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Theorem

A = B iff Duplicator wins in the k-round E-F game.
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Game comonads in a nutshell

For a (well-behaved) model comparison game for logic .Z

e exploration of one structure following the rules of the game
= construction C: R(o) — R(0)

C(A) has a natural tree order T (not part of signature o)
CoAlg(C)

Cisacomonad = adjunction ;[ 4 |f

R(o)

free coalgebra F(A) = (C(A),T)

a bisimulation F(A) ~ F(B) iff A=¢ B

bisimulation expressed in terms of paths and embeddings

e existential (positive), counting fragments also captured in CoAlg(C)



Example: Ehrenfeucht—Fraissé comonad E,

Given A € R(o0),

e E4(A) = sequences a = [a1,...,a,] with a; € Aand n < g
e aC b iff 3isa prefix of b
e CoAlg(E) =~ o-structures with a compatible forest order

e A=, B iff F(A)~ F(B) (for U - F arising from Ey)



Coalgebraic Combinatorial Parameters
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Lovdsz homomorphism counting theorems:

e comonadicity + preservation of finiteness/finite rank
Composition methods:

o generalisation of opmonoidal comonads + relative adjunctions
equi-rank Homomorphism Preservation Theorems:

e model saturation ~ small object argument

van Benthem-Rosen characterisation theorems:

e provides many new examples!
e but only a method, not fully axiomatic
o uses Workspace Lemma, tailor made for Ej

Question: Significant missing theorems? ... locality theorems!
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Locality theorems

Omnipresent in finite model theory. We need them too!

Theorem (Gaifman, 1982)

For relational structures: A —I‘Efgl a(k) B implies A =, B.

A =local B is equivalence under basic local sequences

_r7q
Axt, . xa (\ (%0, x7) > 2r A /\9 X))
i#
of grank < g where 0 is r-local:

AE6(a) iff N(a) = 6(a).

Theorem (Fagin—Stockmeyer—Vardi, 1995)
For finite A and B with neighbourhoods <f, bijection of
isomorphism N, (i)-types up to w(f, k) implies A = B.
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Proof structure

We fix suitable radii 1, ..., ry and quantifier ranks q1, ..., gx.

(typically g; = c*=1)

Case n°2

' —qn+1 '
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Want:
Conle(C) F(A) ~ F(B) in CoAlg(C)
\ Instead of ry,...,rc and g1, ..., qk
| /COAIg|(]IDn+1 we have Nlju'“/\/'k and ]]])17"-7]]])/(-
R(o) /COAIg Invariant at round n:

1tpy, (3) ~ 1tpy, (b)

in CoAlg(D),)
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AEA ~ \% ~ P23 F(A) for P “discrete”
Model theoretic types:  tp(a) =~ : g ; C F(A)

Lemma. (A,3)=(B,b) iff tp(a)~ tp(h)

Neighbourhood operator: a€ A — N(3a) C A

Local types:  1tp,r(3) = tp(a) N F(N(3))

Lemma. (N(3),3) = (W (B),b) iff 1tpy(3) ~ 1tpy(b)
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Axioms

P
A path P is discrete iff it is projective wrt quotients: N\

Q Q'

A discrete path P splits if VQ — P 3P st. P~ Q-+ P’

Combinatorics of neighbourhoods

Given N(3) C A and N(b) C A, the factorisation

N (@) + N (b) N (3 + b)

Lemma. For NV(x) = N,(x), 6(a,b) > 2 r iff — above is iso.
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Theorem (Categorical Skeleton)
Given a comonad C, opmonoidal comonads ID1,D5, ... and
neighbourhood operator N1, N, ... such that

e there are strong comonad morphisms C = D;1 = D;

e CoAlg(C) has enough splitting discrete paths

If, for every i, A, B satisfies the Productivity Condition from
]D,',M to ]]]),'+1,./\/‘,'+1 then A =¢ B.

The Productivity Condition intuitively:
1tpy-(3) ~1tpy,(b) and Niyi(air1) € Ni(3)
— Elbj+1 s.t. " 5(b,’+1,5) > 2. ./\/H_]_ "

1tpy;,, (@i41) ~ 1tpyy,, (bit1)
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Final words

Productivity Condition easy to check for the Workspace Lemmal

A categorical proof of Gaifman and Hanf also possible.
Although, it requires further axioms for discrete paths and
neighbourhood operators.

Next steps:

o fully axiomatic van Benthem-Rosen
o algorithmic results which use locality

» nowhere-dense comonads in terms of locality assumptions
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