Towards comonadic locality theorems

Tomáš Jakl

Czech Academy of Sciences & Czech Technical University

18 September 2023

Workshop on Springer Volume "Samson Abramsky on Logic and Structure in Computer Science and Beyond", London

Theorem

 $A \equiv_k B$ iff Duplicator wins in the k-round E–F game.

For a $({\rm well\mathchar}-{\rm behaved})$ model comparison game for logic ${\mathscr L}$

• exploration of one structure following the rules of the game \Rightarrow construction $\mathbb{C} : \mathcal{R}(\sigma) \rightarrow \mathcal{R}(\sigma)$

For a $({\it well-behaved})$ model comparison game for logic ${\mathscr L}$

- exploration of one structure following the rules of the game \Rightarrow construction $\mathbb{C} \colon \mathcal{R}(\sigma) \to \mathcal{R}(\sigma)$
- $\mathbb{C}(A)$ has a natural tree order \sqsubseteq (not part of signature σ)

For a $({\rm well\mathchar}-{\rm behaved})$ model comparison game for logic ${\mathscr L}$

- exploration of one structure following the rules of the game \Rightarrow construction $\mathbb{C} \colon \mathcal{R}(\sigma) \to \mathcal{R}(\sigma)$
- $\mathbb{C}(A)$ has a natural tree order \sqsubseteq (not part of signature σ)

 $\bullet \ {\mathbb C} \ {\rm is \ a \ comonad} \ \Rightarrow \ \ {\rm adjunction}$

$$\mathsf{CoAlg}(\mathbb{C})$$
$$u\left(\dashv \right) \mathsf{F}$$
$$\mathcal{R}(\sigma)$$

For a $({\rm well\mathchar}-{\rm behaved})$ model comparison game for logic ${\mathscr L}$

- exploration of one structure following the rules of the game \Rightarrow construction $\mathbb{C} : \mathcal{R}(\sigma) \rightarrow \mathcal{R}(\sigma)$
- $\mathbb{C}(A)$ has a natural tree order \sqsubseteq (not part of signature σ)
- $\bullet \ {\mathbb C} \ {\rm is \ a \ comonad} \ \Rightarrow \ \ {\rm adjunction}$

$$U\left(\dashv \right) F$$
$$\mathcal{R}(\sigma)$$

C = A I = (C)

• free coalgebra $F(A) \approx (\mathbb{C}(A), \sqsubseteq)$

For a $({\it well-behaved})$ model comparison game for logic ${\mathscr L}$

- exploration of one structure following the rules of the game \Rightarrow construction $\mathbb{C} : \mathcal{R}(\sigma) \rightarrow \mathcal{R}(\sigma)$
- $\mathbb{C}(A)$ has a natural tree order \sqsubseteq (not part of signature σ)

 $CoAlg(\mathbb{C})$

- \mathbb{C} is a comonad \Rightarrow adjunction $u\left(\dashv\right)_{F}$ $\mathcal{R}(\sigma)$
- free coalgebra $F(A) \approx (\mathbb{C}(A), \sqsubseteq)$
- a bisimulation $F(A) \sim F(B)$ iff $A \equiv_{\mathscr{L}} B$
- bisimulation expressed in terms of paths and embeddings
- existential (positive), counting fragments also captured in $CoAlg(\mathbb{C})$

Example: Ehrenfeucht–Fraïssé comonad \mathbb{E}_k

Given $A \in \mathcal{R}(\sigma)$,

- $\mathbb{E}_k(A)$ = sequences $\overline{a} = [a_1, \dots, a_n]$ with $a_i \in A$ and $n \leq q$
- $\overline{a} \sqsubseteq \overline{b}$ iff \overline{a} is a prefix of \overline{b}
- CoAlg(𝔼_k) ≈ σ-structures with a compatible forest order
- $A \equiv_k B$ iff $F(A) \sim F(B)$ (for $U \dashv F$ arising from \mathbb{E}_k)

Game Comonads

Arboreal Adjunctions

Syntaxfree Logics:

bounded quant. rank bounded variable count modal logic monadic second order hybrid logic guarded fragments generalised quantifiers description logic restricted conjunction

Categorical Thms:

Lovász hom. counting composition methods Courcelle van Benthem-Rosen equi-rank HPT Hudges' word construction

Lovász homomorphism counting theorems:

 $\bullet \ \ \ comonadicity + preservation \ \ of \ finiteness/finite \ rank$

Lovász homomorphism counting theorems:

