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Motivation

e \What constitutes as a classical system in this setup is not well understood
e Casting in a sheaf theoretic framework allows us to use tools from sheaf
theory

e The sheaf theoretic framework for spatial correlations has included
o Logical Bell Inequalities
o Contextual Fraction
o Notions of Simulation
o Cohomological obstructions to classicality
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U,U’...: Sets of observables EW),EU). .. Dr(E(U)), Dr(E(T)). ..
: Mapping observables to outcomes  : Probability distributions over these mappings
reU: f € £(U) : Behaviour of the System ey € Dg o E(U) :

Measurement, Set of Measurements Probabilistic Behaviour of the System
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A presheaf is a sheaf when the gluing and uniqueness axioms are satisfied:

Cover {U, }ier

DR o&
Given data {e; € Dg o E(U;) }icr

Exists a global section h € Dy o E(T)

with hlUZ =



Sheaves and Classicality

Proposition 3.1. [Abramsky, Brandenburger]:
The existence of a global section for an empirical model implies
the existence of a local (or non-contextual) deterministic hidden-

vairable model which realizes it.

global hidden

sections variables




A Sheaf Approach To Temporal Correlations

Step 1: Define the category C

Objects:  Down closed
subsets of X

Arrows: Subset inclusion

Step 2: Define the map £ : C — Set
EU)=4{f:U—0:0— o}

lookback, (o) = lookback, (¢') = f(o) = f(o')
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Classicality
h € Dr o £(X) with h|, = e, forallo € X
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What does it mean to be classical?
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S S
f((m1)) = o1 k=0= 03 = og f((m1)) = o1
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Part 2. The Mapping
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A Sheaf Approach to Contextuality Correlations

Step 1: Define the category C

U ={mo,m1,my,...} Objects:  Subsets of the
measurement set X

Arrows: Subset inclusion




Classicality
What does it mean to be classical?

1.Deterministic Classicality

EX)={h: X — O :mw— o}
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Vorob’ev’s Theorem for Contextuality Setups

Proposition [Vorobev, Barbosa]:
Let 2 be a simplicial complex. Then any empirical model defined
on X is extendable if and only if X is acyclic

Example: CHSH
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Mapping Scenarios for £k = oo
Coo : EM(M) — EM(M')
1.X' =%

2U' €Y <= U, o€ X
3'O(m07m17"-7mk) = Omk
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Mapping Scenarios for kK = oo
Coo : EM(M) — EM(M")

1Y — ¥ Example:

R X' ={(a1,b1), (a1, b2),
2.U" € Y «— Ugerr 0 € X (az,b1), (a2,b2),(a1), (az2)}
{(a1),(a1,b1)} € X

3O(m0 my,... mk) e Omk
? 7t O(a1,bl) =0x0= {(070)7(071)7(1’0)’(1’1)}

Theorem 3.2. For lookback depth k = oo, there is a map 6. from temporal measurement
scenarios to contextuality measurement scenarios, which lifts to empirical models as a
convex function €o.: EMow — EM(%w(M)) mapping each oo-lookback empirical model e on

the temporal scenario #, to an empirical model 6y (e) on the measurement scenario Go.( M ).
This map preserves and reflects nonclasicality, meaning that an empirical model e on # is not
co-lookback classical if and only if €.(e) is contextual.




No Quantum Advantage for k = 0o

Proposition: Given any temporal measurement scenario M
every empirical model e € EM (M) is co-lookback

classical.
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A (Still Speculative) More General Mapping
Cr : EM(M) — EM(M)

1.X":={(m,h)im € X,Jo = (...,m) € X. h € lookback, (o)}

2.U' € ¥ <= do € X.Y(m, (mg,...,my)) € U'.(mg,...,m;,m) Co
3-O(m,h) =5 Om



Visualising this Mapping

EM(M) LGt

k=0
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