Deconstructing general references
via game semantics

Andrzej] Murawski Nikos Tzevelekos

University of Oxford Queen Mary University of London

Applied game semantics

0 Use game models to prove results about programming languages!

[0 Expressivity questions: can simpler syntax be used to achieve the
same goal?

0 General references: if a program stores a third-order function, is it
possible to replace the reference with a simpler one, e.g. a first-order
one, an integer one or none at all?

0 Deconstructing general references using game semantics

0 Complementary syntactic account

The relevant game model (AHM, LICS’98)

A fully abstract game semantics for general references

Samson Abramsky Kohei Honda Guy McCusker
LFCS, University of Edinburgh St John’s College, Oxford
{samson, kohei}@dcs.ed.ac.uk mccusker@comlab.ox.ac.uk
Abstract

A games model of a programming language with higher-order store in the style of ML-references is introduced. The category
used for the model is obtained by relaxing certain behavioural conditions on a category of games previously used to provide
fully abstract models of pure functional languages. The model is shown to be fully abstract by means of factorization
arguments which reduce the question of definability for the language with higher-order store to that for its purely functional

fragment.

The AJM paper

Information and Computation
Volume 163, Issue 2, 15 December 2000, Pages 409-470

Regular Article

Full Abstraction for PCF +

Samson Abramsky ¢, Radha Jagadeesan °, Pasquale Malacaria ©

References

let x=ref (0);;
val x : int ref = {contents = 0}

x:=2023; I!x;;
- : 1int = 2023

let y=ref (x);;
val y : int ref ref = {contents={contents=2023}}

ly;;
- : int ref = {contents = 2023}

'('y);;
- : 1nt = 2023

References

let y= ref(fun n -> n+1);;
val y : (int -> int) ref = {contents = <fun>}

(ly) 2023;;
- : 1int = 2024

y:= (fun n -> n+2);;
- : unit = ()

(ly) 2023;;
- : 1int = 2025

Circularity in the store

y = (fun _ -> (ly) 2023);;
- : unit = ()

(ly) 0;;

"CInterrupted.

0 Divergence
1 Recursion

Fixed-point combinator

let fix = fun £ ->
let t = ref(fun a
val fix :((’a -> ’b) -> ’a -> ’b)
let fact = fix (
fun (f:int->int) -> fun x
if (x=0) then 1
)55
val fact int -> int = <fun>
fact 3;;
- int = 6

-> f(!'t) a) in !'t;;
-> a -> b =<fun>

->

else x*f(x-1)

Support for higher-order recursion.

Beyond lexical environment

y := <intermediate value/closure>

SOMEWHERE ELSE

(ly)

0 Any intermediate stage of computation can be recorded (along with
local values).
0 Syntactic scope does not restrict access.

Higher-order state is a very expressive primitive.
Good as intermediate language for analyzing many existing paradigms.

ML-like language with higher-order state

Types

0 = unit | int | 00— 6 | ref (6)

Reference constructor

I’efg (M)

Creates a fresh memory cell for storage of type 6 and initialises it to M.

10

Expressivity problems

-

3.

When can one replace
FEfg

with refy for simpler 8’7

When can one eliminate higher-order state, i.e.,

ref91_+92?

When can ref, be replaced altogether?

In all cases we would like program behaviour to be preserved.

11

Solvability

In general the problem cannot be solved: reference names are typed!

refint re]cunit—>unit ref(int—)unit)—)int

But it can be attacked in cases when references are used internally,
l.e. they are never communicated to the environment.

Hence, we pose the problem for terms

:L'l:@l,---,xnzﬁn = M : 6

where 61,--- ,0,,0 is ref-free.

12

Answers

/

1. Can we replace uses of refy with refy for some simpler 6’7

Single uses of ref;,; and ref,;;—unit Suffice!

2. When can we eliminate uses of refy, 4,7

We give a full type-theoretic characterisation.

3. When can refy be replaced altogether?

We give a full type-theoretic characterisation.

13

Two lines of attack

semantic: game semantics

syntactic: program transformation

14

Game semantics

0 Two players: environment (O) and program (P)
0 Moves determined by types
0 Programs interpreted as strategies

TN N

01 P1 09 P2 03 P4

Strategies capture interactions of a program with
environments in which it can be placed.

15

The relevant game model (AHM, LICS’98)

A fully abstract game semantics for general references

Samson Abramsky Kohei Honda Guy McCusker
LFCS, University of Edinburgh St John’s College, Oxford
{samson, kohei}@dcs.ed.ac.uk mccusker@comlab.ox.ac.uk
Abstract

A games model of a programming language with higher-order store in the style of ML-references is introduced. The category
used for the model is obtained by relaxing certain behavioural conditions on a category of games previously used to provide
fully abstract models of pure functional languages. The model is shown to be fully abstract by means of factorization
arguments which reduce the question of definability for the language with higher-order store to that for its purely functional

fragment.

16

First-order vs higher-order state

Visibility satisfied

/‘\m/‘\

01 P1 02 P2 03 P4

Visibility violated

AN N

01 P1 02 P2 03 P4

Higher-order state corresponds to violations of visibility.