 $\bullet \ \ \ comonadicity + preservation \ \ of \ finiteness/finite \ rank$

Composition methods:

• generalisation of opmonoidal comonads + relative adjunctions

Lovász homomorphism counting theorems:

 $\bullet \ \ \ comonadicity + preservation \ \ of \ finiteness/finite \ rank$

Composition methods:

• generalisation of opmonoidal comonads + relative adjunctions

equi-rank Homomorphism Preservation Theorems:

- model saturation \sim small object argument

Lovász homomorphism counting theorems:

 $\bullet \ \ \ comonadicity + preservation \ \ of \ finiteness/finite \ rank$

Composition methods:

• generalisation of opmonoidal comonads + relative adjunctions

equi-rank Homomorphism Preservation Theorems:

- model saturation \sim small object argument

van Benthem-Rosen characterisation theorems:

- provides many new examples!
- but only a method, not fully axiomatic
- uses Workspace Lemma, tailor made for \mathbb{E}_k

Lovász homomorphism counting theorems:

 $\bullet \ \ \ comonadicity + preservation \ \ of \ finiteness/finite \ rank$

Composition methods:

• generalisation of opmonoidal comonads + relative adjunctions

equi-rank Homomorphism Preservation Theorems:

- model saturation \sim small object argument

van Benthem-Rosen characterisation theorems:

- provides many new examples!
- but only a method, not fully axiomatic
- uses Workspace Lemma, tailor made for \mathbb{E}_k

Question: Significant missing theorems?

Lovász homomorphism counting theorems:

 $\bullet \ \ \ comonadicity + preservation \ \ of \ finiteness/finite \ rank$

Composition methods:

• generalisation of opmonoidal comonads + relative adjunctions

equi-rank Homomorphism Preservation Theorems:

- model saturation \sim small object argument

van Benthem-Rosen characterisation theorems:

- provides many new examples!
- but only a method, not fully axiomatic
- uses Workspace Lemma, tailor made for \mathbb{E}_k

Question: Significant missing theorems? ... locality theorems!

Locality theorems

Omnipresent in finite model theory. We need them too!

Theorem (Gaifman, 1982)

For relational structures: $A \equiv_{r(k),q(k)}^{\text{local}} B$ implies $A \equiv_k B$.

 $A \equiv_{r,q}^{\text{local}} B$ is equivalence under **basic local sequences**

$$\exists x_1,\ldots,x_n (\bigwedge_{i\neq j} \delta(x_i,x_j) > 2r \land \bigwedge_i \theta(x_i))$$

of qrank $\leq q$ where θ is *r*-local:

$$A \models \theta(a) \quad \text{iff} \quad \mathcal{N}_r(a) \models \theta(a).$$
$$\mathcal{N}_r(x) = \{y \mid \delta(x, y) \le r\}$$

Locality theorems

Omnipresent in finite model theory. We need them too!

Theorem (Gaifman, 1982)

For relational structures: $A \equiv_{r(k),q(k)}^{\text{local}} B$ implies $A \equiv_k B$.

 $A \equiv_{r,q}^{\text{local}} B$ is equivalence under **basic local sequences**

$$\exists x_1,\ldots,x_n (\bigwedge_{i\neq j} \delta(x_i,x_j) > 2r \land \bigwedge_i \theta(x_i))$$

of qrank $\leq q$ where θ is *r*-local:

$$A \models \theta(a)$$
 iff $\mathcal{N}_r(a) \models \theta(a)$.

Theorem (Hanf, 1965)

For graphs A and B with finite neighbourhoods, bijection of isomorphism N_r -types up to ω implies $A \equiv B$.

Locality theorems

Omnipresent in finite model theory. We need them too!

Theorem (Gaifman, 1982)

For relational structures: $A \equiv_{r(k),q(k)}^{\text{local}} B$ implies $A \equiv_k B$.

 $A \equiv_{r,q}^{\text{local}} B$ is equivalence under **basic local sequences**

$$\exists x_1,\ldots,x_n (\bigwedge_{i\neq j} \delta(x_i,x_j) > 2r \land \bigwedge_i \theta(x_i))$$

of qrank $\leq q$ where θ is *r*-local:

$$A \models \theta(a)$$
 iff $\mathcal{N}_r(a) \models \theta(a)$.

Theorem (Fagin–Stockmeyer–Vardi, 1995) For finite A and B with neighbourhoods $\leq f$, bijection of isomorphism $\mathcal{N}_{r(k)}$ -types up to w(f, k) implies $A \equiv_k B$.

