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The Setting

Let σ be a set of relational symbols with positive arities, we can define a
category of σ-structures R(σ):

• Objects are A = (A, {RA}R∈σ) where RA ⊆ Ar for r-ary relation symbol R.
• Morphisms f : A → B are relation preserving set functions f : A→ B

RA(a1, . . . , ar) ⇒ RB(f(a1), . . . , f(ar))

Setting for graph theory, database theory, and descriptive complexity

For simplicity, we will take σ to have one binary relation R.
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Two games

Spoiler vs. Duplicator in the one-sided k-pebble Duplicator from A to B

• Spoiler moves around k-many pebbles on vertices of A picking out
window.

• Duplicator responds with placing corresponding pebbles on B.
• Duplicator continues to not lose if the relation induced by pair of
windows is a partial homomorphism from A⇀ B.
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Two games

Verifier vs. Alice+Bob in a non-local game

• A+B want to convince a Verifier that there is morphism A → B
• Verifier sends a pair of vertices (a, a′) ∈ A.
• Alice+Bob send vertices (b, b′) ∈ B.
• A+B win if relation R(a, a′) ⇒ R(b, b′).

A+B winning is equivalent to a classical homomorphism A → B. To obtain a
notion of quantum homomorphism:

• A+B perform measurements (via POVMs {Aa,b}, {Ba′,b′}) on an
entangled state in ψ ∈ HA ⊗HB.

• A+B win perfectly if p(b, b′|a, a′) = ψ∗(Aa,b ⊗ Ba′,b′)ψ = 1
• Quantum perfect strategies yield a definition of quantum
homomorphism.

• There are cases, e.g. Mermin’s magic square, where A+B win with this
quantum advantage, but lose classically.
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Two constructions

The Pebbling Comonad in Finite Model Theory by Abramsky, Dawar, and
Wang [2]

• Comonad family (Pk, δ, ε) on R(σ) w/ inclusions Pk′ ↪→ Pk for k′ ≤ k
• Pk(A) → B correspond to Duplicator winning strategies in the
one-sided k-pebble game.

• Formalised tacit connections between k-consistency test, full/counting
k-variable logic, treewidth < k, k-Weisfeiler-Leman test

The Quantum Monad on Relational Structures by Abramsky, Barbosa, de
Silva, and Zapata [1]

• Graded monad (Qd, µ
d,d′ , η1) on R(σ).

• A → Qd(B) correspond to quantum perfect winning strategies in a
non-local game.

• Connections to contextuality and quantum advantage in algorithms for
CSPs.
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Pebbling and EF comonads

Pk(A) is set of k-pebble plays:

s = [(p1, a1), . . . , (pn, an)]

Counit εA : Pk(A) → A sends s to an.

Comultiplication δA : Pk(A) → Pk(Pk(A)) sends s to [(p1, s1), . . . , (pn, sn)]
where si = [(p1, s1), . . . , (pi, si)].

(s, t) ∈ RPk(A) if s ⊑ t or t ⊑ s, an ”active pebble” condition, and
(ε(s), ε(t)) ∈ RA.

Ek(A) is set of k-length plays:

s = [a1, . . . , an] n ≤ k

Counit, comultiplication defined similarly as for Pk.

In definition of REk(A), we drop the active pebble condition.
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Quantum monad

Modification of probability distribution monad with probability distributions
replaced with projector-valued measurements.

A ‘distribution monad’ over the partial commutative semiring of Proj(d).

Qd(A) is a set of mappings p : A→ Proj(d) which we can satisfy a
normalization condition: ∑

a∈A

p(a) = 1

and have finite support.

Pairwise orthogonal: For all a, a′ ∈ supp(p), p(a)p(a′) = p(a′)p(a) = 0.

An element p : A→ Proj(d) ∈ Qd(A) can be written as formal sum:∑
a∈A

p(a).a
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Quantum monad (cont.)

