Ripples from Pebbles

Dan Marsden

September 2023

Aims

- Introduce the pebbling comonad.
- Briefly discuss joint work with Samson on guarded and bounded fragments.
- Report on very recent ongoing developments from this years adjoint school.

Pebble Games

Four Cycle

Three Path
$\bullet \longrightarrow \bullet \bullet$

Pebble Games

Four Cycle

Spoiler Pebbles

(1) (2)

Three Path
$\bullet \longrightarrow \bullet \bullet$

Pebble Games

Four Cycle

Spoiler Pebbles
 (1) (2)

Duplicator Pebbles

Three Path
(1) (2)

Pebble Games

Four Cycle

Three Path

Spoiler Pebbles
(2)

Duplicator Pebbles

(1) (2)

Pebble Games

Four Cycle

Spoiler Pebbles
(2)

Duplicator Pebbles

Three Path
(2)
\longrightarrow (1)

Pebble Games

Four Cycle

Spoiler Pebbles
(2)

Duplicator Pebbles

Three Path

(2)

Pebble Games

Four Cycle

Spoiler Pebbles
(2)

Duplicator Pebbles

Three Path
(2)
\longrightarrow (1)

Pebble Games

Four Cycle

Three Path

Spoiler Pebbles

Duplicator Pebbles

Pebble Games

Four Cycle

Spoiler Pebbles

Duplicator Pebbles

Three Path

Pebble Games

Four Cycle

Spoiler Pebbles

Duplicator Pebbles

Three Path

Pebble Games

Four Cycle

Spoiler Pebbles

Duplicator Pebbles

Three Path

Pebble Games

Four Cycle

Spoiler Pebbles

Duplicator Pebbles

Three Path

Pebble Games

Four Cycle

Spoiler Pebbles

Duplicator Pebbles

Three Path

Pebble Games

Four Cycle

Spoiler Pebbles

Duplicator Pebbles

Three Path

Spoiler wins!

Games and Logic

For graphs \mathfrak{G}_{1} and \mathfrak{G}_{2} :

- Duplicator has a winning strategy in the k-pebble game if and only if

$$
\mathfrak{G}_{1} \equiv \sum_{\mathcal{L}_{\infty, \omega}^{k}} \mathfrak{G}_{2}
$$

- Duplicator has a winning strategy in both k-pebble games in which Spoiler is constrained to play in a fixed graph if and only if

$$
\mathfrak{G}_{1} \equiv_{\exists++\mathcal{L}_{\infty, \omega}^{k}} \mathfrak{G}_{2}
$$

- Duplicator has a winning strategy in another variant of the k-pebble game if and only if

$$
\mathfrak{G}_{1} \equiv_{\# \mathcal{L}_{\infty, \omega}^{k}} \mathfrak{G}_{2}
$$

Comonads, Games and Logic

There is a comonad ${ }^{1} \mathbb{P}_{k}:$ DGraph \rightarrow DGraph such that for directed graphs \mathfrak{G}_{1} and \mathfrak{G}_{2} :

- $\mathfrak{G}_{1} \equiv_{\exists^{+} \mathcal{L}_{\infty, \omega}^{k}} \mathfrak{G}_{2}$ if and only if there is a pair of morphisms in $\mathrm{DGraph}_{\mathbb{P}_{k}}$

$$
\mathfrak{G}_{1} \rightarrow \mathfrak{G}_{2} \quad \text { and } \quad \mathfrak{G}_{1} \leftarrow \mathfrak{G}_{2}
$$

- $\mathfrak{G}_{1} \equiv_{\# \mathcal{L}_{\infty, \omega}^{k}} \mathfrak{G}_{2}$ if and only if there is an isomorphism in $\mathrm{DGraph}_{\mathbb{P}_{k}}$

$$
\mathfrak{G}_{1} \cong \mathfrak{G}_{2}
$$

- $\mathfrak{G}_{1} \equiv \mathcal{L}_{\infty, \omega}^{k} \mathfrak{G}_{2}$ if and only if there exists a suitable span in DGraph ${ }^{\mathbb{P}_{k}}$

${ }^{1}$ Abramsky, Dawar, and Wang, "The pebbling comonad in Finite Model Theory".

