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A B

a1 b1

b2a2

b3a3

a1

ak

b1

bk

∼=

Theorem

A ≡k B iff Duplicator wins in the k-round E–F game.
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Game comonads in a nutshell

For a (well-behaved) model comparison game for logic L

� exploration of one structure following the rules of the game

⇒ construction C : R(σ) → R(σ)

� C(A) has a natural tree order ⊑ (not part of signature σ)

� C is a comonad ⇒ adjunction

CoAlg(C)

R(σ)

U F⊣

� free coalgebra F (A) ≈ (C(A),⊑)

� a bisimulation F (A) ∼ F (B) iff A ≡L B

� bisimulation expressed in terms of paths and embeddings

� existential (positive), counting fragments also captured in CoAlg(C)
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Example: Ehrenfeucht–Fräıssé comonad Ek

Given A ∈ R(σ),

� Ek(A) = sequences a = [a1, . . . , an] with ai ∈ A and n ≤ q

� a ⊑ b iff a is a prefix of b

� CoAlg(Ek) ≈ σ-structures with a compatible forest order

� A ≡k B iff F (A) ∼ F (B) (for U ⊣ F arising from Ek)
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Syntaxfree Logics:
bounded quant. rank

bounded variable count

modal logic

monadic second order

hybrid logic

guarded fragments

generalised quantifiers

description logic

restricted conjunction

...

Categorical Thms:
Lovász hom. counting

composition methods

Courcelle

van Benthem-Rosen

equi-rank HPT

Hudges’ word construction

Coalgebraic Combinatorial Parameters

Game Comonads

Arboreal Adjunctions
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Categorical Skeleton + Combinatorial Core = Theorems

Lovász homomorphism counting theorems:

� comonadicity + preservation of finiteness/finite rank

Composition methods:

� generalisation of opmonoidal comonads + relative adjunctions

equi-rank Homomorphism Preservation Theorems:

� model saturation ∼ small object argument

van Benthem-Rosen characterisation theorems:

� provides many new examples!

� but only a method, not fully axiomatic

� uses Workspace Lemma, tailor made for Ek

Question: Significant missing theorems? ... locality theorems!

5



Categorical Skeleton + Combinatorial Core = Theorems

Lovász homomorphism counting theorems:

� comonadicity + preservation of finiteness/finite rank

Composition methods:

� generalisation of opmonoidal comonads + relative adjunctions

equi-rank Homomorphism Preservation Theorems:

� model saturation ∼ small object argument

van Benthem-Rosen characterisation theorems:

� provides many new examples!

� but only a method, not fully axiomatic

� uses Workspace Lemma, tailor made for Ek

Question: Significant missing theorems? ... locality theorems!

5



Categorical Skeleton + Combinatorial Core = Theorems

Lovász homomorphism counting theorems:

� comonadicity + preservation of finiteness/finite rank

Composition methods:

� generalisation of opmonoidal comonads + relative adjunctions

equi-rank Homomorphism Preservation Theorems:

� model saturation ∼ small object argument

van Benthem-Rosen characterisation theorems:

� provides many new examples!

� but only a method, not fully axiomatic

� uses Workspace Lemma, tailor made for Ek

Question: Significant missing theorems? ... locality theorems!

5



Categorical Skeleton + Combinatorial Core = Theorems

Lovász homomorphism counting theorems:

� comonadicity + preservation of finiteness/finite rank

Composition methods:

� generalisation of opmonoidal comonads + relative adjunctions

equi-rank Homomorphism Preservation Theorems:

� model saturation ∼ small object argument

van Benthem-Rosen characterisation theorems:

� provides many new examples!

� but only a method, not fully axiomatic

� uses Workspace Lemma, tailor made for Ek

Question: Significant missing theorems? ... locality theorems!

5



Categorical Skeleton + Combinatorial Core = Theorems

Lovász homomorphism counting theorems:

� comonadicity + preservation of finiteness/finite rank

Composition methods:

� generalisation of opmonoidal comonads + relative adjunctions

equi-rank Homomorphism Preservation Theorems:

� model saturation ∼ small object argument

van Benthem-Rosen characterisation theorems:

� provides many new examples!

� but only a method, not fully axiomatic

� uses Workspace Lemma, tailor made for Ek

Question: Significant missing theorems?

... locality theorems!

