Towards comonadic locality theorems

Tomáśs Jakl

Czech Academy of Sciences \& Czech Technical University

18 September 2023
Workshop on Springer Volume "Samson Abramsky on Logic and Structure in Computer Science and Beyond", London

k-round Ehrenfeucht-Fraïssé game

k-round Ehrenfeucht-Fraïssé game

k-round Ehrenfeucht-Fraïssé game

k-round Ehrenfeucht-Fraïssé game

k-round Ehrenfeucht-Fraïssé game

Theorem
$A \equiv{ }_{k} B$ iff Duplicator wins in the k-round $E-F$ game.

Game comonads in a nutshell

For a (well-behaved) model comparison game for logic \mathscr{L}

- exploration of one structure following the rules of the game \Rightarrow construction $\mathbb{C}: \mathcal{R}(\sigma) \rightarrow \mathcal{R}(\sigma)$

Game comonads in a nutshell

For a (well-behaved) model comparison game for logic \mathscr{L}

- exploration of one structure following the rules of the game \Rightarrow construction $\mathbb{C}: \mathcal{R}(\sigma) \rightarrow \mathcal{R}(\sigma)$
- $\mathbb{C}(A)$ has a natural tree order \sqsubseteq (not part of signature σ)

Game comonads in a nutshell

For a (well-behaved) model comparison game for logic \mathscr{L}

- exploration of one structure following the rules of the game \Rightarrow construction $\mathbb{C}: \mathcal{R}(\sigma) \rightarrow \mathcal{R}(\sigma)$
- $\mathbb{C}(A)$ has a natural tree order \sqsubseteq (not part of signature σ)
- \mathbb{C} is a comonad \Rightarrow adjunction

Game comonads in a nutshell

For a (well-behaved) model comparison game for logic \mathscr{L}

- exploration of one structure following the rules of the game \Rightarrow construction $\mathbb{C}: \mathcal{R}(\sigma) \rightarrow \mathcal{R}(\sigma)$
- $\mathbb{C}(A)$ has a natural tree order \sqsubseteq (not part of signature σ)
- \mathbb{C} is a comonad \Rightarrow adjunction

- free coalgebra $F(A) \approx(\mathbb{C}(A), \sqsubseteq)$

Game comonads in a nutshell

For a (well-behaved) model comparison game for logic \mathscr{L}

- exploration of one structure following the rules of the game \Rightarrow construction $\mathbb{C}: \mathcal{R}(\sigma) \rightarrow \mathcal{R}(\sigma)$
- $\mathbb{C}(A)$ has a natural tree order \sqsubseteq (not part of signature σ)
- \mathbb{C} is a comonad \Rightarrow adjunction $\operatorname{CoAlg}(\mathbb{C})$

- free coalgebra $F(A) \approx(\mathbb{C}(A), \sqsubseteq)$
- a bisimulation $F(A) \sim F(B)$ iff $A \equiv \mathscr{L} B$
- bisimulation expressed in terms of paths and embeddings
- existential (positive), counting fragments also captured in $\operatorname{CoAlg}(\mathbb{C})$

Example: Ehrenfeucht-Fraïssé comonad \mathbb{E}_{k}

Given $A \in \mathcal{R}(\sigma)$,

- $\mathbb{E}_{k}(A)=$ sequences $\bar{a}=\left[a_{1}, \ldots, a_{n}\right]$ with $a_{i} \in A$ and $n \leq q$
- $\bar{a} \sqsubseteq \bar{b}$ iff \bar{a} is a prefix of \bar{b}
- $\operatorname{CoAlg}\left(\mathbb{E}_{k}\right) \approx \sigma$-structures with a compatible forest order
- $A \equiv{ }_{k} B$ iff $F(A) \sim F(B) \quad\left(\right.$ for $U \dashv F$ arising from $\left.\mathbb{E}_{k}\right)$

Categorical Skeleton + Combinatorial Core $=$ Theorems

Lovász homomorphism counting theorems:

