
1

Deconstructing general references

via game semantics

Andrzej Murawski Nikos Tzevelekos

University of Oxford Queen Mary University of London

Applied game semantics

2

� Use game models to prove results about programming languages!

� Expressivity questions: can simpler syntax be used to achieve the
same goal?

� General references: if a program stores a third-order function, is it
possible to replace the reference with a simpler one, e.g. a first-order
one, an integer one or none at all?

� Deconstructing general references using game semantics

� Complementary syntactic account

The relevant game model (AHM, LICS’98)

3

The AJM paper

4

References

5

let x=ref (0);;

val x : int ref = {contents = 0}

x:=2023; !x;;

- : int = 2023

let y=ref(x);;

val y : int ref ref = {contents ={ contents =2023}}

!y;;

- : int ref = {contents = 2023}

!(!y);;

- : int = 2023

References

6

let y= ref(fun n -> n+1);;

val y : (int -> int) ref = {contents = <fun >}

(!y) 2023;;

- : int = 2024

y:= (fun n -> n+2);;

- : unit = ()

(!y) 2023;;

- : int = 2025

Circularity in the store

7

y := (fun _ -> (!y) 2023);;

- : unit = ()

(!y) 0;;

^CInterrupted.

� Divergence
� Recursion

Fixed-point combinator

8

let fix = fun f ->

let t = ref(fun a -> f(!t) a) in !t;;

val fix :((’a -> ’b) -> ’a -> ’b) -> ’a -> ’b =<fun >

let fact = fix (

fun (f:int ->int) -> fun x ->

if (x=0) then 1 else x*f(x-1)

);;

val fact : int -> int = <fun >

fact 3;;

- : int = 6

Support for higher-order recursion.

Beyond lexical environment

9

...

y := <intermediate value/closure >

...

SOMEWHERE ELSE

...

(!y) ...

...

� Any intermediate stage of computation can be recorded (along with
local values).

� Syntactic scope does not restrict access.

Higher-order state is a very expressive primitive.
Good as intermediate language for analyzing many existing paradigms.

ML-like language with higher-order state

10

Types

θ ::= unit | int | θ → θ | ref(θ)

Reference constructor

refθ(M)

Creates a fresh memory cell for storage of type θ and initialises it to M .

Expressivity problems

11

1. When can one replace
refθ

with refθ′ for simpler θ′?

2. When can one eliminate higher-order state, i.e.,

refθ1→θ2
?

3. When can refθ be replaced altogether?

In all cases we would like program behaviour to be preserved.

Solvability

12

In general the problem cannot be solved: reference names are typed!

ref int refunit→unit ref(int→unit)→int

But it can be attacked in cases when references are used internally,
i.e. they are never communicated to the environment.

Hence, we pose the problem for terms

x1 : θ1, · · · , xn : θn ⊢ M : θ

where θ1, · · · , θn, θ is ref-free.

Answers

13

1. Can we replace uses of refθ with refθ′ for some simpler θ′?

Single uses of ref int and refunit→unit suffice!

2. When can we eliminate uses of refθ1→θ2
?

We give a full type-theoretic characterisation.

3. When can refθ be replaced altogether?

We give a full type-theoretic characterisation.

14

Two lines of attack

semantic: game semantics

syntactic: program transformation

Game semantics

15

� Two players: environment (O) and program (P)
� Moves determined by types
� Programs interpreted as strategies

o1 p1 o2 p2 o3 p4

Strategies capture interactions of a program with
environments in which it can be placed.

The relevant game model (AHM, LICS’98)

16

First-order vs higher-order state

17

Visibility satisfied

o1 p1 o2 p2 o3 p4

Visibility violated

o1 p1 o2 p2 o3 p4

Higher-order state corresponds to violations of visibility.

cellunit→unit

18

•
■■

■■

◦
✇✇✇ ■■

■

read write
■■

■■

⋆ ok qw

qr aw

ar

• ◦ write ok read ⋆ qr qw

Semantic solution

19

Strategy composition

σ1 : A ⇒ B σ2 : B ⇒ C

σ1;σ2 : A ⇒ C

σ1;σ2 = (σ1 ||B σ2) \ B

We will be interested in decomposition results.

Factorisation result

20

Theorem [Visible factorisation]

For any strategy σ, there exists a strategy σvisible satisfying the visibility
condition such that

σ = cellu→u;σvisible.

AHM proved a weaker version of the result: σ had to be finite and the
argument used unboundedly many copies of cellu→u.

Innocence [Hyland, Ong, Nickau]

21

Strengthening of visibility

In an innocent strategy P must not only point at his view, but

his responses must solely depend on it.

