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Introduction

Goal
Do for relations in order-enriched settings what regular categories and allegories (or
something like that) do for ordinary relations.

Weakening relation:
A weakening relation is R ⊆ X×Y s.t.
• if x ≤ x′, x′Ry′ and y′ ≤ y, then xRy.

These form a category Rel(Pos):
• Standard relational composition
• Identity on X is ≤X



Other model categories

Meet semilattice relation:
A semilattice relation is a weakening relation between semilattices s.t.
• if xRy and xRy′, then xR(y ∧ y′);
• xR>.

Frame relation:
A frame relation is a semilattice relation between frames s.t.
• if xiRy for each i ∈ I, then

∨
i∈I xiRy.

These, and many similar examples, also form categories Rel(SL) and Rel(Frm).

In each case, the underlying category Pos, etc., is recovered by the left adjoint
relations.



Background on ordinary relations

Ordinary regular categories
An ordinary category A is regular iff
• A has all finite limits
• A has strong/mono factorization — will explain later
• strong morphisms are stable under pullbacks

Remarks
Any algebraic quasivariety is a regular category.

Indeed, any regular category that has free objects over sets is a quasivariety.



Categories of relations

In a category with finite limits and strong/mono factorization:

Basic relations
A basic relation is an isomorphism class of jointly monic spans — same as
subobjects of A× B.

Any span A p← R q→ B determines a basic relation [p, q] by factoring 〈p, q〉 —
assuming products and factorization.

Relation composition
Composition ϕ;ψ is defined by
• Pick monic spans A pR← R qR→ B and B pS← S qS→ C representing ϕ and ψ
• form a pullback (r, s) of (qR,pS).
• ϕ;ψ is the relation [pRr, qSs].



A Justi fying Theorem

Theorem
For an ordinary category A with finite limits and strong/mono factorization the
following are equivalent:
1. Composition (;) is associative.
2. Strong morphisms are stable under pullback — that is, the category is regular

Category of relations
So a regular category A determines a category of relations Rel(A).

Actually Rel(−) extends to a 2-functor provided we define the relevant 2-categories
carefully.



Structure of Rel(A)

Theorem
For any regular category A, Rel(A) is a tabular cartesian bicategory in which all
objects satsify the Frobenius axiom.

Moreover, if R is a tabular cartesian bicategory in which all objects satisfy
Frobenius, then there is a regular category Map(R), for which R ≡ Rel(Map(R)).

Remarks:
• Tabularity is a factorization condition: every morphism factors uniquelty as a
left adjoint after a right adjoint.
• We sketch cartesian bicategories below.
• The theorem actually extends to a 2-equivalence between 2-categories (as you
would expect).



Cartesian bicategories

Order-enriched symmetric monoidal categories
In an order-enriched category has a poset A(A,B) for objects A and B. Composition
is order-preserving.

In the symmetric monoidal stucture (⊗, I, ...), ⊗ is order-preserving in both
arguments.

Wiring diagrams
Morphisms can be depicted as wiring diagrams:

• Composition r; s: r sA B C

• Monoidal product r⊗ t:
r
t

A

D

B

E



Wiring diagrams for cartesian bicategories
Every object is equipped with morphisms (δA split; δ†A fuse; κA terminate; κ†A start)
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Frobenius and categories of ordinary relations

In Rel(A) each object satisfies

≤

Theorem
A tabulated cartesian bicategory is a category of relations iff the Frobenius axiom
holds.

Remark
Rel(Pos), Rel(SL), etc., fail. For the order-enriched setting, we need alternatives to
regularity and to Frobenius.



Ordinary versus Order Regular Categories

Order-regular category (Kurz & Velebil)
An order-enriched category A is order-regular iff
• A has all finite weighted limits
• A has order-strong/order-mono factorization
• order-strong morphisms are stable under pullbacks
* Strong morphisms are “effective” — the order version of regular epi

Idea
Order-regularity really is regularity suitably adapted:
• All finite limits means all finite limits including weighted ones
• Subobjects are order-embeddings
• Strong morphisms are defined with respect to these subobjects



Relations in order-enriched categories

Order composition
Replace pullback in the definition with comma:
Composition ϕ # ψ is defined by
• Pick tabulations A pR← R qR→ B and B pS← S qS→ C of ϕ and ψ
• form a comma (r, s) of (qR,pS).
• ϕ # ψ is the relation [pRr, qSs].