5



Categorical Skeleton + Combinatorial Core = Theorems

Lovász homomorphism counting theorems:

� comonadicity + preservation of finiteness/finite rank

Composition methods:

� generalisation of opmonoidal comonads + relative adjunctions

equi-rank Homomorphism Preservation Theorems:

� model saturation ∼ small object argument

van Benthem-Rosen characterisation theorems:

� provides many new examples!

� but only a method, not fully axiomatic

� uses Workspace Lemma, tailor made for Ek

Question: Significant missing theorems? ... locality theorems! 5



Locality theorems

Omnipresent in finite model theory. We need them too!

Theorem (Gaifman, 1982)

For relational structures: A ≡local
r(k),q(k) B implies A ≡k B.

A ≡local
r ,q B is equivalence under basic local sequences

∃x1, . . . , xn (
∧
i ̸=j

δ(xi , xj) > 2r ∧
∧
i

θ(xi ))

of qrank ≤ q where θ is r-local:

Nr (x) = {y | δ(x , y) ≤ r}

A |= θ(a) iff Nr (a) |= θ(a).

Theorem (Hanf, 1965)

For graphs A and B with finite neighbourhoods, bijection of

isomorphism Nr -types up to ω implies A ≡ B.

Theorem (Fagin–Stockmeyer–Vardi, 1995)

For finite A and B with neighbourhoods ≤f , bijection of

isomorphism Nr(k)-types up to w(f , k) implies A ≡k B.
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Proof structure

We fix suitable radii r1, . . . , rk and quantifier ranks q1, . . . , qk .

(typically qi ≈ ck−i )

a1

an

b1

bn

≡qnrn

Invariant at round n :

Case n°1

an+1

rn+1

bn+1

≡qn+1

Case n°2

an+1 bn+1

Productivity step: use ≡local
rn,qn to find bn+1
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Comonadic proof structure

CoAlg(C)

CoAlg(Dn+1)

R(σ)

U F

Want:

F (A) ∼ F (B) in CoAlg(C)

Instead of r1, . . . , rk and q1, . . . , qk

we have N1, . . . ,Nk and D1, . . . ,Dk .

abstract neighbourhood operators,

e.g. N (x) = {y | δ(x , y) ≤ r}
Invariant at round n:

ltpNn
(a) ∼ ltpNn

(b)

in CoAlg(Dn)
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Types and local types

a ∈ A ≈ ≈ P
a−→ F (A) for P “discrete”

Model theoretic types: tp(a) ≈ ⊆ F (A)

Lemma. (A, a) ≡ (B, b) iff tp(a) ∼ tp(b)

Neighbourhood operator: a ∈ A 7→ N (a) ⊆ A

Local types: ltpN (a) = tp(a) ∩ F (N (a))

Lemma. (N (a), a) ≡ (N (b), b) iff ltpN (a) ∼ ltpN (b)
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Axioms

A path P is discrete iff it is projective wrt quotients:
P

Q Q ′

A discrete path P splits if ∀Q → P ∃P ′ s.t. P ≈ Q ++ P ′

Combinatorics of neighbourhoods

Given N (a) ⊆ A and N (b) ⊆ A, the factorisation

N (a) +N (b) N (a++ b) A

Lemma. For N (x) = Nr (x), δ(a, b) > 2 · r iff ↠ above is iso.
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Theorem (Categorical Skeleton)

Given a comonad C, opmonoidal comonads D1,D2, . . . and

neighbourhood operator N1,N2, . . . such that

� there are strong comonad morphisms C ⇒ Di+1 ⇒ Di

� CoAlg(C) has enough splitting discrete paths

If, for every i , A,B satisfies the Productivity Condition from

Di ,Ni to Di+1,Ni+1 then A ≡C B.

The Productivity Condition intuitively:

ltpNi
(a) ∼ltpNi

(b) and Ni+1(ai+1) ̸⊆ Ni (a)

=⇒ ∃bi+1 s.t. “ δ(bi+1, b) > 2 · Ni+1
′′

ltpNi+1
(ai+1) ∼ ltpNi+1

(bi+1)

11



Final words

Productivity Condition easy to check for the Workspace Lemma!

A categorical proof of Gaifman and Hanf also possible.

Although, it requires further axioms for discrete paths and

neighbourhood operators.

Next steps:

� fully axiomatic van Benthem-Rosen

� algorithmic results which use locality

� nowhere-dense comonads in terms of locality assumptions
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