Sketch of \mathbb{P}_{k}

A graph of plays
For a graph \mathfrak{G} :

- We form a new graph $\mathbb{P}_{k}(\mathfrak{G})$, with vertices non-empty sequences of the form

$$
\left[\left(p_{1}, v_{1}\right),\left(p_{2}, v_{2}\right), \ldots,\left(p_{n}, v_{n}\right)\right],
$$

with each v_{i} a vertex of \mathfrak{G}, and each $1 \leq p_{i} \leq k$.

Sketch of \mathbb{P}_{k}

A graph of plays
For a graph \mathfrak{G} :

- We form a new graph $\mathbb{P}_{k}(\mathfrak{G})$, with vertices non-empty sequences of the form

$$
\left[\left(p_{1}, v_{1}\right),\left(p_{2}, v_{2}\right), \ldots,\left(p_{n}, v_{n}\right)\right]
$$

with each v_{i} a vertex of \mathfrak{G}, and each $1 \leq p_{i} \leq k$.

- Intuitively two such sequences are part of the same play of the game if one is a prefix of another. For two such sequences, there is an edge

$$
\left.\left[\ldots,\left(p_{m}, v_{m}\right)\right] \rightarrow\left[\ldots,\left(p_{n}, v_{n}\right)\right]\right]
$$

if there is an edge $v_{m} \rightarrow v_{n}$ in \mathfrak{G}, and the pebbles p_{m} and p_{n} haven't moved again in that play.

Sketch of \mathbb{P}_{k}

A graph of plays
For a graph \mathfrak{G} :

- We form a new graph $\mathbb{P}_{k}(\mathfrak{G})$, with vertices non-empty sequences of the form

$$
\left[\left(p_{1}, v_{1}\right),\left(p_{2}, v_{2}\right), \ldots,\left(p_{n}, v_{n}\right)\right]
$$

with each v_{i} a vertex of \mathfrak{G}, and each $1 \leq p_{i} \leq k$.

- Intuitively two such sequences are part of the same play of the game if one is a prefix of another. For two such sequences, there is an edge

$$
\left.\left[\ldots,\left(p_{m}, v_{m}\right)\right] \rightarrow\left[\ldots,\left(p_{n}, v_{n}\right)\right]\right]
$$

if there is an edge $v_{m} \rightarrow v_{n}$ in \mathfrak{G}, and the pebbles p_{m} and p_{n} haven't moved again in that play.
This all generalises from graphs to general relational structures.

Other Logics

A Recurring Pattern ${ }^{2}$

In an analogous way, building structures of plays:

- There is a comonad \mathbb{E}_{k} that characterises equivalence in bounded quantifier depth first-order logic.
- There is a comonad \mathbb{M}_{k} that characterises equivalence in the modal fragment.
In both cases, the characterisation includes existential positive and counting games as well.

[^0]
Guarded Quantification

Guarded Quantification

We consider first-order logic, but restricting to quantification of the form:

$$
\exists \bar{y} \cdot \gamma(\bar{x}, \bar{y}) \wedge \varphi(\bar{x}, \bar{y})
$$

Guarded Quantification

Guarded Quantification

We consider first-order logic, but restricting to quantification of the form:

$$
\exists \bar{y} \cdot \gamma(\bar{x}, \bar{y}) \wedge \varphi(\bar{x}, \bar{y})
$$

The formula γ is a guard. There are three possible guard types:
Atom γ is an atom in which all the variables \bar{x} and \bar{y} appear.
Loose γ is a conjunction of atoms encoding that the variables in \bar{x} and \bar{y} form a clique in the Gaifman graph.
Clique γ is the formula clique (\bar{x}, \bar{y}) stating the variables in \bar{x} and \bar{y} form a clique in the Gaifman graph.

Guarded Quantification

The Guarded Quantification Game

For relational structures \mathfrak{A} and \mathfrak{B} :

$$
\text { Round } 0: \text { We set } X_{0}:=\varnothing, Y_{0}:=\varnothing, \varphi_{0}:=\varnothing
$$

Round $n+1$: Spoiler now has two options.

