P}$. \mathbb{G}
\leadsto semantic proof of completeness of focusing

Future work.

We expect that the present approach:
(1) extends to every (first-order) displayable logic;
(2) can be lifted to categories (profunctors instead of w.r.).
(2.a) So far, we defined a categorical Lindenbaum-Tarsky construction producing the free residuated category generated by D.L;
(2.b) we defined an algorithm transfoming sequent derivations $\leadsto \leadsto$ diagrams $\leadsto \leadsto$ natural deduction derivations.

References

[And92]	Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Journal of Logic and Computation, 2(3):297-347, 1992.
[And01]	Jean-Marc Andreoli. Focussing and proof construction. Annals of Pure and Applied Logic, 107(1):131-163, 2001.
[Bas12]	Arno Bastenhof. Polarized Montagovian semantics for the Lambek-Grishin calculus. In P. de Groote and MJ. Nederhof, editors, Formal Grammar, volume 7395 of Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, 2012.
[Ben73] \quadJean Benabou. Les distributeurs: d'après le cours de questions spéciales de mathématique. Rapport n. 33 du Séminaire de Mathématique Pure. Institut de mathématique pure et appliquée, Université Catholique de Louvain, 1973.	
[BJ82]Nuel D. Belnap Jr. Display logic. Journal of Philosophical Logic, 11:375-417, 1982.	

[$\mathrm{FGK}^{+}{ }^{\text {16] }}$]	Sabine Frittella, Giuseppe Greco, Alexander Kurz, Alessandra Palmigiano, and Vlasta Sikimić. Multi-type sequent calculi. In A. Indrzejczak, J. Kaczmarek, and M. Zawidski, editors, Proceedings of Trends in Logics XIII, pages 81-93. Łódź University Press, 2016.
[Mil04]	Dale Miller. An Overview of Linear Logic Programming, page 119-150. London Mathematical Society Lecture Note Series. Cambridge University Press, 2004.
[MM12]	Michael Moortgat and Richard Moot. Proof nets and the categorial flow of information. In A. Baltag, D. Grossi, A. Marcoci, B. Rodenhäuser, and S. Smets, editors, Logic and Interactive RAtionality. Yearbook 2011, pages 270-302. ILLC, University of Amsterdam, 2012.
[Moo09]	Michael Moortgat. Symmetric categorial grammar. Journal of Philosophical Logic, 38(6):681-710, 2009.
[Wan98]	Heinrich Wansing. Displaying modal logic, volume 3. Springer, Trends in Logic, 1998.

