

Robert Raussendorf, Leibniz Universität Hannover University College London, September 2023

The contextuality - MBQC -cohomology triangle

6 Travel log

As I learned over the years, the 8th Conference on Quantum Physics and Logic, held in Nijmegen, the Netherlands in November 2011, is remembered fondly by many participants; for all sorts of reasons. Here I'd like to describe my journey towards this conference, how I spiralled out of it, and my thoughts for the future.

6 Travel log

As I learned over the years, the 8th Conference on Quantum Physics and Logic, held in Nijmegen, the Netherlands in November 2011, is remembered fondly by many participants; for all sorts of reasons. Here I'd like to describe my journey towards this conference, how I spiralled out of it, and my thoughts for the future.

Measurement-based quantum computation

Measurement-based quantum computation

Unitary transformation

deterministic, reversible

Projective measurement

probabilistic, irreversible

Measurement-based quantum computation

measurement of $Z(\odot), X(\uparrow), \cos \alpha X+\sin \alpha Y(\nearrow)$

- Information written onto the resource state, processed and read out by one-qubit measurements only.
- Universal computational resources exist: cluster state, AKLT state.
R. Raussendorf, H.-J. Briegel, Physical Review Letters 86, 5188 (2001).

Measurement-based quantum computation

- The outcome bits of the computations are correlations among measurement outcomes.

Correlations ferreted out by linear classical side processing.
R. Raussendorf and H.J. Briegel, Computational model underlying the one-way quantum computer, Quant. Inf. Comp. 6, 443 (2002).

Fault tolerant measurement-based quantum computation

New Years Card 2004

Progress up to 2023

Fault-tolerant MBQC

- I expected: Fault-tolerance in MBQC could only be resolved if we understood the non-Pauli correlations in MBQC.

Solving fault-tolerance for MBQC would combine the interesting with the useful - a goldilocks problem.

- I anticipated: first construction would be cumbersome, and fail.
- 2005: We solved it!

Fault-tolerant MBQC

Topologically protected CNOT gate in 3D cluster states
R. Raussendorf, J. Harrington, K. Goyal, Ann. Phys. (N.Y.) 321, 2242 (2006).
R. Raussendorf and J. Harrington, Phys. Rev. Lett. 98, 190504 (2007).

Fault-tolerant MBQC

- I expected: Fault-tolerance in MBQC could only be resolved if we understood the non-Pauli correlations in MBQC.

Solving fault-tolerance for MBQC would combine the interesting with the useful - a goldilocks problem.

- I anticipated: first construction would be cumbersome, and fail.
- 2005: We solved it!
- The non-Pauli correlations did not need to be understood to solve fault-tolerance for MBQC.

Sergey Bravyi and I shared an office at IQI Sergey \longrightarrow magic state distillation \longrightarrow Reed-Muller codes

RM31 *

*: for Reed-Muller

Why not use RM code states for MBQC?

Reed-Muller code states provide MBQC resource states for

- Deterministically computing a non-linear Boolean function,
- While obeying the linear classical side processing relations of MBQC, and
- Being non-Clifford.

All three criteria satisfied for 31 qubits.
(These are toy computations)

Contextuality in MBQC: Anders \& Browne

Hidden variables and the two theorems of John Bell
N. David Mermin

Laborator of Atomic and Solid State Physics, Cormell University, theaca, New York 14853-250

 CONTENTS

V.. A Simple and More Versatile Eel
 III. Locality Replaces Noncontext
IX. A Litte About Bobm Theory References
Like all authors of noncommisioned reviews
that he can restate the position with such clarity and
simplicity that all previous discussions will be eclipsed.
implicity that all previous discussions will be eclipsed.
J. S. Bell, 1966
THE dREAM OF HIDDEN VARIABLE
It is a fundamental quantum doctrine that a measure nent does not, in general, reveal a preexisting value of
the measured property. On the contrary, the outcome of a measurement is brought into being by the act of meaprobed system and the probing apparatus. Precisely how he particular result of an individual measurement is brought into being-Heisenberg's " "transition from the
possible to the actual"-is inherently unknowable. Only he statistical distribution of many such encounters is a proper matter for scientific inquiry.
We have been told this so often that the eyes glaze over the words, and half of you have probably stopped
eading already. But is it really true? Or, more conser aatively, is it really necessary? Does quantum mechaniss, that powerful, practical, phenomenally accurate comEinecr, really demand this weak link between our knowledge and the objects of that knowledge? Setting nd long walks in Copenhagen parks, can one point to anything in the modern quantum theory that forces on us such an act of intellectual renunciation? Or is it merely neasurement reveals a value that was already there, prior othe measurement?
Well, you might say, it's easy enough to deduce from
quantum mechanics that in general the measurement ap-
paratus disturbs the system on which it acts. True
so what? One can easily imagine a measurement m paratus disturbs the system on which it acts. True
so what One can easily imagine a measurement m
up any number of things, while still revealing the v
a preexisting property. Ah, oyu might add, but a prexisting property. Ah, you might add, but
certainty principle prohibits the existence of ioi certainty principle prohibits the existence of ioi
for certain important groups of physical
ught the Patriarchs, but as deduced