1. Spoiler specifies a guarded set X_{n+1} in \mathfrak{A}. Duplicator must respond with a guarded set Y_{n+1} in \mathfrak{B}, and a partial isomorphism $\varphi_{n+1}: X_{n+1} \rightarrow Y_{n+1}$, such that $\left.\varphi_{n+1}\right|_{x}=\varphi_{n} \mid x$, where $X=X_{n+1} \cap X_{n}$.
2. Spoiler specifies a guarded set Y_{n+1} in \mathfrak{B}. Duplicator must respond with a guarded set X_{n+1} in \mathfrak{A}, and a partial isomorphism $\varphi_{n+1}: X_{n+1} \rightarrow Y_{n+1}$, such that $\left.\varphi_{n+1}^{-1}\right|_{Y}=\left.\varphi_{n}^{-1}\right|_{Y}$, where $Y=Y_{n+1} \cap Y_{n}$.
Winning condition: Baked into the move structure.

Guarded Quantification

Categorical Semantics for Guarded Fragments

For each choice of guard type, we presented ${ }^{3}$ a comonad \mathbb{G}_{k} such that:

- Equivalence in the existential positive guarded logic is characterised by homomorphisms in both directions between structures in the Kleisli category.
- Equivalence in guarded logic is characterised by suitable spans in the Eilenberg-Moore category.
- The fundamental idea to internalise equivalence as a structure encoding plays of a game remains the same, although significantly technically more elaborate.
- Counting equivalence remains open.

[^1]
Bounded Fragments

(Two-sided) Bounded Quantification

We consider the fragment of first-order logic with quantification restricted to the forms:

$$
\begin{aligned}
& \exists y \cdot E(x, y) \wedge \varphi \\
& \exists y \cdot E(y, x) \wedge \varphi
\end{aligned}
$$

This can equivalently be described syntactically as a bidirectional hybrid modal logic with additional "memory" operations.

Bounded Fragments

The Bounded Game
Fix pointed relational structures $\left(\mathfrak{A}, a_{0}\right)$ and $\left(\mathfrak{B}, b_{0}\right)$, with distinguished binary relation symbol E. In round n of the bounded game, there are four possible moves:
\mathfrak{A} forward Spoiler chooses $a_{n+1} \in \mathfrak{A}$ such that there exists $m<n$ with $E^{\mathfrak{A}}\left(a_{m}, a_{n}\right)$. Duplicator responds with $b_{n+1} \in \mathfrak{B}$ such that there exists $m<n$ with $E^{\mathfrak{B}}\left(b_{m}, b_{n}\right)$.
\mathfrak{A} backward Spoiler chooses $a_{n+1} \in \mathfrak{A}$ such that there exists $m<n$ with $E^{\mathfrak{A}}\left(a_{n}, a_{m}\right)$. Duplicator responds with $b_{n+1} \in \mathfrak{B}$ such that there exists $m<n$ with $E^{\mathfrak{B}}\left(b_{n}, b_{m}\right)$.
and the dual moves where Spoiler plays in \mathfrak{B}.
Winning condition: The map $a_{i} \mapsto b_{i}$ is a partial isomorphism.

Bounded Fragments

Categorical Semantics for the Bounded Fragment

We presented a comonadic account of two-sided bounded quantification ${ }^{4}$, including:

- A comonad characterising the existential positive and two-sided games. This comonad is a blend of the comonads for the bounded quantifier depth and modal fragments.
- A van Benthem-Rosen type result giving a semantic characterisation of this fragment.
- A comonadic account of the one-sided bounded fragment remains open, and requires fundamentally new ideas.

[^2]
The Adjoint School Game Comonads Project ${ }^{5}$

We decided to look at computationally "nice" logics, extending modal logic, from the perspective of game comonads.
${ }^{5}$ Students: Tyler Hanks, Zhixuan Yang, Richie Yeung, Elena Dimitriadis Bermejo and TA: Nihil Shah

The Adjoint School Game Comonads Project ${ }^{5}$

We decided to look at computationally "nice" logics, extending modal logic, from the perspective of game comonads.

