
Axioms for Sequentiality, State and Concurrency

Jim Laird:
University of Bath, UK

UCL, September 2023

Motivations and Background

Understanding a key Abramsky insight - how local state is implicit
in the behaviour of strategies, determined by their history.

I Coalgebraic methods can be used to abstract (hide) the
explicit state in a system.

I These principles may be used to construct (sub)programs with
local state by encapsulating their global state.

I To have a semantics, we need to understand how these
objects compose — how to represent shared access, how to
pass higher-order values...

I ... by relating them to categorical structure, both general
(symmetric monoidal closure, cofree commutative comonoids).

I and specific to a (game) semantics of global and local state.

This work

Use these ideas to extend:

I the simply-typed λ-calculus with an operation for
encapsulating state and a coinductive theory for reasoning
about it

I its CCC semantics to a sound and complete categorical model
of state encapsulation.

I Extending to objects in concurrent calculis (e.g. the
π-calculus).

Final Coalgebras

A final coalgebra for F : C → C is a coalgebra (B, β : B → FB)
such that for any F -coalgebra (S , σ : S → FS) there is a unique
coalgebra morphism (“anamorphism”) ([σ]) : S → B.

S σ
//

([σ])

��

FS

F ([σ])

��
B

β // FB

From global state...

Consider the endofunctor FX = A× X on the category of sets. A
coalgebra (S , σ : S → A× S) represents an object with globally
accessible state: given an input state s ∈ S , return a value a ∈ A
and an output state s ′ ∈ S .

... to local state

F has a final coalgebra (Aω, α : Aω → A× Aω), where
α(aw) = 〈a,w〉.
Its anamorphism sends an initial state to a “stream” of copies of σ
which pass their output state as the input to the next instance. —
e.g. the anamorphism of λx .〈x ,¬x〉 : Bool→ Bool× Bool sends
tt to the sequence tt, ff, tt, ff, tt, ff,

Games and the cofree commutative comonoid

To build a compositional semantics from stateful objects we need
structure to share access to them.
In the symmetric monoidal category of (AJM-style) two player
games, morphisms are given by sets of plays (finite, alternating
sequences), where:

I A play in A⊗ B is an interleaving of (tagged) plays in A and
B.

I A play in the cofree commutative comonoid !A is an
interleaving of plays in finitely many copies of A (i.e.
A⊗ A⊗ . . .), ignoring tags (we can just pick them in order).

We may equip !A with morphisms to duplicate (δ :!A→!A⊗!A),
discard (η :!A→ I) and derelict (der :!A→ A), and for any
f :!A→ B, a unique comonoid morphism f † :!A→!B such that
f †; der = f .

Games and the cofree commutative comonoid

To build a compositional semantics from stateful objects we need
structure to share access to them.
In the symmetric monoidal category of (AJM-style) two player
games, morphisms are given by sets of plays (finite, alternating
sequences), where:

I A play in A⊗ B is an interleaving of (tagged) plays in A and
B.

I A play in the cofree commutative comonoid !A is an
interleaving of plays in finitely many copies of A (i.e.
A⊗ A⊗ . . .), ignoring tags (we can just pick them in order).

We may equip !A with morphisms to duplicate (δ :!A→!A⊗!A),
discard (η :!A→ I) and derelict (der :!A→ A), and for any
f :!A→ B, a unique comonoid morphism f † :!A→!B such that
f †; der = f .

The Free Comonoid as a Final Coalgebra

This cofree commutative comonoid structure is derivable
coalgebraically from the sequoid functor �:
A play in A� B is an interleaving of plays in A and B which starts
in A.
Thus !A ∼= A�!A — moroever, this isomorphism is a final
coalgebra for the functor FX = A� X

Writing Stateful Programs

We now have a recipe for encapsulating an object with global state
σ : S → A� S , to an object with local state — its anamorphism
([σ]) : S →!A — with a commutative comonoid structure allowing
shared access.

However

I Linear types are a big syntactic overhead.

I They are unnecessary in the most successful games models of
state (based on HO games, in which pointers replace indices
in the !).

I We can capture higher-order state [Abramsky, Honda and
McCusker, LICS 1998] (test-of-time award) using further
properties of the sequoid.

Writing Stateful Programs

We now have a recipe for encapsulating an object with global state
σ : S → A� S , to an object with local state — its anamorphism
([σ]) : S →!A — with a commutative comonoid structure allowing
shared access. However

I Linear types are a big syntactic overhead.

I They are unnecessary in the most successful games models of
state (based on HO games, in which pointers replace indices
in the !).

I We can capture higher-order state [Abramsky, Honda and
McCusker, LICS 1998] (test-of-time award) using further
properties of the sequoid.

