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“One very, very interesting thing about quantum computation is that it
touches so many different fields in mathematics,” she said. “It’s not like that
in classical computation. It’s really something that is special for quantum
computation because it's somehow ‘complete’ — quantum computation is

some kind of completion, mathematically, of classical computation.
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The Quantum IO Monad

Thorsten Altenkirch and Alexander S. Green

Structuring Quantum Effects:
Superoperators as Arrows
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We show that the model of quantum computation based on density matrices and
superoperators can be decomposed in a pure classical (functional) part and an efff
part modelling probabilities and measurement. The effectful part can be modelied
a generalisation of monads called arrows. We express the resulting executable mo¢
quantum computing in the programming language Haskell using its special syntax
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1. Introduction

rences with classical computing that suggest that quantum

might require radically new semantic models and programmin

this is true for two reasons: (1) quantum computing is based on a kind of

caused by the non-local wave character of quantum information which is ¢

different from the classical notion of parallelism, and (2) quantum computii

r notion of observation in which the observed part of the quantum stal
nmediately lose their wave character. 1

other part that is entangled with it

it seems that none of the other differences that are often cited between qi
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computing. Both can be imple ¢ of reversible universal gates (
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computational assignments, exceptions, non-determinism, could all be mod

nalised in the programming language Haskell as a tool to elegantly express computational
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Quantum Information Effects

CHRIS HEUNEN, University of Edinburgh, United Kingdom
ROBIN KAARSGAARD, University of Edinburgh, United Kingdom

We study the two dual quantum information effects to manipulate the amount of inforn
computation: hiding and allocation. The resulting type-and-effect system is fully express

, including We provide universal categorical construction
interpret this arrow metalanguage with choice, starting with any rig groupoid interprel
base language. Several properties of quantum measurement follow in general, and we tran
quantum flow charts into our language. The semantic constructions turn the category of

Universal Properties of Partial Quantum Maps

Chris Heunen'
University of Edinburgh

Pablo Andrés-Martinez*
University of Edinburgh

Robin Kaarsgaard*
University of Edinburgh

We provide a universal f the category of >+.algebras and completely
positive trace-nonincreasing maps from the rig category of finite-dimensional Hilbert spaces and uni

taries. This construction, which can be applied to any dagger rig category, is described in three steps,
each associated with their own universal property, and draws on results from dilation theory in finite
dimension. In this way, we explicitly construct the category that captures hybrid quantum/classical
computation with possible nontermination from the category of its reversible foundations. We discuss
how this construction can be used in the design and semantics of quantum programming languages

Introduction

The account of quantum measurement offered by decoherence establishes that the irreversible nature of

Hilbert spaces into the category of completely positive g maps, and they
of bijections between finite sets into the category of functions with chosen garbage. Thu
fundamental theorems of classical and quantum reversible computing of Toffoli and Stine
CCS Concepts: « Theory of computation — Quantum computation theory; Categol
* Additional Key Words and Phrases: quantum computation, reversible computation, infortt
surement, effects, arrows, categorical semantics
ACM Reference Format:
Chris Heunen and Robin Kaarsgaard. 2022. Quantum Information Effects. Proc. ACM Progt
4 Article 2 January 2022), 27 pages. hitps:/doL org/10.1145/3498663
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% 1 INTRODUCTION

* Something is rotten in the state of quantum computing. It subsumes classical c¢

wt is generally irreversible, yet it is most often formulated as a reversible quantur

quantum asan ght. The I status of
measurement remains mysterious. This is known as the measurement problem.
Classical computing itself is most often formulated as composed of irrever
However, by the seminal works of Toffoli [Toffoli 1980] and Bennett [Bennett
recently by James and Sabry [James and Sabry 2012], we know that it can als
terms of reversible operations, as long as we consider systems to be open and
that is y

evolution occurs when a system is considered in isolation from its environment. When the
environment is brought back into view, via mathematical techniques such as quantum state purification
and Stinespring dilation, the reversible underpinnings of mixed-state evolution are exposed.

This perspective has in recent years led to the study of quantum theory through categorical comple-
tions of its reversible the category of finite-d I Hilbert spaces and unitaries, demon-
strating connections between universal constructions and effectful quantum programming [10). This
article constructs in a universal way the category of finite-dimensional C*-algebras and partial quan-
tum channels (completely positive trace-nonincreasing maps) from the rig category of finite-dimensional
Hilbert spaces and unitaries. The construction has three stages, each with a universal property of its own.

+ Freely allowing partiality respecting the dagger structure (by making the additive unit a
object) allows contractive maps to be described by unitaries through Halmos dilation (7,24, 19),

ro

+ Freely allowing the hiding of states in a way that respects partiality (by making the multiplicative
unit terminal for total maps) allows completely positive trace-nonincreasing maps to be described
through contractions, using a variant of Stinespring dilation (28]. This construction has an inter-
esting universal property as a pushout of monoidal categories.

+ Freely splitting maps between finite-di al Hilbert spaces yields finite-dimen-
sional C*-algebras, which describe hybrid quantum/classical computation

Al three universal constructions are abstract and apply to any suitably structured category. They show
that the traditional model of C*-algebras inevitably arises from the mere concepts of quantum circuits,
partiality, hiding, and classical communication, without any concept of e.g. norm. Thus they inform
the design of quantum programming languages (10), as part of a highly effective broader approach to
program semantics from universal properties (29, 15, 26].