${ }^{5}$ Students: Tyler Hanks, Zhixuan Yang, Richie Yeung, Elena Dimitriadis Bermejo and TA: Nihil Shah

The Adjoint School Game Comonads Project ${ }^{5}$

We decided to look at computationally "nice" logics, extending modal logic, from the perspective of game comonads.

adjacent
${ }^{5}$ Students: Tyler Hanks, Zhixuan Yang, Richie Yeung, Elena Dimitriadis Bermejo and TA: Nihil Shah

The Adjoint School Game Comonads Project ${ }^{5}$

We decided to look at computationally "nice" logics, extending modal logic, from the perspective of game comonads.

adjacent

The intention is to get more data points about the nature of game comonads.

[^3]
Guarded and Unary Negation

Ongoing work of the 2023 Adjoint School Game Comonads Project

Restricting Negation

We now consider the unary ${ }^{6}$ and guarded negation ${ }^{7}$ fragments of first-order logic. These have unrestricted \exists, and no \forall, but with negation only of the form:

$$
\begin{aligned}
& \neg \varphi(x) \\
& \gamma(\bar{x}) \wedge \neg \varphi(\bar{x})
\end{aligned}
$$

Unary Negation (UNFO)
 Guarded Negation (GNFO)

The game is more complicated than those previously considered in the game comonads programme as it has multiple phases.

[^4]
Guarded and Unary Negation
 Ongoing work of the 2023 Adjoint School Game Comonads Project

Initial Steps
To investigate these fragments at the adjoint school, we

- Restricted attention to UNFO to simplify the problem.
- Established some equivalent games with nicer properties, such as apparent second-order moves, to more closely aligned with more familiar games.

Guarded and Unary Negation

Ongoing work of the 2023 Adjoint School Game Comonads Project

Comonads and UNFO

Our rephrasing of the model comparison game lead us to consider the pebbling comonad \mathbb{P}_{k}, and pairs of spans of Eilenberg-Moore coalgebras the form:

This seems to capture the right notion of two-sided equivalence ongoing work.

Ordered Variable Fragments

Ongoing work of the 2023 Adjoint School Game Comonads Project

Ordered, Forward and Fluted

We consider fragments of first-order logic without equality, with restricted use of variables in atoms:

$$
\begin{array}{ll}
\exists x_{1} \cdot \forall x_{2} \cdot \exists x_{3} \cdot R\left(x_{1}, x_{2}, x_{3}\right) \wedge E\left(x_{2}, x_{3}\right) & \text { fluted (suffixes) } \\
\exists x_{1} \cdot \forall x_{2} \cdot \exists x_{3} \cdot R\left(x_{1}, x_{2}, x_{3}\right) E\left(x_{1}, x_{2}\right) & \text { ordered (prefixes) } \\
\exists x_{1} \cdot \forall x_{2} \cdot \exists x_{3} \cdot R\left(x_{1}, x_{2}, x_{3}\right) \wedge P\left(x_{2}\right) & \text { forward (subsequences) } \\
\exists x_{1} \cdot \forall x_{2} \cdot \exists x_{3} \cdot R\left(x_{1}, x_{2}, x_{3}\right) \wedge E\left(x_{1}, x_{1}\right) & \text { non example } \\
\exists x_{1} \cdot \forall x_{2} \cdot \exists x_{3} \cdot R\left(x_{1}, x_{2}, x_{3}\right) \wedge E\left(x_{1}, x_{3}\right) & \text { non example }
\end{array}
$$

There is also a more complex adjacent fragment ${ }^{6}$ in which sequences can climb and fall.
${ }^{6}$ Bednarczyk, Kojelis, and Pratt-Hartmann, "On the Limits of Decision: the Adjacent Fragment of First-Order Logic".