Typical failure: cellint

• ◦ read 0 write(1) ok read 1

An older factorisation result

22

Theorem [Abramsky, McCusker (CSL’97)]

For any visible strategy σ, there exists an innocent strategy σinnocent

such that
σ = cellint;σinnocent.

Universality

23

Theorem [Innocent Universality]

Let σ : JΓ ⊢ θK be a recursively presentable innocent strategy. There
exists a ref-free term Γ ⊢ M : θ such that JΓ ⊢ M : θK = σ.

Theorem [Universality]

Let σ : JΓ ⊢ θK be a recursively presentable strategy. Then there exists
Γ ⊢ M : θ such that JΓ ⊢ M : θK = σ.

Transformation result

24

Theorem

Let Γ ⊢ M : θ. There exists a term

Γ, f : ref(unit → unit), x : ref(int) ⊢ M ′ : θ

satisfying the following conditions.

� M ′ is ref-free.

� Γ ⊢ M ∼= let f, x = newunit→unit, newint inM
′.

The transformation is effective, but hardly practical!

Syntactic solution

25

Bad variables (Reynolds)

ref(θ) ≡ (unit → θ)× (θ → unit)

M : unit → θ N : θ → unit

mkvar (M,N) : ref(θ)

Idea: use bad variables as intermediate objects

Syntactic decomposition I

26

Lemma

For all θ1, θ2,

newθ1→θ2
∼= letx1, x2, f = newθ1

, newθ2
, newunit→unit inmkvar (Mr,Mw)

where

Mr ≡ λyunit.leth =!f inλzθ1. (x1 := z; h(); !x2),
Mw ≡ λgθ1→θ2. f := (λzunit. x2 := g(!x1)).

Syntactic decomposition II

27

Lemma

For any θ,

⊢ newref(θ)
∼= let r, w = newunit→θ, newθ→unit inmkvar(Mr,Mw)

for all θ, where

Mr ≡ λzunit.mkvar(!r, !w),
Mw ≡ λgref(θ). (r:=(λzunit. !g); w:=(λzθ. g:=z)).

Bad variables can be eliminated

28

When x1 : θ1, · · · , xn : θn ⊢ M : θ and θ1, · · · , θn, θ are ref-free,
bad variables can be eliminated from the language.

!mkvar (λu.M, λv.N) ∼= letu = () inM

mkvar (λu.M, λv.N):=Q ∼= let v = Q inN

Altogether occurrences of refθ1→θ2
can be successively removed so that

only those of ref int and refunit→unit remain. These can subsequently be
merged into single occurrences of ref int and refunit→unit.

Transformation

29

Theorem

Let Γ ⊢ M : θ. There exists a term

Γ, f : ref(unit → unit), x : ref(int) ⊢ M ′ : θ

satisfying the following conditions.

� M ′ is ref-free.

� Γ ⊢ M ∼= let f, x = newunit→unit, newint inM
′.

In particular, a single (unit → unit)-valued reference cell suffices for
implementing higher-order state.

When higher-order references are replaceable

30

Visibility distinguishes between first-order and higher-order state.

What types determine plays in which the visibility condition
holds for free?

· · · , f : int → · · · → int , · · · ⊢ M : int
· · · , f : (int → · · · → int) → int , · · · ⊢ M : int → · · · → int

If a piece of code has a type of the above shape then the same effect can
be achieved without higher-order state!

When all references are replaceable

31

There is another technical condition called innocence (Hyland, Ong,
Nickau) that corresponds to the absence of state.

· · · , f : int → · · · → int , · · · ⊢ M : int

Programs of the above type can be written without using state
(purely functional).

Conclusions

32

� refunit→unit is very expressive.

� Focus on simple higher-order types will not lead to decidability.

Ideas for future work

� Consider weakened references, e.g. without cycles in the store.

� In presence of ref(bool), ref(unit → unit) can be used to simulate
ref(int). What is the relationship between ref(bool) and
ref(unit → unit)?

	Applied game semantics
	The relevant game model (AHM, LICS'98)
	The AJM paper
	References
	References
	Circularity in the store
	Fixed-point combinator
	Beyond lexical environment
	ML-like language with higher-order state
	Expressivity problems
	Solvability
	Answers
	
	Game semantics
	The relevant game model (AHM, LICS'98)
	First-order vs higher-order state
	 cellunitunit
	Semantic solution
	Factorisation result
	Innocence [Hyland, Ong, Nickau]
	An older factorisation result
	Universality
	Transformation result
	Syntactic solution
	Syntactic decomposition I
	Syntactic decomposition II
	Bad variables can be eliminated
	Transformation
	When higher-order references are replaceable
	When all references are replaceable
	Conclusions

