

Testing contextuality on a general-purpose single-photon-based quantum computing platform

Shane Mansfield

arXiv:2306.00874, arXiv:2301.03536 Workshop on Samson's Springer Volume UCL, 18th Sep 2023

Q Quandela Presentation

Quandela Scientific Advisory Board

>50 Scientists and Engineers algorithms, semiconductors, optical technologies, CS

Founded in 2017

>80 People

R&D Centers

C2N - Palaiseau

Massy

Production Centers

IPVF - Palaiseau

Massy

Paris-Saclay Munich Barcelona

Ascella Quantum Processor

Q Ascella Quantum Computing Platform

Q Virtual Lab Tour The Photon Source

Q Virtual Lab Tour The Photon Source

Q Virtual Lab Tour Filtering

Q Virtual Lab Tour Filtering

Q Virtual Lab Tour Demultiplexer

Q Virtual Lab Tour Demultiplexer

Q Virtual Lab Tour Photonic Circuit

Q Virtual Lab Tour Photonic Circuit

12 x 12 fully reconfigurable universal interferometer

Some Notions of Photonic Quantum Computing

Q Photonic Operations Second Quantisation Description

• Fock state with n_{ki} photons in mode k_i

$$\ket{n_{\mathbf{k}_1},n_{\mathbf{k}_2},\ldots n_{\mathbf{k}_i}\dots}$$

• Creation operator $b^{\dagger}_{{f k}_l}$:

$$b^{\dagger}_{{f k}_l} \ket{n_{{f k}_1},n_{{f k}_2},n_{{f k}_3}\dots n_{{f k}_l}} = \sqrt{n_{{f k}_l}+1} \ket{n_{{f k}_1},n_{{f k}_2},n_{{f k}_3}\dots n_{{f k}_l}} + 1,\dots
angle$$

• Annihilation operator $b_{\mathbf{k}_l}$:

$$b_{\mathbf{k}_l} \ket{n_{\mathbf{k}_1}, n_{\mathbf{k}_2}, n_{\mathbf{k}_3} \dots n_{\mathbf{k}_l}, \dots} = \sqrt{n_{\mathbf{k}_l}} \ket{n_{\mathbf{k}_1}, n_{\mathbf{k}_2}, n_{\mathbf{k}_3} \dots n_{\mathbf{k}_l} - 1, \dots}$$

Identity on 2 modes

 Identity on 2 modes
 ('o)
 (b)
 (c)
 (c)
 (c)
 (c)
 (c)
 (c)
 (c)
 <li(c)

$$\begin{aligned} & \bigoplus_{l \in \mathcal{F}} \left\{ \begin{array}{l} e^{i(\phi_{tl} + \phi_{tr})} \cos\left(\frac{\theta}{2}\right) & e^{i(\phi_{bl} + \phi_{tr})} \sin\left(\frac{\theta}{2}\right) \\ e^{i(\phi_{tl} + \phi_{br})} \sin\left(\frac{\theta}{2}\right) & -e^{i(\phi_{bl} + \phi_{br})} \cos\left(\frac{\theta}{2}\right) \end{array} \right] \\ & \text{No phases} \quad \widehat{U}_{\text{BS}}(\theta) = \begin{array}{l} \left\langle 1, 0 | \begin{pmatrix} \cos\left(\frac{\theta}{2}\right) & i \sin\left(\frac{\theta}{2}\right) \\ i \sin\left(\frac{\theta}{2}\right) & \cos\left(\frac{\theta}{2}\right) \end{pmatrix} \\ & i \sin\left(\frac{\theta}{2}\right) \\ & i \sin\left(\frac{\theta}{2}\right) \end{array} \end{aligned}$$

O Universal interferometer

Linear Optical Implementation of an Arbitrary Unitary via Normal Form

Clements, William R., et al. "Optimal design for universal multiport interferometers." *Optica* 3.12 (2016): 1460-1465.

Based on an earlier work:

Reck, Michael, et al. "Experimental realization of any discrete unitary operator." *Physical review letters* 73.1 (1994): 58.