RQd(A) be the set of tuples (p1,p2) satisfying:

• [p1(a1),p2(a2)] = 0 for all a1, a2 ∈ A
• if (a1, a2) ̸∈ RA, then p1(a1)p2(a2) = 0

Unit ηA : A→ Q1A sends a to the ‘dirac delta distribution’ on a, i.e.
η(a) = I1.a

Multiplication µd,d
′

A : QdQd′A → Qdd′A

µd,d
′

A (P)(a) =
∑

p∈Qd′ (A)

P(p)⊗ p(a)

Written as a formal sum:

µd,d
′

A (P) =
∑
a∈A

∑
p∈Qd′ (A)

P(p)⊗ p(a).a
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Question

Both these constructions provide a clean presentation composing strategies
in the games they ‘ internalise’

Given morphisms f : Pk′(A) → B and g : Pk(B) → C for k′ ≤ k, we obtain

Pk′(A) ↪→ Pk(A)
δA−−→ Pk(Pk(A))

Pk(f)−−−→ Pk(B)
g−→ C

Given morphisms h : A → Qd(B) and k : B → Qd′(C), we obtain

A f−→ Qd(B)
Qd(g)−−−→ Qd(Qd′(C))

µ
d,d′
C−−−→ Qdd′(C)

Morphisms of type Pk(A) → Qd(B) encode Duplicator strategies with partial
quantum homomorphisms as the winning condition.

How to compose morphisms of type Pk(A) → Qd(B)?
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Mixed distributive laws

From natural transformations κd : Pk ◦ Qd → Qd ◦ Pk, we could obtain:

Pk′A ↪→ PkA
δ−→ PkPkA

Pk(f)−−−→ PkQdB
κB−−→ QdPkB

Qd(g)−−−→ QdQd′C
µd,d

′

−−−→ Qdd′C

from f : Pk′(A) → Qd(B) and g : Pk(B) → Qd′(C) for k′ ≤ k.

This composition in R(σ) yields a composition in biKl(Pk,Qd) if κ satisfies
the equations:

κ1 ◦ Pkη = ηPk κdd
′
◦ Pkµd,d

′
= µd,d

′
Pk ◦ Qdκ

d ◦ κd
′
Qd′

Qdε ◦ κd = εQd Qd(δ) ◦ κd = κPk ◦ Pkκ ◦ δQd

Does there exists a distributive law κd : Pk ◦ Qd → Qd ◦ Pk?
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Simplifying our question

Ignoring pebbles are there distributive laws of type:

EQd → QdE?

Ignoring relations are the distributive laws for (co)monads on Set of type

L+Qd → QdL+?

Viewing the quantum monad ‘at the level of probabilities or possiblities’,
laws of type:

L+D → DL+?

L+P+ → P+L+?

This last simplification turned out to be wrong, but led us to answer
interesting, but unrelated questions.

There are distributive laws EQd → QdE and EkQd → QdEk!
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No-go theorem

Proposition

There is a unique law κ : L+P+ → L+P+ where

κ([X1, . . . , Xn]) = {[x1, . . . , xn] | ∀i ∈ {1, . . . ,n}, xi ∈ Xi}

satisfying the unit axiom.

But... this unique κ does not satisfy the comultiplication axiom:

P(δX) ◦ κX([{a,b}, {c}]) = {[[a], [a, c]], [[b], [b, c]]}
κL+X ◦ L+(κX) ◦ δP(X)([{a,b}, {c}]) = {[[a], [a, c]], [[b], [b, c]], [[a], [b, c]], [[b], [a, c]]}

Theorem

There is no distributive law of the prefix list comonad over the non-empty
powerset monad.
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General no-go theorem

We can generalise this theorem to a wider class of (co)monads:

Theorem

If the following hold:

• W is directed container which has at least one non-root position.
• M is a distribution monad DS for some semiring S satisfying

• S is zero-sum-free, i.e. for all a, b ∈ S if a+ b = 0, then a = 0 and b = 0.
• For some n > 1, 1S + 1S + · · ·+ 1S (n times) is a unit.

Then there is no distributive law κ : WM→ MW.
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Examples/Non-examples

Examples of directed containers W where our no-go theorem
κ : WDS → DSW applies:

• Prefix list comonad L+, Suffix tree comonad, Underlined list comonad
• Cowriter comonad (·)M for monoid M

Non-Examples of W:

• Coreader comonads S× (·)

• Pointed powerset comonad P∗(X) = {(Y, x) | x ∈ Y ⊆ X}
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Examples/Non-examples

Examples of semirings S where our no-go theorem κ : WDS → DSW
applies for DS :

• (B,∨,∧,⊤,⊥) is the finite non-empty powerset monad
• (R≥0,+, ∗, 0, 1) is the discrete probability distribution monad D.
• Viterbi semiring ([0, 1],max, ∗, 0, 1).