Remarks
• Basic composition (; defined by pullback) still makes sense.
• Obviously ϕ;ψ ≤ ϕ # ψ
• Not as obviously, ϕ; (ψ # θ) = (ϕ;ψ) # θ.
• # does not have identity basic relations: ∆A # ∆A 6= ∆A.



2nd Justi fying Theorem

Theorem
For an order-enriched category A with finite weighted limits and
order-strong/order-mono factorization the following are equivalent:
1. Basic composition (;) is associative.
2. Strong morphisms are stable under pullback

Morover, if these hold, then order composition (#) is also associative.

Remarks on the proof
• The proof of (1) ⇔ (2) is directly analogous to the ordinary situation.
• Associativity of order composition requires a technical lemma about pasting
pullback and comma squares



Order relations
Identities

∆A = the diagonal relation on A
1A = ∆A # ∆A

Order relations
For basic relation ϕ t.f.a.e.

∆A # ϕ ≤ ϕ
1A;ϕ ≤ ϕ Likewise for ϕ # . . .
1A # ϕ ≤ ϕ

An order relation is a basic relation satisfying 1A # ϕ # 1B ≤ ϕ.



Two relation categories

Basic and order relation categories
• bRel(A): objects of A, basic relations, basic composition, and ∆A for identity.
• oRel(A): objects of A, order relations, order composition, and 1A for identity.

Remarks
• ∆A # ϕ # ∆B is smallest order relation contining ϕ.
• bRel(A)(A,B) and oRel(A)(A,B) are closed under finite meets (defined by
pullback).
• ∆A ≤ 1A,
1A # 1A ≤ 1A, and
1A ∧ 1◦A ≤ ∆A.
• For order relations ϕ # ψ ≤ ϕ;ψ



From A to oRel(A)

Lemma
In an order regular category, for any cospan A h→ C k← B, the corresponding comma
tabulates an order relation.

Functors f 7→ f̂ and f 7→ f̌
• Let f̂ be the order relation tabulated by the comma of A f→ B idB← B
• Let f̌ be the order relation tabulated by the comma of B idB→ B f← A

Not hard to check:
1A ≤ f̂ # f̌ and f̌ # f̂ ≤ 1B.

And f 7→ f̂ and f 7→ f̌ are functorial.



Map(oRel(A))

Theorem
For order relations ϕ and ψ in an order regular category, if

1A ≤ ϕ # ψ and ψ # ϕ ≤ 1B,

then there is a unique f:A→ B so that ϕ = f̂ (and ψ = f̌).

Map(oRel(A))

Consists of adjoint pairs (ϕ,ψ) of order relations, ordered by the right adjoint,
taking domain and codomain from the left adjoint.

Theorem
For any order regular category A, Map(oRel(A)) is equivalent to A.



The other way around

Recall

Theorem
A tabulated cartesian bicategory is a category of relations iff the Frobenius axiom
holds.

We want a similar characterization for oRel(A)

But simply dropping the Frobenius axiom is not quite enough.



Not quite

Lemma
For any tabular cartesian bicategory R, the order-enriched category Map(R) has all
finite conical limits, has order-strong/order-mono factorization, and order-strong
morphisms are stable under pullback.

So, existence of non-conical limits is all we are missing.



Ordered wires

For a finite poset P and object A, have an object P ∗A (a single “structured” wire).

For example, for poset
◦ ◦◦
◦

and object A, we have an object.

◦ ◦◦
◦

P ∗A

Also, have ω̂:P→ R(P ∗A,A), natural in P so each ω̂i is a left adjoint

◦ ◦◦
◦

P ∗A A

ordered in the obvious way. For an order preserving function s:P→ R(A,B), there is
a morphism LsM:A→ P ∗ B. These satisfy various coherence axioms, e.g, LsM;ωi = si,
also expressed in terms of ordered wires.



Wrapping up

Theorem
Suppose R is a tabulated cartesian bicategory, and each A is equipped with
• a functor − ∗A:Posop

ω → R

• ω̂:P→ R(P ∗A,A) natural in P
• L − M:Pos(P,R(A,B))→ R(A,P ∗ B) natural in P

Then Map(R) is order-regular iff these data satisfy

Lω̂M = idP∗A

and
LsM; ω̂i = si

Moreover, then R ≡ oRel(Map(R)).



Thank you


