# Mixed Distributive Laws

Game Comonads over the Quantum Monad

Amin Karamlou and <u>Nihil Shah</u> September 19, 2023 Let  $\sigma$  be a set of relational symbols with positive arities, we can define a category of  $\sigma$ -structures  $\mathscr{R}(\sigma)$ :

- Objects are  $\mathcal{A} = (\mathcal{A}, \{\mathcal{R}^{\mathcal{A}}\}_{\mathcal{R} \in \sigma})$  where  $\mathcal{R}^{\mathcal{A}} \subseteq \mathcal{A}^{r}$  for *r*-ary relation symbol  $\mathcal{R}$ .
- Morphisms  $f: \mathcal{A} \rightarrow \mathcal{B}$  are relation preserving set functions  $f: \mathcal{A} \rightarrow \mathcal{B}$

$$R^{\mathcal{A}}(a_1,\ldots,a_r) \Rightarrow R^{\mathcal{B}}(f(a_1),\ldots,f(a_r))$$

Setting for graph theory, database theory, and descriptive complexity

For simplicity, we will take  $\sigma$  to have one binary relation R.

Spoiler vs. Duplicator in the one-sided k-pebble Duplicator from  $\mathcal A$  to  $\mathcal B$ 

- Spoiler moves around *k*-many pebbles on vertices of *A* picking out window.
- Duplicator responds with placing corresponding pebbles on  $\mathcal{B}$ .
- Duplicator continues to not lose if the relation induced by pair of windows is a partial homomorphism from  $\mathcal{A} \rightharpoonup \mathcal{B}$ .

### Two games

Verifier vs. Alice+Bob in a non-local game

- + A+B want to convince a Verifier that there is morphism  $\mathcal{A} \to \mathcal{B}$
- Verifier sends a pair of vertices  $(a, a') \in A$ .
- Alice+Bob send vertices  $(b, b') \in \mathcal{B}$ .
- A+B win if relation  $R(a, a') \Rightarrow R(b, b')$ .

A+B winning is equivalent to a classical homomorphism  $\mathcal{A} \to \mathcal{B}$ . To obtain a notion of quantum homomorphism:

- A+B perform measurements (via POVMs  $\{A_{a,b}\}, \{B_{a',b'}\}$ ) on an entangled state in  $\psi \in \mathcal{H}_A \otimes \mathcal{H}_B$ .
- A+B win perfectly if  $p(b, b'|a, a') = \psi^*(A_{a,b} \otimes B_{a',b'})\psi = 1$
- Quantum perfect strategies yield a definition of quantum homomorphism.
- There are cases, e.g. Mermin's magic square, where A+B win with this quantum advantage, but lose classically.

*The Pebbling Comonad in Finite Model Theory* by Abramsky, Dawar, and Wang [2]

- Comonad family  $(\mathbb{P}_k, \delta, \varepsilon)$  on  $\mathscr{R}(\sigma)$  w/ inclusions  $\mathbb{P}_{k'} \hookrightarrow \mathbb{P}_k$  for  $k' \leq k$
- $\mathbb{P}_k(\mathcal{A}) \to \mathcal{B}$  correspond to Duplicator winning strategies in the one-sided *k*-pebble game.
- Formalised tacit connections between *k*-consistency test, full/counting *k*-variable logic, treewidth < *k*, *k*-Weisfeiler-Leman test

*The Quantum Monad on Relational Structures* by Abramsky, Barbosa, de Silva, and Zapata [1]

- Graded monad  $(\mathbf{Q}_d, \mu^{d,d'}, \eta_1)$  on  $\mathscr{R}(\sigma)$ .
- ·  $\mathcal{A} \to Q_d(\mathcal{B})$  correspond to quantum perfect winning strategies in a non-local game.
- Connections to contextuality and quantum advantage in algorithms for CSPs.

 $\mathbb{P}_k(\mathcal{A})$  is set of *k*-pebble plays:

$$s = [(p_1, a_1), \ldots, (p_n, a_n)]$$

Counit  $\varepsilon_{\mathcal{A}} \colon \mathbb{P}_k(\mathcal{A}) \to \mathcal{A}$  sends s to  $a_n$ .

Comultiplication  $\delta_{\mathcal{A}} : \mathbb{P}_k(\mathcal{A}) \to \mathbb{P}_k(\mathbb{P}_k(\mathcal{A}))$  sends s to  $[(p_1, s_1), \dots, (p_n, s_n)]$ where  $s_i = [(p_1, s_1), \dots, (p_i, s_i)]$ .