- comonadicity + preservation of finiteness/finite rank

Categorical Skeleton + Combinatorial Core $=$ Theorems

Lovász homomorphism counting theorems:

- comonadicity + preservation of finiteness/finite rank

Composition methods:

- generalisation of opmonoidal comonads + relative adjunctions

Categorical Skeleton + Combinatorial Core $=$ Theorems

Lovász homomorphism counting theorems:

- comonadicity + preservation of finiteness/finite rank

Composition methods:

- generalisation of opmonoidal comonads + relative adjunctions
equi-rank Homomorphism Preservation Theorems:
- model saturation \sim small object argument

Categorical Skeleton + Combinatorial Core $=$ Theorems

Lovász homomorphism counting theorems:

- comonadicity + preservation of finiteness/finite rank

Composition methods:

- generalisation of opmonoidal comonads + relative adjunctions
equi-rank Homomorphism Preservation Theorems:
- model saturation \sim small object argument
van Benthem-Rosen characterisation theorems:
- provides many new examples!
- but only a method, not fully axiomatic
- uses Workspace Lemma, tailor made for \mathbb{E}_{k}

Categorical Skeleton + Combinatorial Core $=$ Theorems

Lovász homomorphism counting theorems:

- comonadicity + preservation of finiteness/finite rank

Composition methods:

- generalisation of opmonoidal comonads + relative adjunctions
equi-rank Homomorphism Preservation Theorems:
- model saturation \sim small object argument
van Benthem-Rosen characterisation theorems:
- provides many new examples!
- but only a method, not fully axiomatic
- uses Workspace Lemma, tailor made for \mathbb{E}_{k}

Question: Significant missing theorems?

Categorical Skeleton + Combinatorial Core $=$ Theorems

Lovász homomorphism counting theorems:

- comonadicity + preservation of finiteness/finite rank

Composition methods:

- generalisation of opmonoidal comonads + relative adjunctions
equi-rank Homomorphism Preservation Theorems:
- model saturation \sim small object argument
van Benthem-Rosen characterisation theorems:
- provides many new examples!
- but only a method, not fully axiomatic
- uses Workspace Lemma, tailor made for \mathbb{E}_{k}

Question: Significant missing theorems? ... locality theorems!

Locality theorems

Omnipresent in finite model theory. We need them too!
Theorem (Gaifman, 1982)
For relational structures: $A \equiv_{r(k), q(k)}^{\text {local }} B$ implies $A \equiv_{k} B$.
$A \equiv \equiv_{r, q}^{\text {local }} B$ is equivalence under basic local sequences

$$
\exists x_{1}, \ldots, x_{n}\left(\bigwedge_{i \neq j} \delta\left(x_{i}, x_{j}\right)>2 r \wedge \bigwedge_{i} \theta\left(x_{i}\right)\right)
$$

of qrank $\leq q$ where θ is r-local:

$$
\begin{gathered}
A \models \theta(a) \text { iff } \quad \mathcal{N}_{r}(a) \models \theta(a) . \\
\overbrace{\mathcal{N}_{r}(x)=\{y \mid \delta(x, y) \leq r\}}
\end{gathered}
$$

Locality theorems

Omnipresent in finite model theory. We need them too!
Theorem (Gaifman, 1982)
For relational structures: $A \equiv_{r(k), q(k)}^{\text {local }} B$ implies $A \equiv_{k} B$.
$A \equiv \equiv_{r, q}^{\text {local }} B$ is equivalence under basic local sequences

$$
\exists x_{1}, \ldots, x_{n}\left(\bigwedge_{i \neq j} \delta\left(x_{i}, x_{j}\right)>2 r \wedge \bigwedge_{i} \theta\left(x_{i}\right)\right)
$$

of qrank $\leq q$ where θ is r-local:

$$
A \models \theta(a) \quad \text { iff } \quad \mathcal{N}_{r}(a) \models \theta(a) .
$$

Theorem (Hanf, 1965)
For graphs A and B with finite neighbourhoods, bijection of isomorphism \mathcal{N}_{r}-types up to ω implies $A \equiv B$.

