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Applied game semantics

0 Use game models to prove results about programming languages!

[0 Expressivity questions: can simpler syntax be used to achieve the
same goal?

0 General references: if a program stores a third-order function, is it
possible to replace the reference with a simpler one, e.g. a first-order
one, an integer one or none at all?

0 Deconstructing general references using game semantics

0 Complementary syntactic account
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Abstract

A games model of a programming language with higher-order store in the style of ML-references is introduced. The category
used for the model is obtained by relaxing certain behavioural conditions on a category of games previously used to provide
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References

# let x=ref (0);;
val x : int ref = {contents = 0}

# x:=2023; I!x;;
- : 1int = 2023

# let y=ref (x);;
val y : int ref ref = {contents={contents=2023}}

# ly;;
- : int ref = {contents = 2023}

# '('y);;
- : 1nt = 2023




References

# let y= ref( fun n -> n+1 );;
val y : (int -> int) ref = {contents = <fun>}

# (ly) 2023;;
- : 1int = 2024

# y:= ( fun n -> n+2 );;
- : unit = ()

# (ly) 2023;;
- : 1int = 2025




Circularity in the store

# y = ( fun _ -> (ly) 2023 );;
- : unit = ()

# (ly) 0;;

"CInterrupted.

0 Divergence
1 Recursion




Fixed-point combinator

# let fix = fun £ ->
let t = ref(fun a
val fix :((’a -> ’b) -> ’a -> ’b)
# let fact = fix (
fun (f:int->int) -> fun x
if (x=0) then 1
)55
val fact int -> int = <fun>
# fact 3;;
- int = 6

-> f(!'t) a) in !'t;;
-> a -> b =<fun>

->

else x*f(x-1)

Support for higher-order recursion.




Beyond lexical environment

y := <intermediate value/closure>

SOMEWHERE ELSE

(ly)

0 Any intermediate stage of computation can be recorded (along with
local values).
0 Syntactic scope does not restrict access.

Higher-order state is a very expressive primitive.
Good as intermediate language for analyzing many existing paradigms.




ML-like language with higher-order state

Types

0 = unit | int | 00— 6 | ref (6)

Reference constructor

I’efg (M)

Creates a fresh memory cell for storage of type 6 and initialises it to M.
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Expressivity problems

-

3.

When can one replace
FEfg

with refy for simpler 8’7

When can one eliminate higher-order state, i.e.,

ref91_+92?

When can ref, be replaced altogether?

In all cases we would like program behaviour to be preserved.
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Solvability

In general the problem cannot be solved: reference names are typed!

refint re]cunit—>unit ref(int—)unit)—)int

But it can be attacked in cases when references are used internally,
l.e. they are never communicated to the environment.

Hence, we pose the problem for terms

:L'l:@l,---,xnzﬁn = M : 6

where 61,--- ,0,,0 is ref-free.
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Answers

/

1. Can we replace uses of refy with refy for some simpler 6’7

Single uses of ref;,; and ref,;;—unit Suffice!

2. When can we eliminate uses of refy, 4,7

We give a full type-theoretic characterisation.

3. When can refy be replaced altogether?

We give a full type-theoretic characterisation.
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Two lines of attack

semantic: game semantics

syntactic: program transformation
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Game semantics

0 Two players: environment (O) and program (P)
0 Moves determined by types
0  Programs interpreted as strategies

TN N

01 P1 09 P2 03 P4

Strategies capture interactions of a program with
environments in which it can be placed.
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First-order vs higher-order state

Visibility satisfied

/‘\m/‘\

01 P1 02 P2 03 P4

Visibility violated

AN N

01 P1 02 P2 03 P4

Higher-order state corresponds to violations of visibility.
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CeIIunit—>unit
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Semantic solution

Strategy composition

o,: A= B o9 : B=C

01,09 : A=C

(01 |l 02) \ B

01,02

We will be interested in decomposition results.
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Factorisation result

Theorem [Visible factorisation]

For any strategy o, there exists a strategy oyisibie Satisfying the visibility
condition such that

0 = Ce”u—m; O visible -

AHM proved a weaker version of the result: o had to be finite and the
argument used unboundedly many copies of cell,_.,.
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Innocence [Hyland, Ong, Nickau]

Strengthening of visibility

In an innocent strategy P must not only point at his view, but
his responses must solely depend on it.