 $(s,t) \in R^{\mathbb{P}_k(\mathcal{A})}$  if  $s \sqsubseteq t$  or  $t \sqsubseteq s$ , an "active pebble" condition, and  $(\varepsilon(s), \varepsilon(t)) \in R^{\mathcal{A}}$ .

 $\mathbb{E}_k(\mathcal{A})$  is set of *k*-length plays:

 $s = [a_1, \ldots, a_n]$   $n \le k$ 

Counit, comultiplication defined similarly as for  $\mathbb{P}_k$ .

In definition of  $R^{\mathbb{E}_k(\mathcal{A})}$ , we drop the active pebble condition.

Modification of probability distribution monad with probability distributions replaced with projector-valued measurements.

A 'distribution monad' over the partial commutative semiring of **Proj**(*d*).

 $Q_d(A)$  is a set of mappings  $p: A \to \operatorname{Proj}(d)$  which we can satisfy a normalization condition:

$$\sum_{a\in A}p(a)=1$$

and have finite support.

Pairwise orthogonal: For all  $a, a' \in \text{supp}(p), p(a)p(a') = p(a')p(a) = 0$ .

An element  $p: A \rightarrow \operatorname{Proj}(d) \in Q_d(\mathcal{A})$  can be written as formal sum:

$$\sum_{a \in A} p(a).a$$

 $R^{\mathbf{Q}_d(\mathcal{A})}$  be the set of tuples  $(p_1, p_2)$  satisfying:

- $[p_1(a_1), p_2(a_2)] = 0$  for all  $a_1, a_2 \in A$
- if  $(a_1, a_2) \notin \mathbb{R}^{\mathcal{A}}$ , then  $p_1(a_1)p_2(a_2) = \mathbf{0}$

Unit  $\eta_A : A \to \mathbf{Q}_1 A$  sends a to the 'dirac delta distribution' on a, i.e.  $\eta(a) = l_1.a$ 

Multiplication  $\mu_{\mathcal{A}}^{d,d'} : \mathbb{Q}_d \mathbb{Q}_{d'} \mathcal{A} \to \mathbb{Q}_{dd'} \mathcal{A}$  $\mu_{\mathcal{A}}^{d,d'}(P)(a) = \sum_{p \in \mathbb{Q}_{d'}(\mathcal{A})} P(p) \otimes p(a)$ 

Written as a formal sum:

$$\mu_{\mathcal{A}}^{d,d'}(P) = \sum_{a \in \mathcal{A}} \sum_{p \in \mathbf{Q}_{d'}(\mathcal{A})} P(p) \otimes p(a).a$$

## Question

Both these constructions provide a clean presentation composing strategies in the games they 'internalise'

Given morphisms  $f: \mathbb{P}_{k'}(\mathcal{A}) \to \mathcal{B}$  and  $g: \mathbb{P}_k(\mathcal{B}) \to \mathcal{C}$  for  $k' \leq k$ , we obtain

$$\mathbb{P}_{k'}(\mathcal{A}) \hookrightarrow \mathbb{P}_{k}(\mathcal{A}) \xrightarrow{\delta_{\mathcal{A}}} \mathbb{P}_{k}(\mathbb{P}_{k}(\mathcal{A})) \xrightarrow{\mathbb{P}_{k}(f)} \mathbb{P}_{k}(\mathcal{B}) \xrightarrow{g} \mathcal{C}$$

Given morphisms  $h: \mathcal{A} \to Q_d(\mathcal{B})$  and  $k: \mathcal{B} \to Q_{d'}(\mathcal{C})$ , we obtain

$$\mathcal{A} \xrightarrow{f} \mathsf{Q}_{d}(\mathcal{B}) \xrightarrow{\mathsf{Q}_{d}(g)} \mathsf{Q}_{d}(\mathsf{Q}_{d'}(\mathcal{C})) \xrightarrow{\mu_{\mathcal{C}}^{d,d'}} \mathsf{Q}_{dd'}(\mathcal{C})$$

Morphisms of type  $\mathbb{P}_{k}(\mathcal{A}) \to \mathbf{Q}_{d}(\mathcal{B})$  encode Duplicator strategies with partial *quantum* homomorphisms as the winning condition.

How to compose morphisms of type  $\mathbb{P}_k(\mathcal{A}) \to \mathbb{Q}_d(\mathcal{B})$ ?