Locality theorems

Omnipresent in finite model theory. We need them too!
Theorem (Gaifman, 1982)
For relational structures: $A \equiv_{r(k), q(k)}^{\text {local }} B$ implies $A \equiv_{k} B$.
$A \equiv \equiv_{r, q}^{\text {local }} B$ is equivalence under basic local sequences

$$
\exists x_{1}, \ldots, x_{n}\left(\bigwedge_{i \neq j} \delta\left(x_{i}, x_{j}\right)>2 r \wedge \bigwedge_{i} \theta\left(x_{i}\right)\right)
$$

of qrank $\leq q$ where θ is r-local:

$$
A \models \theta(a) \quad \text { iff } \quad \mathcal{N}_{r}(a) \models \theta(a) .
$$

Theorem (Fagin-Stockmeyer-Vardi, 1995)
For finite A and B with neighbourhoods $\leq f$, bijection of isomorphism $\mathcal{N}_{r(k)}$-types up to $w(f, k)$ implies $A \equiv_{k} B$.

Proof structure

We fix suitable radii r_{1}, \ldots, r_{k} and quantifier ranks q_{1}, \ldots, q_{k}.

$$
\text { (typically } \left.q_{i} \approx c^{k-i}\right)
$$

Invariant at round n :

Proof structure

We fix suitable radii r_{1}, \ldots, r_{k} and quantifier ranks q_{1}, \ldots, q_{k}.

$$
\text { (typically } q_{i} \approx c^{k-i} \text {) }
$$

Case $n^{\circ} 1$

Proof structure

We fix suitable radii r_{1}, \ldots, r_{k} and quantifier ranks q_{1}, \ldots, q_{k}.

$$
\text { (typically } q_{i} \approx c^{k-i} \text {) }
$$

Case $n^{\circ} 1$

Proof structure

We fix suitable radii r_{1}, \ldots, r_{k} and quantifier ranks q_{1}, \ldots, q_{k}.

$$
\text { (typically } q_{i} \approx c^{k-i} \text {) }
$$

Case $n^{\circ} 1$

$\equiv q_{n+1}$

Proof structure

We fix suitable radii r_{1}, \ldots, r_{k} and quantifier ranks q_{1}, \ldots, q_{k}.

$$
\text { (typically } q_{i} \approx c^{k-i} \text {) }
$$

Case $n^{\circ} 2$

Proof structure

We fix suitable radii r_{1}, \ldots, r_{k} and quantifier ranks q_{1}, \ldots, q_{k}.

$$
\text { (typically } \left.q_{i} \approx c^{k-i}\right)
$$

Case $n^{\circ} 2$

$\underline{\text { Productivity step: }}$ use $\equiv \equiv_{r_{n}, q_{n}}^{\text {local }}$ to find b_{n+1}

Proof structure

We fix suitable radii r_{1}, \ldots, r_{k} and quantifier ranks q_{1}, \ldots, q_{k}.

$$
\text { (typically } q_{i} \approx c^{k-i} \text {) }
$$

Case $n^{\circ} 2$

Comonadic proof structure

Want:

$\operatorname{CoAlg}(\mathbb{C})$
$U \|$
$\|$
$\mathcal{R}(\sigma)$

$$
F(A) \sim F(B) \text { in } \operatorname{CoAlg}(\mathbb{C})
$$

Comonadic proof structure

$\operatorname{CoAlg}(\mathbb{C})$

Want:

$$
F(A) \sim F(B) \text { in } \operatorname{CoAlg}(\mathbb{C})
$$

$$
\text { Instead of } r_{1}, \ldots, r_{k} \text { and } q_{1}, \ldots, q_{k}
$$

$$
\text { we have } \mathcal{N}_{1}, \ldots, \mathcal{N}_{k} \text { and } \mathbb{D}_{1}, \ldots, \mathbb{D}_{k}
$$

abstract neighbourhood operators,

$$
\text { e.g. } \mathcal{N}(x)=\{y \mid \delta(x, y) \leq r\}
$$

Comonadic proof structure

Want:

$\operatorname{CoAlg}(\mathbb{C})$

$$
F(A) \sim F(B) \text { in } \operatorname{CoAlg}(\mathbb{C})
$$

Instead of r_{1}, \ldots, r_{k} and q_{1}, \ldots, q_{k} we have $\mathcal{N}_{1}, \ldots, \mathcal{N}_{k}$ and $\mathbb{D}_{1}, \ldots, \mathbb{D}_{k}$.