Ordered Variable Fragments

Ongoing work of the 2023 Adjoint School Game Comonads Project

Ordered, Forward and Fluted

We consider fragments of first-order logic without equality, with restricted use of variables in atoms:

$$
\begin{array}{ll}
\exists x_{1} \cdot \forall x_{2} \cdot \exists x_{3} \cdot R\left(x_{1}, x_{2}, x_{3}\right) \wedge E\left(x_{2}, x_{3}\right) & \text { fluted (suffixes) } \\
\exists x_{1} \cdot \forall x_{2} \cdot \exists x_{3} \cdot R\left(x_{1}, x_{2}, x_{3}\right) E\left(x_{1}, x_{2}\right) & \text { ordered (prefixes) } \\
\exists x_{1} \cdot \forall x_{2} \cdot \exists x_{3} \cdot R\left(x_{1}, x_{2}, x_{3}\right) \wedge P\left(x_{2}\right) & \text { forward (subsequences) } \\
\exists x_{1} \cdot \forall x_{2} \cdot \exists x_{3} \cdot R\left(x_{1}, x_{2}, x_{3}\right) \wedge E\left(x_{1}, x_{1}\right) & \text { non example } \\
\exists x_{1} \cdot \forall x_{2} \cdot \exists x_{3} \cdot R\left(x_{1}, x_{2}, x_{3}\right) \wedge E\left(x_{1}, x_{3}\right) & \text { non example }
\end{array}
$$

There is also a more complex adjacent fragment ${ }^{6}$ in which sequences can climb and fall.
${ }^{6}$ Bednarczyk, Kojelis, and Pratt-Hartmann, "On the Limits of Decision: the Adjacent Fragment of First-Order Logic".

Ordered Variable Fragments

Ongoing work of the 2023 Adjoint School Game Comonads Project

Ordered, Forward and Fluted

We consider fragments of first-order logic without equality, with restricted use of variables in atoms:

$$
\begin{array}{ll}
\exists x_{1} \cdot \forall x_{2} \cdot \exists x_{3} \cdot R\left(x_{1}, x_{2}, x_{3}\right) \wedge E\left(x_{2}, x_{3}\right) & \text { fluted (suffixes) } \\
\exists x_{1} \cdot \forall x_{2} \cdot \exists x_{3} \cdot R\left(x_{1}, x_{2}, x_{3}\right) E\left(x_{1}, x_{2}\right) & \text { ordered (prefixes) } \\
\exists x_{1} \cdot \forall x_{2} \cdot \exists x_{3} \cdot R\left(x_{1}, x_{2}, x_{3}\right) \wedge P\left(x_{2}\right) & \text { forward (subsequences) } \\
\exists x_{1} \cdot \forall x_{2} \cdot \exists x_{3} \cdot R\left(x_{1}, x_{2}, x_{3}\right) \wedge E\left(x_{1}, x_{1}\right) & \text { non example } \\
\exists x_{1} \cdot \forall x_{2} \cdot \exists x_{3} \cdot R\left(x_{1}, x_{2}, x_{3}\right) \wedge E\left(x_{1}, x_{3}\right) & \text { non example }
\end{array}
$$

There is also a more complex adjacent fragment ${ }^{6}$ in which sequences can climb and fall.
${ }^{6}$ Bednarczyk, Kojelis, and Pratt-Hartmann, "On the Limits of Decision: the Adjacent Fragment of First-Order Logic".

Ordered Variable Fragments

Ongoing work of the 2023 Adjoint School Game Comonads Project

Ordered, Forward and Fluted

We consider fragments of first-order logic without equality, with restricted use of variables in atoms:

$$
\begin{array}{ll}
\exists x_{1} \cdot \forall x_{2} \cdot \exists x_{3} \cdot R\left(x_{1}, x_{2}, x_{3}\right) \wedge E\left(x_{2}, x_{3}\right) & \text { fluted (suffixes) } \\
\exists x_{1} \cdot \forall x_{2} \cdot \exists x_{3} \cdot R\left(x_{1}, x_{2}, x_{3}\right) E\left(x_{1}, x_{2}\right) & \text { ordered (prefixes) } \\
\exists x_{1} \cdot \forall x_{2} \cdot \exists x_{3} \cdot R\left(x_{1}, x_{2}, x_{3}\right) \wedge P\left(x_{2}\right) & \text { forward (subsequences) } \\
\exists x_{1} \cdot \forall x_{2} \cdot \exists x_{3} \cdot R\left(x_{1}, x_{2}, x_{3}\right) \wedge E\left(x_{1}, x_{1}\right) & \text { non example } \\
\exists x_{1} \cdot \forall x_{2} \cdot \exists x_{3} \cdot R\left(x_{1}, x_{2}, x_{3}\right) \wedge E\left(x_{1}, x_{3}\right) & \text { non example }
\end{array}
$$

There is also a more complex adjacent fragment ${ }^{6}$ in which sequences can climb and fall.
${ }^{6}$ Bednarczyk, Kojelis, and Pratt-Hartmann, "On the Limits of Decision: the Adjacent Fragment of First-Order Logic".