 $U = D'T_{3,4}T_{4,5}T_{1,2}T_{2,3}T_{3,4}T_{4,5}T_{1,2}T_{2,3}T_{3,4}T_{1,2} =$

Q Boson Sampling Linear Optics is #P-hard to Exactly Simulate

$$\psi_{\mathrm{in}}
angle = |1_1, \dots, 1_n, 0_{n+1}, \dots, 0_m
angle$$

= $\hat{a}_1^{\dagger} \dots \hat{a}_n^{\dagger} |0_1, \dots, 0_m
angle,$

$$\hat{U}\hat{a}_i^{\dagger}\hat{U}^{\dagger} = \sum_{j=1}^m U_{i,j}\hat{a}_j^{\dagger},$$

Q Ascella With Universal Interferometer

User input

- Fock state
- Unitary / Photonic Circuit (PC) / Gate-based Quantum Circuit (GB)

PC and GB can first be compiled to a unitary

User output Coincidence counts

Q Qubits & Logic Gates Postselection, Heralding and Active Linear Optics

But 2-qubit gates cannot be achieved deterministically with passive linear optics

Requires:

- Nonlinearities (materials unavailable)
- Postselection (probabilistic)
- Heralding (probabilistic)
- Feedforward

Basic Example: Postselected CNOT

Ralph, Timothy C., et al. "Linear optical controlled-NOT gate in the coincidence basis." Physical Review A 65.6 (2002): 062324.

Q Ascella: Compilation & Transpilation With Machine Learning to Offset Hardware Imperfections

Testing Contextuality

Q Bell-CHSH Scenario A Contextuality Test

in\out	(0,0)	(0,1)	(1,0)	(1, 1)
(<i>a</i> , <i>b</i>)	1/2	0	0	1/2
$(\boldsymbol{a},\boldsymbol{b'})$	1/2	0	0	1/2
(a',b)	1/2	0	0	$^{1}/_{2}$
(a', b')	0	$^{1}/_{2}$	$^{1}/_{2}$	0

Not the actual experimental data yet...

Q Quantifying Contextuality Contextual Fraction

$$e = \mathsf{NCF}(e) e^{NC} + \mathsf{CF}(e) e^{SC}$$

- CF Corresponds to the normalised violation of an optimal Bell inequality
- Master inequality for witnessing contextuality

 $\mathsf{CF}(e) > 0$

Abramsky, Samson, and Adam Brandenburger. "The sheaf-theoretic structure of non-locality and contextuality." New Journal of Physics 13.11 (2011): 113036. Abramsky, Samson, Rui Soares Barbosa, and Shane Mansfield. "Contextual fraction as a measure of contextuality." Physical review letters 119.5 (2017): 050504

Q Quantifying Contextuality On Actual Empirical Data

in\out	(0,0)	(<mark>0</mark> ,1)	(1, 0)	(1, 1)
$(\boldsymbol{a},\boldsymbol{b})$	0.418	0.083	0.084	<i>O</i> .415
$(\boldsymbol{a},\boldsymbol{b}')$	0.090	0.416	0.410	0.084
(a ', b)	0.085	0.418	0.418	0.079
(a' , b')	0.077	0.429	0.423	0.071

- CF ≈ 0.34
- Tsirelson bound: CF \approx 0.41

Q Non-ideal data The Signalling Fraction

- Empirical behaviour can be signalling
- Due to experimental cross-talk
- Or finite statistics
- Analogous to the *contextual fraction*, we introduce a *signalling fraction** $e = NSF(e)e^{NS} + SF(e)e'$
- Observed signalling: SF < 0.05

*From unpublished work with Samson and Rui

Q Contextuality in the Presence of Signalling What does it all mean?

in\out	(<mark>0,0</mark>)	(<mark>0</mark> ,1)	(1, 0)	(1,1)
(a , b)	0.418	0.083	0.084	<i>O</i> .415
(a , b ')	0.090	0.416	0.410	0.084
(a' , b)	0.085	0.418	0.418	0.079
(a' , b')	0.077	0.429	0.423	0.071

What does it all mean?

- Contextuality rules out hidden variable realisations which are
 - 1. Deterministic
 - Non-signalling for each hidden variable (i.e. hidden variables are *global* assignments)
- In the presence of signalling we should relax 2
- A new assumption is always required to relate empirical signalling to hidden variable signalling

 $\sigma^{HV} = f(SF(e)) > SF(e)$

- Contextuality-by-default analysis (Dzafharov, Kujala et al.) quantifies very differently but essentially sets f = Id
- Sufficient condition to rule out relaxed hidden variable realisations: $CF(e) > \sigma^{HV}$

Vallée, Kim et al. in preparation

Q Experimenting with Ascella Free access

Single-photon and coincidence counts