Typical failure: cell;

TN N TN
¢ read 0 write(1) ok read 1
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An older factorisation result

Theorem [Abramsky, McCusker (CSL'97)]

For any visible strategy o, there exists an innocent strategy Cinnocent

such that
0 = CeIIint; Oinnocent -
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Universality

Theorem [Innocent Universality]

Let o : [I' = 6] be a recursively presentable innocent strategy. There
exists a ref-free term I' = M : 6 such that [I' F M : 0] = o.

Theorem [Universality]

Let o : [I' - 0] be a recursively presentable strategy. Then there exists
' = M :60suchthat [I' - M : 0] =o.
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Transformation result

4 2\

Theorem
Let ' = M : 6. There exists a term
I', f:ref(unit — unit), x:ref(int) + M :6

satisfying the following conditions.

0 M’ is ref-free.

. /
O I'E M = letf,x = newynit—sunit, N€Wint iIn M.

The transformation is effective, but hardly practical!

24



Syntactic solution

Bad variables (Reynolds)

ref(6) = (unit — @) x (6 — unit)

M :unit — 6 N : 0 — unit
mkvar (M, N) : ref(60)

Idea: use bad variables as intermediate objects
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Syntactic decomposition |

Lemma
For all 91, @2,
newy, g, = letxzy,xs, f = newy,, newy,, NEWnit_sunit iIN mkvar (M,., M,,)

where

)\yunit.|eth =!fin Az (xl = h(); !$2)a
A% f = (AU g = g(lz)).
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Syntactic decomposition ||

Lemma
For any 6,
= newyerp) = letr, w = NeWynit—g, N€Wg_,ynix in mkvar (M., M,,)

for all 8, where

M,
M,

Az""t mkvar (7, lw),
Mg O (r:i=(Az""t 1g); wi=(A\2% g:i=2)).




Bad variables can be eliminated

When z; : 04,--- ,x,:0, - M :0 and 64,--- ,0,,0 are ref-free,
bad variables can be eliminated from the language.

Imkvar (Au.M, \v.N) = letu=()inM

mkvar (Au.M, \v.N):=Q = letv=QinN

Altogether occurrences of refy, .4, can be successively removed so that
only those of ref;,; and ref nit—unit remain. These can subsequently be
merged into single occurrences of ref;,; and ref nit—unit-
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Transformation

Theorem
Let ' = M : 6. There exists a term
I', f:ref(unit — unit), x:ref(int) + M :6

satisfying the following conditions.

0 M’ is ref-free.

. /
O I'E M = letf,x = newynit—sunit, N€Wint iIn M.

-

In particular, a single (unit — unit)-valued reference cell suffices for
implementing higher-order state.




When higher-order references are replaceable

Visibility distinguishes between first-order and higher-order state.

What types determine plays in which the visibility condition
holds for free?

-y, f:iint—---—=int ,--- F M:int
., f:(int—---—=int) —»int ,--- F M:int—--- —int

If a piece of code has a type of the above shape then the same effect can
be achieved without higher-order state!
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When all references are replaceable

There is another technical condition called innocence (Hyland, Ong,
Nickau) that corresponds to the absence of state.

f:int— .-+ —int oo+ = M :int

Programs of the above type can be written without using state
(purely functional).
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Conclusions

O refunit—unit 1S VEry expressive.

[0 Focus on simple higher-order types will not lead to decidability.

Ideas for future work

0 Consider weakened references, e.g. without cycles in the store.

0 In presence of ref(bool), ref(unit — unit) can be used to simulate
ref(int). What is the relationship between ref(bool) and
ref (unit — unit)?
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