Ordered Variable Fragments

Ongoing work of the 2023 Adjoint School Game Comonads Project

Ordered, Forward and Fluted

We consider fragments of first-order logic without equality, with restricted use of variables in atoms:

$$
\begin{array}{ll}
\exists x_{1} \cdot \forall x_{2} \cdot \exists x_{3} \cdot R\left(x_{1}, x_{2}, x_{3}\right) \wedge E\left(x_{2}, x_{3}\right) & \text { fluted (suffixes) } \\
\exists x_{1} \cdot \forall x_{2} \cdot \exists x_{3} \cdot R\left(x_{1}, x_{2}, x_{3}\right) E\left(x_{1}, x_{2}\right) & \text { ordered (prefixes) } \\
\exists x_{1} \cdot \forall x_{2} \cdot \exists x_{3} \cdot R\left(x_{1}, x_{2}, x_{3}\right) \wedge P\left(x_{2}\right) & \text { forward (subsequences) } \\
\exists x_{1} \cdot \forall x_{2} \cdot \exists x_{3} \cdot R\left(x_{1}, x_{2}, x_{3}\right) \wedge E\left(x_{1}, x_{1}\right) & \text { non example } \\
\exists x_{1} \cdot \forall x_{2} \cdot \exists x_{3} \cdot R\left(x_{1}, x_{2}, x_{3}\right) \wedge E\left(x_{1}, x_{3}\right) & \text { non example }
\end{array}
$$

There is also a more complex adjacent fragment ${ }^{6}$ in which sequences can climb and fall.
${ }^{6}$ Bednarczyk, Kojelis, and Pratt-Hartmann, "On the Limits of Decision: the Adjacent Fragment of First-Order Logic".

Ordered Variable Fragments

Ongoing work of the 2023 Adjoint School Game Comonads Project

Ordered, Forward and Fluted

We consider fragments of first-order logic without equality, with restricted use of variables in atoms:

$$
\begin{array}{ll}
\exists x_{1} \cdot \forall x_{2} \cdot \exists x_{3} \cdot R\left(x_{1}, x_{2}, x_{3}\right) \wedge E\left(x_{2}, x_{3}\right) & \text { fluted (suffixes) } \\
\exists x_{1} \cdot \forall x_{2} \cdot \exists x_{3} \cdot R\left(x_{1}, x_{2}, x_{3}\right) \wedge E\left(x_{1}, x_{2}\right) & \text { ordered (prefixes) } \\
\exists x_{1} \cdot \forall x_{2} \cdot \exists x_{3} \cdot R\left(x_{1}, x_{2}, x_{3}\right) \wedge P\left(x_{2}\right) & \text { forward (subsequences) } \\
\exists x_{1} \cdot \forall x_{2} \cdot \exists x_{3} \cdot R\left(x_{1}, x_{2}, x_{3}\right) \wedge E\left(x_{1}, x_{1}\right) & \text { non example } \\
\exists x_{1} \cdot \forall x_{2} \cdot \exists x_{3} \cdot R\left(x_{1}, x_{2}, x_{3}\right) \wedge E\left(x_{1}, x_{3}\right) & \text { non example }
\end{array}
$$

There is also a more complex adjacent fragment ${ }^{6}$ in which sequences can climb and fall.
${ }^{6}$ Bednarczyk, Kojelis, and Pratt-Hartmann, "On the Limits of Decision: the Adjacent Fragment of First-Order Logic".

Ordered Variable Fragments

Ongoing work of the 2023 Adjoint School Game Comonads Project

Plan A
We considered a variation of the comonad \mathbb{E}_{k} for bounded quantifier depth logic, but with restrictions on how the relations are imposed:

- Yields legitimate comonads.
- Seems to be the right construction for the fluted fragment.
- Seems to be the wrong construction for the other fragments, due to issues with variable rebinding not present in the fluted fragment.