From natural transformations  $\kappa^d \colon \mathbb{P}_k \circ \mathbf{Q}_d \to \mathbf{Q}_d \circ \mathbb{P}_k$ , we could obtain:

$$\mathbb{P}_{k'}\mathcal{A} \hookrightarrow \mathbb{P}_{k}\mathcal{A} \xrightarrow{\delta} \mathbb{P}_{k}\mathbb{P}_{k}\mathcal{A} \xrightarrow{\mathbb{P}_{k}(f)} \mathbb{P}_{k}\mathbb{Q}_{d}\mathcal{B} \xrightarrow{\kappa_{\mathcal{B}}} \mathbb{Q}_{d}\mathbb{P}_{k}\mathcal{B} \xrightarrow{\mathbb{Q}_{d}(g)} \mathbb{Q}_{d}\mathbb{Q}_{d'}\mathcal{C} \xrightarrow{\mu^{d,d'}} \mathbb{Q}_{dd'}\mathcal{C}$$
  
rom  $f \colon \mathbb{P}_{k'}(\mathcal{A}) \to \mathbb{Q}_{d}(\mathcal{B})$  and  $g \colon \mathbb{P}_{k}(\mathcal{B}) \to \mathbb{Q}_{d'}(\mathcal{C})$  for  $k' \leq k$ .

This composition in  $\mathscr{R}(\sigma)$  yields a composition in **biKl**( $\mathbb{P}_k$ ,  $\mathbb{Q}_d$ ) if  $\kappa$  satisfies the equations:

$$\kappa^{1} \circ \mathbb{P}_{k} \eta = \eta \mathbb{P}_{k} \quad \kappa^{dd'} \circ \mathbb{P}_{k} \mu^{d,d'} = \mu^{d,d'} \mathbb{P}_{k} \circ \mathsf{Q}_{d} \kappa^{d} \circ \kappa^{d'} \mathsf{Q}_{d}$$
$$\mathsf{Q}_{d} \varepsilon \circ \kappa^{d} = \varepsilon \mathsf{Q}_{d} \quad \mathsf{Q}_{d}(\delta) \circ \kappa^{d} = \kappa \mathbb{P}_{k} \circ \mathbb{P}_{k} \kappa \circ \delta \mathsf{Q}_{d}$$

Does there exists a distributive law  $\kappa^d$ :  $\mathbb{P}_k \circ \mathbb{Q}_d \to \mathbb{Q}_d \circ \mathbb{P}_k$ ?

Ignoring pebbles are there distributive laws of type:

 $\mathbb{E}\mathbf{Q}_d \to \mathbf{Q}_d \mathbb{E}$ ?

Ignoring relations are the distributive laws for (co)monads on Set of type

$$L^+ \mathbf{Q}_d \rightarrow \mathbf{Q}_d L^+$$
?

Viewing the quantum monad 'at the level of probabilities or possiblities', laws of type:

 $L^+ \mathcal{D} \to \mathcal{D}L^+$ ?  $L^+ \mathcal{P}^+ \to \mathcal{P}^+ L^+$ ?

This last simplification turned out to be *wrong*, but led us to answer interesting, but unrelated questions.

There are distributive laws  $\mathbb{E}\mathbf{Q}_d \to \mathbf{Q}_d\mathbb{E}$  and  $\mathbb{E}_k\mathbf{Q}_d \to \mathbf{Q}_d\mathbb{E}_k$ !

### Proposition

There is a unique law  $\kappa \colon L^+\mathcal{P}^+ \to L^+\mathcal{P}^+$  where

$$\kappa([X_1,\ldots,X_n]) = \{[x_1,\ldots,x_n] \mid \forall i \in \{1,\ldots,n\}, x_i \in X_i\}$$

satisfying the unit axiom.

But... this unique  $\kappa$  does not satisfy the comultiplication axiom:

 $\mathcal{P}(\delta_X) \circ \kappa_X([\{a, b\}, \{c\}]) = \{[[a], [a, c]], [[b], [b, c]]\}$  $\kappa_{L+\chi} \circ L^+(\kappa_X) \circ \delta_{\mathcal{P}(X)}([\{a, b\}, \{c\}]) = \{[[a], [a, c]], [[b], [b, c]], [[a], [b, c]], [[b], [a, c]]\}$ 

#### Theorem

There is no distributive law of the prefix list comonad over the non-empty powerset monad.

We can generalise this theorem to a wider class of (co)monads:

### Theorem

If the following hold:

- W is directed container which has at least one non-root position.
- M is a distribution monad  $\mathcal{D}_{\mathscr{S}}$  for some semiring  $\mathscr{S}$  satisfying
  - $\mathscr{S}$  is zero-sum-free, i.e. for all  $a, b \in \mathscr{S}$  if a + b = 0, then a = 0 and b = 0.
  - For some n > 1,  $1_{\mathscr{S}} + 1_{\mathscr{S}} + \dots + 1_{\mathscr{S}}$  (n times) is a unit.