We fix suitable radii r_1, \ldots, r_k and quantifier ranks q_1, \ldots, q_k . (typically $q_i \approx c^{k-i}$)

We fix suitable radii r_1, \ldots, r_k and quantifier ranks q_1, \ldots, q_k . (typically $q_i \approx c^{k-i}$)

Case n°1

We fix suitable radii r_1, \ldots, r_k and quantifier ranks q_1, \ldots, q_k . (typically $q_i \approx c^{k-i}$)

Case n°1

We fix suitable radii r_1, \ldots, r_k and quantifier ranks q_1, \ldots, q_k . (typically $q_i \approx c^{k-i}$)

Case n°1

We fix suitable radii r_1, \ldots, r_k and quantifier ranks q_1, \ldots, q_k . (typically $q_i \approx c^{k-i}$)

We fix suitable radii r_1, \ldots, r_k and quantifier ranks q_1, \ldots, q_k . (typically $q_i \approx c^{k-i}$)

<u>Productivity step</u>: use $\equiv_{r_n,q_n}^{\text{local}}$ to find b_{n+1}

We fix suitable radii r_1, \ldots, r_k and quantifier ranks q_1, \ldots, q_k . (typically $q_i \approx c^{k-i}$)

Want:

$F(A) \sim F(B)$ in $CoAlg(\mathbb{C})$

Instead of
$$r_1, \ldots, r_k$$
 and q_1, \ldots, q_k
we have $\mathcal{N}_1, \ldots, \mathcal{N}_k$ and $\mathbb{D}_1, \ldots, \mathbb{D}_k$.
abstract neighbourhood operators,
e.g. $\mathcal{N}(x) = \{y \mid \delta(x, y) \leq r\}$

Want:

$F(A) \sim F(B)$ in $CoAlg(\mathbb{C})$

Instead of r_1, \ldots, r_k and q_1, \ldots, q_k we have $\mathcal{N}_1, \ldots, \mathcal{N}_k$ and $\mathbb{D}_1, \ldots, \mathbb{D}_k$.

Invariant at round n:

$$\mathtt{ltp}_{\mathcal{N}_n}(\overline{a}) \sim \mathtt{ltp}_{\mathcal{N}_n}(\overline{b})$$

in $\operatorname{CoAlg}(\mathbb{D}_n)$

Want:

$F(A) \sim F(B)$ in $CoAlg(\mathbb{C})$

Instead of
$$r_1, \ldots, r_k$$
 and q_1, \ldots, q_k
we have $\mathcal{N}_1, \ldots, \mathcal{N}_k$ and $\mathbb{D}_1, \ldots, \mathbb{D}_k$.

Invariant at round n:

$$\mathtt{ltp}_{\mathcal{N}_n}(\overline{a}) \sim \mathtt{ltp}_{\mathcal{N}_n}(\overline{b})$$

in $CoAlg(\mathbb{D}_n)$

 $\overline{a} \in A \approx P \xrightarrow{\overline{a}} F(A)$ for P "discrete"

$$\overline{a} \in A \approx \longrightarrow \approx P \xrightarrow{\overline{a}} F(A)$$
 for P "discrete"
Model theoretic types: $tp(\overline{a}) \approx \bigvee \subseteq F(A)$

$$\overline{a} \in A \approx \longrightarrow \qquad \approx \qquad P \xrightarrow{\overline{a}} F(A) \text{ for } P \text{ "discrete"}$$

Model theoretic types: $\operatorname{tp}(\overline{a}) \approx \bigvee \qquad \subseteq F(A)$

Lemma. $(A,\overline{a}) \equiv (B,\overline{b})$ iff $\operatorname{tp}(\overline{a}) \sim \operatorname{tp}(\overline{b})$

$$\overline{a} \in A \approx \longrightarrow \approx P \xrightarrow{\overline{a}} F(A)$$
 for P "discrete"
Model theoretic types: $tp(\overline{a}) \approx \bigvee \subseteq F(A)$

Lemma. $(A,\overline{a}) \equiv (B,\overline{b})$ iff $\operatorname{tp}(\overline{a}) \sim \operatorname{tp}(\overline{b})$

Neighbourhood operator: $\overline{a} \in A \mapsto \mathcal{N}(\overline{a}) \subseteq A$