Sequoidal CCCs

(C,L,�, J) is a sequoidal CCC if:

1. C is a CCC and L is a category with finite products.

2. (L,�) is a C-action (monoidal functor from C to LL) with a
dual Cop action (i.e. right-and-left adjoint) (L,⇒).

3. J : L → C preserves products and sends (L,⇒) to the internal
hom of C.

Derived constructions:

I A lax morphism of actions: Λ−1(JηX ,B) : JX ×B → J(X �B)
(where η is the unit of B ⇒ a � B)

I A sequoidal trace operator: given f : A× B → J(X � B),
define trBA,X (f) : A→ JX = Λ(f); J(εB,X), where
εB,X : B ⇒ (X � B)→ X is the co-unit of B ⇒ a � B.

Examples

Compact closed models of linear logic — given a cartesian closed
category C, a compact closed category with products, (L,⊗, I),
and a monoidal functor J : L → C with a (monoidal) left adjoint
! : C → L: we can define A� X ,!A⊗ X .
e.g.

I C is the category of sets and functions, and L is the category
of sets and relations,

I J : L → C is the powerset functor and � : L × C → L is the
action sending X ,A to X × A — (P(X × A) ∼= P(X)A).

Not all sequoidal CCCs arise in this way — e.g. Hyland-Ong
Games (without visibility condition):

I C is the CCC of HO games and “single-threaded strategies”;
L is its subcategory of strict, linear strategies.

I J : L → C is inclusion and A� B = B ⇒ A — every initial
move in B has a causal pointer into an initial move in A —
their polarities are flipped in B ⇒ A, but not B � A.

Examples

Compact closed models of linear logic — given a cartesian closed
category C, a compact closed category with products, (L,⊗, I),
and a monoidal functor J : L → C with a (monoidal) left adjoint
! : C → L: we can define A� X ,!A⊗ X .
e.g.

I C is the category of sets and functions, and L is the category
of sets and relations,

I J : L → C is the powerset functor and � : L × C → L is the
action sending X ,A to X × A — (P(X × A) ∼= P(X)A).

Not all sequoidal CCCs arise in this way — e.g. Hyland-Ong
Games (without visibility condition):

I C is the CCC of HO games and “single-threaded strategies”;
L is its subcategory of strict, linear strategies.

I J : L → C is inclusion and A� B = B ⇒ A — every initial
move in B has a causal pointer into an initial move in A —
their polarities are flipped in B ⇒ A, but not B � A.

Global State

For any object S of C we have a monad §S = S ⇒ (� S) on L:

I (J,S ⇒ ωS ,A : S ⇒ (JX × A)→ S ⇒ J(X � A) ∼= J(S ⇒
X � A)) is a lax morphism of monads from the usual state
monad S ⇒ (× S) for C, inducing read and write operations.

I §S§TA ∼= §S×TA, §S(A× B) ∼= §S(A)× §S(B), and
§S(A⇒ B) ∼= A⇒ §SB. (stored values can be passed out of
static scope)

Coalgebraic Encapsulation

I In any sequoidal CCC we can compose a natural
transformation σ : � A→ � B with a morphism
f ∈ C(B, JC): we define Φ(σ, f) ∈ C(A, JC) to be the trace
of:

A⊗ B ∼= B ⊗ A
f⊗A−→ JC ⊗ A

ωC ,A−→ J(C � A)
J(σC)−→ J(C � B)

I Define a category CA in which objects are J(A�) coalgebras,
and morphisms from (B, β) to (C , γ) are natural
transformations σ : � B → � C such that
Φ(σ, γ) = β; J(σA) : B → J(A� C).

I We require that J(δA);ωA,A : JA→ J(A� JA) is a terminal
object in CA.

In HO-style games, a natural transformation from � A to � B
just corresponds to a “multithreaded” strategy from A to B, and Φ
composes it with a single-threaded strategy.

A Type Theory for Sequoidal CCCs

We add to the simply-typed λ-calculus with products:

I Definition — s{x := t} (doesn’t bind x)

I Declaration — νx .t (does bind x)

I Co-abstraction — λx .t — and co-application — t y .

Types are generated by the grammar

S ,T := B | Πi<nSi | S → T | T � S

Some typing rules

Γ`s:S ;∆ Γ`t:T ;
Γ`s{x :=t}:∆,x :T x 6∈ ∆

Γ,x :S`t:T ;∆,x :S
Γ`νx .t:T ;∆

Γ`t:T ;∆,x :S

Γ`λx .t:T�S ;∆
x 6∈ Γ

Γ`s:S�T ;∆
Γ`s x :S ;∆,x :T x 6∈ ∆

Denotational Semantics

Interpret Γ ` t : T ; ∆ as a morphism [[t]]Γ∆ : [[Γ]]→ J([[T]]� [[∆]])
in a sequoidal CCC.