- Mermin's star, a contextuality proof on 3 qubits, can be repurposed as an MBQC!

QPL 2011

Contextuality and Cohomology: Abramsky, Barbosa, Mansfield

The Cohomology of Non-Locality and Contextuality

Samson Abramsky Shane Mansfield Rui Soares Barbosa
Department of Computer Science
University of Oxford
\{samson.abramsky, shane.mansfield,rui.soaresbarbosa\}@cs.ox.ac.uk

Seemingly in close reach after QPL '11

cohomology
The contextuality - MBQC -cohomology triangle

Partially established (temporally flat MBQCs only)

Inspirations:
Anders and Browne, Computational Power of Correlations, PRL 102 (2009),
Abramsky, Barbosa, Mansfield, Cohomology of contextuality, arXiv:1111.3620.

But ...

Unlocking the triangle proved to be harder than thought.

Alaska,
Summer 2013

Joseph Emerson and Stephen Bartlett, July 2013

Interaction Picture

(i) Sorting out MBQC \longleftrightarrow contextuality

Theorem 1.* An MBQC evaluating a nonlinear Boolean function $o:\left(\mathbb{Z}_{2}\right)^{m} \longrightarrow \mathbb{Z}_{2}$ deterministically is contextual.
*: R. Raussendorf, Phys. Rev. A, 022322 (2013).

(i) Sorting out MBQC \longleftrightarrow contextuality

Theorem 2.* $\operatorname{Be} \mathcal{M}$ an MBQC evaluating a nonlinear Boolean function o : $\left(\mathbb{Z}_{2}\right)^{m} \longrightarrow \mathbb{Z}_{2}$ with average success probability p_{S}. Then, \mathcal{M} is contextual if $p_{S}>1-1 / 2^{m}$, and, for bent functions, if $p_{S}>1 / 2+1 / 2^{m / 2+1}$.

Theorem 3.** Be \mathcal{M} an MBQC evaluating a nonlinear Boolean function $o:\left(\mathbb{Z}_{2}\right)^{m} \longrightarrow \mathbb{Z}_{2}^{l}$ with average success probability p_{S}. Then,

$$
p_{S} \leq 1-\operatorname{NCF} \frac{d_{H}(o)}{2^{m}}
$$

Therein, $d_{H}(o)$ is the Hamming distance from the closest linear function.
*: R. Raussendorf, Phys. Rev. A, 022322 (2013).
**: S. Abramsky, R.S. Barbosa, S. Mansfield, Phys. Rev. Lett. 119, 050504 (2017).

(i) Sorting out MBQC \longleftrightarrow contextuality

R. Raussendorf, PRA, 022322 (2013).

(i) Sorting out MBQC \longleftrightarrow contextuality

S. Abramsky, R.S. Barbosa, S. Mansfield, PRL 119, 050504 (2017).

(ii) Cohomology \leftrightarrow contextuality'

(a)

(b)

(c)

Theorem. An arrangement of observables is contextual if the 2 -cocycle class $[\beta] \neq 0$.

C Okay, S Roberts, SD Bartlett, R Raussendorf, Topological proofs of contextuality in quantum mechanics, Quant. Inf. Comp. 17, 1135-1166 (2017).

(iii) It's all positive

A counterpoint to the Wigner-negativity-as-quantum-resource body of work:

Theorem. Universal quantum computation can be represented by repeated sampling from probability distributions over finite state space.
M. Zurel, C. Okay, R. Raussendorf, A hidden variable model for universal quantum computation with magic states on qubits, PRL 125, 260404 (2020).

Most in May 2018 (ASQC 3 @ UBC)