*Supported by EPSRC grant EP/LO1S03X/1 via the CDT in Pervasive Parallelism
' Supported by EPSRC Fellowship EP/RO44759/1
upported by DFF | Natural Sciences International Postdoctoral Fellowship 0131-00025B

This final part is important, as reversible computations

alone (be they classical or quantum) cannot change the amount of information (as measured by an

Authors’ addresses: Chris Heunen, School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh, EHS 9AB,
United Kingdom, chris heunen@ed ac.uk; Robin Kaarsgaard, School of Informatics, University of Edinburgh, 10 Crichton

Street, Edinburgh, EHS 9AB, United Kingdom, robin kaarsgaard@ed.ac.uk
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Syntax
b:=0|1|b+b|bxb (base types)
tu:=be b (combinator types)

a == id | swap® | unit" | uniti* | assoc’ | associ”

| swap™ | unit™ | uniti | assoc™ | associ*

| distrib | distribi | distribo | distriboi (primitive combinators)
cx=al|cgc|ec+c|cxe (combinators)
Typing rules
id ; beb : id
swap*t by +by & by + by : swap®
unit* b+0e b : unitit
assoct : (by + by) + bz & by + (by + b3) : associt
swap*  : by X by < by X by i swap”®
unit* bx1e b © uniti®
assoc® : (by X by) X by &> by X (by X b3) : associ®
distrib : by X (by +b3) & (by X by) + (by X b3) : distribi
distribo  : bx0e 0 :  distriboi
ci:by &by c2:by & b3 ci:by &by c2:by & by ci1:bi e by c2:by o by

cl‘;cz:b1<—)b3 C1+C2:b1+b2<—)b3+b4 C1XC21b1Xb2(—)b3Xb4
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NOT :: 2 < 2

NOT = swap ™

ctrl:b>b—->2xXb+2xb
ctrl f = swap™ >> distrib >> (unit™ + unit™) >>
(id + f) >> (uniti™ + uniti™) >> distribi >> swap™

CNOT ::2 X2 2x%x2
CNOT = ctrl NOT

TOFFOLI :: 2 X (2X 2) 42X (2x2)
TOFFOLI = ctrl CNOT
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THEOREM 28 (CANONICITY). If a categorical semantics [—] for (I1<>) in Contraction satisfies the
classical structure laws and the execution laws (defined in Prop. 24) and the complementarity law
(Def. 26), then it is computationally universal. Specifically, it must be the semantics of Sec. 7.3 with
the semantics of X4 being the Hadamard gate (up to conjugation by X and Z) and:

[copyz]: li) = lii) [zero] = |0)
[copyx]: |£) > |£+) [assertZero] = (0|
up to a global unitary.
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qfree o ad hoc g
We use the annotation gfree to indicate that evaluating functions or expressions neither introduces nor destroys @ 7 % c’ S 754-“\

superpositions. Annotation gfree (i) ensures that evaluating gfree functions on classical arguments yields classical

,
results and (ii) enables automatic uncomputation. j’ Ve moe FHZ\W

Example 1 (not gfree ): H is not gfree as it introduces superpositions: It maps |0) to i ( 0) ‘1)). $ /, / ?
Example 2: X is gfree as it neither introduces nor destroys superpositions: It maps 2; o 1lb) to 2; oM/l —b).

Example 3: Logical disjunction (as in x| |y ) is of type const Bxconst B-qfree B, since ORing two values neither
introduces nor destroys superpositions.

Example 4: Function myEval (below) takes a qfree function f and evaluatesiton false.Thus, myEval itself is also
gfree.

def myEval(f:B-qfree B)qfree{

return f(false); ~ myEval is qfree
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zhex : (ide **x Z) >>> (ide **x H) >>> cx = ¢z >>> (ide **xx H) >>> (ide **x X)
zhcx = begin
(ide *xx Z) >>> (ide **x H) >>> cx
=( id= )
(ide *xx (H >>> X >>> H)) >>> (ide *xx H) >>> cx
=( assoc>>>1 O (homLxxx © (id1>>>1 )@(id)) )3(id )
(ide *xx ((H >>> X >>> H) >>> H)) >> cx
- =( id)®( pull” (cancel” hadInv) )3{id )
- ide **xx (H >>> X) >> cx
D— D =( (id1>>>r Y@(id © homRx**) )3{id ® assoc>>>r )
(ide *xx H) >>> (ide **x X) >>> cx
=( id)3{ xcxA )
(ide *xx H) >>> cx > (ide **xx X)
=(¢ id)3¢ id)3¢ insert! 1*HInv )
(ide *xx H) >>> cx > (ide **x H) >>> (ide **x H) >> (ide **xx X)
=( assoc>>>1 © assoc>>>1 © assoc>>>r )§id )
(ide *xx H >>> cx >>> ide **xx H) >>> (ide **xx H) >>> (ide **xx X)
=( id= )
cz >> (ide **xx H) >>> (ide **xx X) [ ]




"If gquantum mechanics hasn't | Two classical programming
profoundly shocked you, you |languages and a couple of
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Future work: 2 genembrs & 3 equetion
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