17

CeIIunit—>unit

o
\
(@)
VN
read write
| N
* ok qu
|
dr oy
|
a,

° o write ok read

Semantic solution

Strategy composition

o,: A= B o9 : B=C

01,09 : A=C

(01 |l 02) \ B

01,02

We will be interested in decomposition results.

19

Factorisation result

Theorem [Visible factorisation]

For any strategy o, there exists a strategy oyisibie Satisfying the visibility
condition such that

0 = Ce”u—m; O visible -

AHM proved a weaker version of the result: o had to be finite and the
argument used unboundedly many copies of cell,_.,.

20

Innocence [Hyland, Ong, Nickau]

Strengthening of visibility

In an innocent strategy P must not only point at his view, but
his responses must solely depend on it.

Typical failure: cell;

TN N TN
¢ read 0 write(1) ok read 1

21

An older factorisation result

Theorem [Abramsky, McCusker (CSL'97)]

For any visible strategy o, there exists an innocent strategy Cinnocent

such that
0 = CeIIint; Oinnocent -

22

Universality

Theorem [Innocent Universality]

Let o : [I' = 6] be a recursively presentable innocent strategy. There
exists a ref-free term I' = M : 6 such that [I' F M : 0] = o.

Theorem [Universality]

Let o : [I' - 0] be a recursively presentable strategy. Then there exists
' = M :60suchthat [I' - M : 0] =o.

23

Transformation result

4 2\

Theorem
Let ' = M : 6. There exists a term
I', f:ref(unit — unit), x:ref(int) + M :6

satisfying the following conditions.

0 M’ is ref-free.

. /
O I'E M = letf,x = newynit—sunit, N€Wint iIn M.

The transformation is effective, but hardly practical!

24

Syntactic solution

Bad variables (Reynolds)

ref(6) = (unit — @) x (6 — unit)

M :unit — 6 N : 0 — unit
mkvar (M, N) : ref(60)

Idea: use bad variables as intermediate objects

25

Syntactic decomposition |

Lemma
For all 91, @2,
newy, g, = letxzy,xs, f = newy,, newy,, NEWnit_sunit iIN mkvar (M,., M,,)

where

)\yunit.|eth =!fin Az (xl = h(); !$2)a
A% f = (AU g = g(lz)).

26

Syntactic decomposition ||

Lemma
For any 6,
= newyerp) = letr, w = NeWynit—g, N€Wg_,ynix in mkvar (M., M,,)

for all 8, where

M,
M,

Az""t mkvar (7, lw),
Mg O (r:i=(Az""t 1g); wi=(A\2% g:i=2)).

Bad variables can be eliminated

When z; : 04,--- ,x,:0, - M :0 and 64,--- ,0,,0 are ref-free,
bad variables can be eliminated from the language.

Imkvar (Au.M, \v.N) = letu=()inM

mkvar (Au.M, \v.N):=Q = letv=QinN

Altogether occurrences of refy, .4, can be successively removed so that
only those of ref;,; and ref nit—unit remain. These can subsequently be
merged into single occurrences of ref;,; and ref nit—unit-

28

Transformation

Theorem
Let ' = M : 6. There exists a term
I', f:ref(unit — unit), x:ref(int) + M :6

satisfying the following conditions.

0 M’ is ref-free.

. /
O I'E M = letf,x = newynit—sunit, N€Wint iIn M.

-

In particular, a single (unit — unit)-valued reference cell suffices for
implementing higher-order state.

When higher-order references are replaceable

Visibility distinguishes between first-order and higher-order state.

What types determine plays in which the visibility condition
holds for free?

-y, f:iint—---—=int ,--- F M:int
., f:(int—---—=int) —»int ,--- F M:int—--- —int

If a piece of code has a type of the above shape then the same effect can
be achieved without higher-order state!

30

When all references are replaceable

There is another technical condition called innocence (Hyland, Ong,
Nickau) that corresponds to the absence of state.

f:int— .-+ —int oo+ = M :int

Programs of the above type can be written without using state
(purely functional).

31

Conclusions

O refunit—unit 1S VEry expressive.

[0 Focus on simple higher-order types will not lead to decidability.

Ideas for future work

0 Consider weakened references, e.g. without cycles in the store.

0 In presence of ref(bool), ref(unit — unit) can be used to simulate
ref(int). What is the relationship between ref(bool) and
ref (unit — unit)?

32

	Applied game semantics
	The relevant game model (AHM, LICS'98)
	The AJM paper
	References
	References
	Circularity in the store
	Fixed-point combinator
	Beyond lexical environment
	ML-like language with higher-order state
	Expressivity problems
	Solvability
	Answers
	
	Game semantics
	The relevant game model (AHM, LICS'98)
	First-order vs higher-order state
	 cellunitunit
	Semantic solution
	Factorisation result
	Innocence [Hyland, Ong, Nickau]
	An older factorisation result
	Universality
	Transformation result
	Syntactic solution
	Syntactic decomposition I
	Syntactic decomposition II
	Bad variables can be eliminated
	Transformation
	When higher-order references are replaceable
	When all references are replaceable
	Conclusions