 ${\sf Local types:} \quad {\tt ltp}_{\mathcal N}(\overline{a}) = {\tt tp}(\overline{a}) \cap {\sf F}(\mathcal N(\overline{a}))$

$$\overline{a} \in A \approx \longrightarrow \approx P \xrightarrow{\overline{a}} F(A)$$
 for P "discrete"
Model theoretic types: $tp(\overline{a}) \approx \bigvee \subseteq F(A)$

Lemma. $(A,\overline{a}) \equiv (B,\overline{b})$ iff $\operatorname{tp}(\overline{a}) \sim \operatorname{tp}(\overline{b})$

Neighbourhood operator: $\overline{a} \in A \mapsto \mathcal{N}(\overline{a}) \subseteq A$

 $\texttt{Local types:} \quad \texttt{ltp}_\mathcal{N}(\overline{a}) = \texttt{tp}(\overline{a}) \cap F(\mathcal{N}(\overline{a}))$

 $\textbf{Lemma.} \quad (\mathcal{N}(\overline{a}),\overline{a}) \equiv (\mathcal{N}(\overline{b}),\overline{b}) \quad \text{iff} \quad \texttt{ltp}_{\mathcal{N}}(\overline{a}) \sim \texttt{ltp}_{\mathcal{N}}(\overline{b})$

A discrete path P splits if $\forall Q \rightarrow P \exists P' \text{ s.t. } P \approx Q + + P'$

A discrete path P splits if $\forall Q \rightarrow P \exists P' \text{ s.t. } P \approx Q + P'$

Combinatorics of neighbourhoods

Given $\mathcal{N}(\overline{a}) \subseteq A$ and $\mathcal{N}(\overline{b}) \subseteq A$, the factorisation

$$\mathcal{N}(\overline{a}) + \mathcal{N}(\overline{b}) \longrightarrow \mathcal{N}(\overline{a} + \overline{b}) \longrightarrow A$$

A discrete path P splits if $\forall Q \rightarrow P \exists P' \text{ s.t. } P \approx Q + P'$

Combinatorics of neighbourhoods

Given $\mathcal{N}(\overline{a}) \subseteq A$ and $\mathcal{N}(\overline{b}) \subseteq A$, the factorisation

$$\mathcal{N}(\overline{a}) + \mathcal{N}(\overline{b}) \longrightarrow \mathcal{N}(\overline{a} + \overline{b}) \longrightarrow A$$

Lemma. For $\mathcal{N}(x) = \mathcal{N}_r(x)$, $\delta(\overline{a}, \overline{b}) > 2 \cdot r$ iff \twoheadrightarrow above is iso.

Theorem (Categorical Skeleton)

Given a comonad \mathbb{C} , opmonoidal comonads $\mathbb{D}_1, \mathbb{D}_2, \ldots$ and neighbourhood operator $\mathcal{N}_1, \mathcal{N}_2, \ldots$ such that

- there are strong comonad morphisms $\mathbb{C} \Rightarrow \mathbb{D}_{i+1} \Rightarrow \mathbb{D}_i$
- CoAlg(ℂ) has enough splitting discrete paths

If, for every *i*, *A*, *B* satisfies the <u>Productivity Condition</u> from $\mathbb{D}_i, \mathcal{N}_i$ to $\mathbb{D}_{i+1}, \mathcal{N}_{i+1}$ then $A \equiv_{\mathbb{C}} \overline{B}$.

The Productivity Condition intuitively:

$$\begin{split} & \texttt{ltp}_{\mathcal{N}_i}(\overline{a}) \sim \texttt{ltp}_{\mathcal{N}_i}(\overline{b}) \texttt{ and } \mathcal{N}_{i+1}(a_{i+1}) \not\subseteq \mathcal{N}_i(\overline{a}) \\ \implies \exists b_{i+1} \texttt{ s.t.} \quad `` \delta(b_{i+1},\overline{b}) > 2 \cdot \mathcal{N}_{i+1} " \\ & \texttt{ltp}_{\mathcal{N}_{i+1}}(a_{i+1}) \sim \texttt{ltp}_{\mathcal{N}_{i+1}}(b_{i+1}) \end{split}$$

Final words

Productivity Condition easy to check for the Workspace Lemma!

A categorical proof of Gaifman and Hanf also possible. Although, it requires further axioms for discrete paths and neighbourhood operators.

Next steps:

- fully axiomatic van Benthem-Rosen
- algorithmic results which use locality
- nowhere-dense comonads in terms of locality assumptions