Invariant at round n :

$$
\operatorname{ltp}_{\mathcal{N}_{n}}(\bar{a}) \sim \operatorname{ltp}_{\mathcal{N}_{n}}(\bar{b})
$$

in $\operatorname{CoAlg}\left(\mathbb{D}_{n}\right)$

Comonadic proof structure

Want:

$\operatorname{CoAlg}(\mathbb{C})$

$$
F(A) \sim F(B) \text { in } \operatorname{CoAlg}(\mathbb{C})
$$

Instead of r_{1}, \ldots, r_{k} and q_{1}, \ldots, q_{k} we have $\mathcal{N}_{1}, \ldots, \mathcal{N}_{k}$ and $\mathbb{D}_{1}, \ldots, \mathbb{D}_{k}$.

Invariant at round n :

$$
\operatorname{ltp}_{\mathcal{N}_{n}}(\bar{a}) \sim \operatorname{ltp}_{\mathcal{N}_{n}}(\bar{b})
$$

in $\operatorname{CoAlg}\left(\mathbb{D}_{n}\right)$

Types and local types

$\bar{a} \in A \approx$
$\approx P \xrightarrow{\bar{a}} F(A)$ for P "discrete"

Types and local types

$\bar{a} \in A \quad \approx$

$$
\approx \quad P \xrightarrow{\bar{a}} F(A) \text { for } P \text { "discrete" }
$$

Model theoretic types:

$$
\operatorname{tp}(\bar{a})
$$

$\subseteq F(A)$

Types and local types

$\bar{a} \in A \approx \approx P \xrightarrow{\bar{a}} F(A)$ for P "discrete"

Model theoretic types: $\operatorname{tp}(\bar{a})$ $\approx \sqrt{ } \subseteq F(A)$

Lemma. $\quad(A, \bar{a}) \equiv(B, \bar{b}) \quad$ iff $\quad \operatorname{tp}(\bar{a}) \sim \operatorname{tp}(\bar{b})$

Types and local types

$\bar{a} \in A \approx \approx P \xrightarrow{\overline{3}} F(A)$ for P "discrete"
Model theoretic types: $\operatorname{tp}(\bar{a})$ $\subseteq F(A)$

Lemma. $\quad(A, \bar{a}) \equiv(B, \bar{b}) \quad$ iff $\quad \operatorname{tp}(\bar{a}) \sim \operatorname{tp}(\bar{b})$

Neighbourhood operator: $\bar{a} \in A \mapsto \mathcal{N}(\bar{a}) \subseteq A$
Local types: $\quad \operatorname{ltp}_{\mathcal{N}}(\bar{a})=\operatorname{tp}(\bar{a}) \cap F(\mathcal{N}(\bar{a}))$

Types and local types

$\bar{a} \in A$

$\approx \quad P \xrightarrow{\bar{a}} F(A)$ for P "discrete"

Model theoretic types:
$\operatorname{tp}(\bar{a})$
 $\subseteq F(A)$

Lemma. $\quad(A, \bar{a}) \equiv(B, \bar{b}) \quad$ iff $\quad \operatorname{tp}(\bar{a}) \sim \operatorname{tp}(\bar{b})$

Neighbourhood operator: $\bar{a} \in A \mapsto \mathcal{N}(\bar{a}) \subseteq A$
Local types: $\quad \operatorname{ltp}_{\mathcal{N}}(\bar{a})=\operatorname{tp}(\bar{a}) \cap F(\mathcal{N}(\bar{a}))$