I Definition interpreted by the lax morphism of actions from ×
to �.

[[s{x := t}]] = 〈[[s]]Γ∆, [[t]]Γ〉;ω

I Declaration is given by the sequoidal trace operator:

[[νx .t]] = tr([[t]]Γ,x∆,x)

Equational Theory

(λx .t) y =T t[y/x]

λx .(t x) =T t (x 6∈ FV (t))
νx .L[t] =T L[νx .t] (x 6∈ FV (L[])
L[t{x := s}] =T L[t]{x := s}

νx .t{x := s} =T νx .t[s/x]{x := s}
νx .t{y := x} =T t[y/x] (x 6∈ FV (t))
νx .t{x := s} =T t (x 6∈ FV (t))

where

L ::= [] | λx .L | 〈L1, . . . , Ln〉 | L{x := t} | νx .L | L t | L.i

These are sound and complete for interpretation in a sequoidal
CCC.

Encapsulated Definition

We extend our calculus with encapsulated definition:

Γ`r :R ;∆ Γ`s:S ; Γ,`t:S→T�S ;
Γ`r{x :=ε(s,t)}:R ;∆,x :T

Example: the reference cell — new (x := s) in t ,

νx .t{x := ε(s, λb.λc.〈λy .λz .z{c := y}, b{c := b}〉)

The unfolding rule:

νx .L[x{x := ε(s, t)}] =T + νx .νb.L[(t s) b{x := ε(b, t)}]

establishes the correct read-write behaviour.

Coinduction Rule
An environment context is a sequence of definitions and
declarations:

E := [] | E{x := t} | E{x := ε(y , t)} | νx .E
Coinduction Rule:

For any term Γ ` t : S → (T � S)
and environment Γ, u : S ` E ; x : T :

if Γ ` νx .E [x{y := x}] =T + νv .E [y/x , v/u][(t u) v]
then E =T + {x := ε(u, t)}.

This soundly and completely axiomatizes the encapsulation
operator in the semantics.

It may be used to prove that two implementations of an object
with hidden state but the same observable behaviour are
equivalent. E.g. given t : S → A� S and t ′ : S → A� S ′, and a
state transformation f : S → S ′ such that

λxλy .νz .(t x) z{y := f z} = λx .t ′ (f x)

Then {x := ε(u, t)} =T + {x := ε(f u, t ′)}.

Coinduction Rule
An environment context is a sequence of definitions and
declarations:

E := [] | E{x := t} | E{x := ε(y , t)} | νx .E
Coinduction Rule:

For any term Γ ` t : S → (T � S)
and environment Γ, u : S ` E ; x : T :

if Γ ` νx .E [x{y := x}] =T + νv .E [y/x , v/u][(t u) v]
then E =T + {x := ε(u, t)}.

This soundly and completely axiomatizes the encapsulation
operator in the semantics.
It may be used to prove that two implementations of an object
with hidden state but the same observable behaviour are
equivalent. E.g. given t : S → A� S and t ′ : S → A� S ′, and a
state transformation f : S → S ′ such that

λxλy .νz .(t x) z{y := f z} = λx .t ′ (f x)

Then {x := ε(u, t)} =T + {x := ε(f u, t ′)}.

Computational Sequoidal Categories

We have an effect (state): we want to model call-by-value, monad
types etc (and coproducts).
Obvious step (adjoint sequoidal CCC) ask for J : L → C to have a
left adjoint, Σ : C → L (cf. adjunction models of cbpv).
But then ΣA ∼= Σ1� A, since
L(Σ1� A,B) ≡ L(Σ1,A⇒ B) ∼= C(1,A⇒ B) ∼= C(A,B).
Weaker requirement —- a functor J ′ : L′ → C′ with a left adjoint
which factorizes into J ′ = H; J;K , where H : L′ → L and
K : C → C′.

Adjoint Sequoidal CCCs and Concurrency

I If the monad T : C → C induced by an adjoint sequoidal CCC
is symmetric monoidal, then its Kleisli category is compact
closed, giving a compact closed model of linear logic.

I These are models of the π-calculus (with only replicated
input) [Sakayori and Tsukada, 2019].

I In HO games, models in which J : L → C has a left adjoint —
o � , where o is the one-move game — are interleaved or
concurrent games: the co-unit o � A→ A is a “spawn”
strategy.

I The induced monad is symmetric monoidal —- in
“synchronous” games the monoidal strength
(o � A)× (o � B)→ o � (A× B) decomposes into left and
right strengths.

I Adding encapsulated definition is equivalent in expressiveness
to the π-calculus. (But with a co-inductive theory of
concurrent objects with local state.)