Non-examples of S

• Any ring, e.g. R
• (N,+, ∗, 0, 1)
• For a fixed set T, (P(T),∪,∩,∅, T)

How do we extend our no-go theorem κ : L+P → PL+ on Set to
κ : EkP̂ → P̂Ek on R(σ)?
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Transfer across categories

Theorem

Given U : C → D , (co)monads Ŵ, M̂ on C , (co)monads W,M on D ,

• κ̂ : ŴM̂→ M̂Ŵ, κ : WM→ MW nat. transformations
• General (co)Kleisli laws θw : WU→ UŴ, θm : UM̂→ MU satisfying:

UŴM̂ UM̂Ŵ

WUM̂ MUŴ

WMU MWU

Uκ̂

θmŴθwM̂

Wθm

κU

Mθw

Then

• if κ is a dist. law and θw, θm have monic components, then κ̂ is a dist law.
• if κ̂ is a dist. law and θw, θm have epic components, then κ is a dist law.

Generalises a result of Manes+Mulry [5] using the formal theory of
Power+Watanbe [6]. Elegant string diagram proof! 16



Transfer with retraction

Theorem

If there exists a κ̂ : ŴM̂→ M̂Ŵ distributive law for comonads on C ,

• L ⊣ U a coreflection L : D → C and U : C → D

• Componenet-wise split epimorphisms θw : WU→ UŴ, θm : UM̂→ MU

Then there exists a nat. transformation κ : WM→ MW of (co)monads W,M on
S which satisfies the Yang-Baxter equation, and thus a distributive law.

Applying the contrapositive of this theorem and our no-go theorem, we
obtain there is no distributive law of type EkP̂ → P̂Ek and EkD̂ → D̂Ek for
any liftings P̂, D̂ : R(σ) → R(σ)

In particular, this holds for the tree-duality monad (a lifting of P) and a
monad capturing fractional isomorphism (a lifting of D).
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Aside: Transfer for other uses

Monad-monad version of this transfer with retraction theorem. Use this
version to obtain a no-go theorem for a monad over Top.

The Vietoris monad V : Top → Top sends a topological space (X, τ) to the
‘hit-or-miss’ topology on the set of closed subspaces C ⊆ X of X.

There is a coreflection L ⊣ U with U : Top → Set forgetful, and L : Set → Top
mapping a set X to it’s discrete topology.

There is a component-wise split epimorphism θm ◦ θ−1
m where

• θm : PU→ UV maps a subset Y ⊆ X to is closure:

⟨Y⟩ = ∩{C | Y ⊆ C, C is closed in X}

• θ−1
m : UV → PU maps a closed subset C ⊆τ X to its underlying set.

By a theorem of Klin+Salamanca [4] there is no distributive law of
PP → PP , so we obtain there is no distributive law VV → VV.
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A working distributive law

Define κdX : EkQd → QdEk with components defined as:

κA[φ1, . . . , φn] =
∑

[a1,...,an]∈Ek(A)

φ1(a1) . . . φn(an).[a1, . . . , an]

Why does comultiplication not break as in the case P+?

Because of the structure of PVMs the extra ‘covariant’ terms are canceled
out:

Qd(δA) ◦ κA([Pa+ Qb, Ic]) = P[[a], [a, c]] + Q[[b], [b, c]]
κEkA ◦ Ek(κA) ◦ δQd(A)([Pa+ Qb, Ic]) = P2[[[a], [a, c]] + Q2[[b], [b, c]]

+ PQ[[a], [b, c]] + QP[[b], [a, c]]
= P2[[a], [a, c]] + Q2[[b], [b, c]]
= P[[a], [a, c]] + Q[[b], [b, c]]

Follows from pairwise orthogonality PQ = QP = 0 and projector
idempotence P2 = P,Q2 = Q.

19



Conclusion

No-Go theorems and the existence of a law κ : EkQd → QdEk suggest there
are no possiblistic/probabilistic Duplicator winning strategies in the EF
game, but there are quantum ones. Concrete construction?

Uniform 2-categorical proof of the Transfer Theorems? Application to other
probability monads, e.g. Giry monad?

κ : EkQd → QdEk is a coKleisli law, so by work Jakl+Marsden+S [3], we obtain:

A ≡∃+FOk B ⇒ Qd(A) ≡∃+FOk Qd(B)

A ≡#FOk B ⇒ Qd(A) ≡#FOk Qd(B)

What about FOk? Check (S1) and (S2) axioms in this paper.

Quantum k-consistency test for approximating quantum homomorphism?
Quantum k-Weisfeiler Leman test for approximating quantum isomorphism?

Connections with the local-global consistency in database theory?
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