Lemma. $\quad(\mathcal{N}(\bar{a}), \bar{a}) \equiv(\mathcal{N}(\bar{b}), \bar{b}) \quad$ iff $\quad \operatorname{ltp}_{\mathcal{N}}(\bar{a}) \sim \operatorname{ltp}_{\mathcal{N}}(\bar{b})$

Axioms

Axioms

A path P is discrete iff it is projective wrt quotients:

A discrete path P splits if $\forall Q \rightarrow P \exists P^{\prime}$ s.t. $P \approx Q+P^{\prime}$

Axioms

A path P is discrete iff it is projective wrt quotients:

A discrete path P splits if $\forall Q \rightarrow P \exists P^{\prime}$ s.t. $P \approx Q+P^{\prime}$

Combinatorics of neighbourhoods
Given $\mathcal{N}(\bar{a}) \subseteq A$ and $\mathcal{N}(\bar{b}) \subseteq A$, the factorisation

$$
\mathcal{N}(\bar{a})+\mathcal{N}(\bar{b}) \longrightarrow \mathcal{N}(\bar{a}+\bar{b}) \longmapsto A
$$

Axioms

A path P is discrete iff it is projective wrt quotients:

A discrete path P splits if $\forall Q \rightarrow P \exists P^{\prime}$ s.t. $P \approx Q+P^{\prime}$

Combinatorics of neighbourhoods
Given $\mathcal{N}(\bar{a}) \subseteq A$ and $\mathcal{N}(\bar{b}) \subseteq A$, the factorisation

$$
\mathcal{N}(\bar{a})+\mathcal{N}(\bar{b}) \longrightarrow \mathcal{N}(\bar{a}+\bar{b}) \longmapsto A
$$

Lemma. For $\mathcal{N}(x)=\mathcal{N}_{r}(x), \delta(\bar{a}, \bar{b})>2 \cdot r$ iff \rightarrow above is iso.

Theorem (Categorical Skeleton)

Given a comonad \mathbb{C}, opmonoidal comonads $\mathbb{D}_{1}, \mathbb{D}_{2}, \ldots$ and neighbourhood operator $\mathcal{N}_{1}, \mathcal{N}_{2}, \ldots$ such that

- there are strong comonad morphisms $\mathbb{C} \Rightarrow \mathbb{D}_{i+1} \Rightarrow \mathbb{D}_{i}$
- $\operatorname{CoAlg}(\mathbb{C})$ has enough splitting discrete paths

If, for every i, A, B satisfies the Productivity Condition from $\mathbb{D}_{i}, \mathcal{N}_{i}$ to $\mathbb{D}_{i+1}, \mathcal{N}_{i+1}$ then $A \equiv_{\mathbb{C}} B$.

The Productivity Condition intuitively:

$$
\begin{array}{ll}
\operatorname{ltp}_{\mathcal{N}_{i}}(\bar{a}) \sim \operatorname{ltp}_{\mathcal{N}_{i}}(\bar{b}) \text { and } \mathcal{N}_{i+1}\left(a_{i+1}\right) \nsubseteq \mathcal{N}_{i}(\bar{a}) \\
\Longrightarrow \exists b_{i+1} \text { s.t. } \quad & " \delta\left(b_{i+1}, \bar{b}\right)>2 \cdot \mathcal{N}_{i+1} " \\
& \operatorname{ltp}_{\mathcal{N}_{i+1}}\left(a_{i+1}\right) \sim \operatorname{ltp}_{\mathcal{N}_{i+1}}\left(b_{i+1}\right)
\end{array}
$$

Final words

Productivity Condition easy to check for the Workspace Lemma!
A categorical proof of Gaifman and Hanf also possible.
Although, it requires further axioms for discrete paths and neighbourhood operators.

Next steps:

- fully axiomatic van Benthem-Rosen
- algorithmic results which use locality
- nowhere-dense comonads in terms of locality assumptions