Ordered Variable Fragments

Ongoing work of the 2023 Adjoint School Game Comonads Project

Plan B

By a more careful consideration of the formalisation of the syntax of these fragments, we were lead to a variation of the pebbling comonad \mathbb{P}_{k} which both:

- Restricts the order the pebbles can be played in.
- Restricts which sequences can have relations between them.

Looks encouraging, yields legitimate comonads, but the connections with logic need further verification.

Further work

Continue establishing data points giving comonadic characterisations of various logics:

- UNFO and GNFO, and potentially the tri-guarded fragment.
- Ordered fragments and the recently introduced adjacent fragment.

Further work

Continue establishing data points giving comonadic characterisations of various logics:

- UNFO and GNFO, and potentially the tri-guarded fragment.
- Ordered fragments and the recently introduced adjacent fragment.
- The uniform one-dimensional fragment.

Further work

Continue establishing data points giving comonadic characterisations of various logics:

- UNFO and GNFO, and potentially the tri-guarded fragment.
- Ordered fragments and the recently introduced adjacent fragment.
- The uniform one-dimensional fragment.
- It would be nice to get fixed-point logics into the picture.

Further work

Continue establishing data points giving comonadic characterisations of various logics:

- UNFO and GNFO, and potentially the tri-guarded fragment.
- Ordered fragments and the recently introduced adjacent fragment.
- The uniform one-dimensional fragment.
- It would be nice to get fixed-point logics into the picture.
- Some computationally nastier logics...

Bibliography I

[1] Samson Abramsky, Anuj Dawar, and Pengming Wang. "The pebbling comonad in Finite Model Theory". In: 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017. IEEE Computer Society, 2017, pp. 1-12.
[2] Samson Abramsky and Dan Marsden. "Comonadic semantics for guarded fragments". In: 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021. IEEE, 2021, pp. 1-13.

Bibliography II

[3] Samson Abramsky and Dan Marsden. "Comonadic semantics for hybrid logic". In: 47th International Symposium on Mathematical Foundations of Computer Science, MFCS 2022, August 22-26, 2022, Vienna, Austria. Ed. by Stefan Szeider, Robert Ganian, and Alexandra Silva. Vol. 241. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, 7:1-7:14. DOI: 10.4230/LIPIcs.MFCS.2022.7. URL: https://doi.org/10.4230/LIPIcs.MFCS.2022.7.
[4] Samson Abramsky and Nihil Shah. "Relating structure and power: Comonadic semantics for computational resources". In: Journal of Logic and Computation 31.6 (2021), pp. 1390-1428.
[5] Vince Bárány, Balder ten Cate, and Luc Segoufin. "Guarded negation". In: Journal of the ACM (JACM) 62.3 (2015), pp. 1-26.

Bibliography III

[6] Bartosz Bednarczyk, Daumantas Kojelis, and Ian Pratt-Hartmann. "On the Limits of Decision: the Adjacent Fragment of First-Order Logic". In: 50th International Colloquium on Automata, Languages, and Programming, ICALP 2023, July 10-14, 2023, Paderborn, Germany. Ed. by Kousha Etessami, Uriel Feige, and Gabriele Puppis. Vol. 261. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, 111:1-111:21.
[7] Luc Segoufin and Balder ten Cate. "Unary negation". In: Logical Methods in Computer Science (LMCS) 9 (2013).

[^0]: ${ }^{2}$ Abramsky and Shah, "Relating structure and power: Comonadic semantics for computational resources".

[^1]: ${ }^{3}$ Abramsky and Marsden, "Comonadic semantics for guarded fragments".

[^2]: ${ }^{4}$ Abramsky and Marsden, "Comonadic semantics for hybrid logic".

[^3]: ${ }^{5}$ Students: Tyler Hanks, Zhixuan Yang, Richie Yeung, Elena Dimitriadis Bermejo and TA: Nihil Shah

[^4]: ${ }^{6}$ Segoufin and ten Cate, "Unary negation".
 ${ }^{7}$ Bárány, ten Cate, and Segoufin, "Guarded negation".