Then there is no distributive law  $\kappa \colon WM \to MW$ .

Examples of directed containers W where our no-go theorem  $\kappa \colon W\mathcal{D}_{\mathscr{S}} \to \mathcal{D}_{\mathscr{S}}W$  applies:

- $\cdot$  Prefix list comonad  $L^+$ , Suffix tree comonad, Underlined list comonad
- Cowriter comonad  $(\cdot)^{M}$  for monoid M

Non-Examples of *W*:

- Coreader comonads S  $\times$  (•)
- Pointed powerset comonad  $\mathcal{P}_*(X) = \{(Y, x) \mid x \in Y \subseteq X\}$

Examples of semirings  $\mathscr{S}$  where our no-go theorem  $\kappa \colon W\mathcal{D}_{\mathscr{S}} \to \mathcal{D}_{\mathscr{S}}W$ applies for  $\mathcal{D}_{\mathscr{S}}$ :

- $\cdot \ (\mathbb{B}, \lor, \land, \top, \bot)$  is the finite non-empty powerset monad
- + ( $\mathbb{R}_{\geq 0}, +, *, 0, 1$ ) is the discrete probability distribution monad  $\mathcal{D}$ .
- Viterbi semiring ([0, 1], max, \*, 0, 1).

Non-examples of  ${\mathscr S}$ 

- $\cdot$  Any ring, e.g.  $\mathbb R$
- · ( $\mathbb{N}, +, *, 0, 1$ )
- For a fixed set T,  $(\mathcal{P}(T), \cup, \cap, \varnothing, T)$

How do we extend our no-go theorem  $\kappa \colon L^+ \mathcal{P} \to \mathcal{P}L^+$  on **Set** to  $\kappa \colon \mathbb{E}_k \hat{\mathcal{P}} \to \hat{\mathcal{P}}\mathbb{E}_k$  on  $\mathscr{R}(\sigma)$ ?

### Transfer across categories

#### Theorem

Given U:  $\mathscr{C} \to \mathscr{D}$ , (co)monads  $\hat{W}$ ,  $\hat{M}$  on  $\mathscr{C}$ , (co)monads W, M on  $\mathscr{D}$ ,

- +  $\hat{\kappa}$ :  $\hat{W}\hat{M} \rightarrow \hat{M}\hat{W}$ ,  $\kappa$ : WM  $\rightarrow$  MW nat. transformations
- General (co)Kleisli laws  $\theta_w$ : WU  $\rightarrow U\hat{W}$ ,  $\theta_m$ : U $\hat{M} \rightarrow MU$  satisfying:



Then

- if  $\kappa$  is a dist. law and  $\theta_w, \theta_m$  have monic components, then  $\hat{\kappa}$  is a dist law.
- if  $\hat{\kappa}$  is a dist. law and  $\theta_w, \theta_m$  have epic components, then  $\kappa$  is a dist law.

Generalises a result of Manes+Mulry [5] using the formal theory of Power+Watanbe [6]. Elegant string diagram proof!

### Theorem

If there exists a  $\hat{\kappa} \colon \hat{W}\hat{M} \to \hat{M}\hat{W}$  distributive law for comonads on  $\mathscr{C}$ ,

- · L ⊢ U a coreflection L:  $\mathscr{D} \to \mathscr{C}$  and U:  $\mathscr{C} \to \mathscr{D}$
- · Componenet-wise split epimorphisms  $\theta_w$ : WU  $\rightarrow U\hat{W}, \theta_m$ : U $\hat{M} \rightarrow MU$

Then there exists a nat. transformation  $\kappa \colon WM \to MW$  of (co)monads W, M on  $\mathscr{S}$  which satisfies the Yang-Baxter equation, and thus a distributive law.

Applying the contrapositive of this theorem and our no-go theorem, we obtain there is no distributive law of type  $\mathbb{E}_k \hat{\mathcal{P}} \to \hat{\mathcal{P}} \mathbb{E}_k$  and  $\mathbb{E}_k \hat{\mathcal{D}} \to \hat{\mathcal{D}} \mathbb{E}_k$  for any liftings  $\hat{\mathcal{P}}, \hat{\mathcal{D}}: \mathscr{R}(\sigma) \to \mathscr{R}(\sigma)$ 

In particular, this holds for the tree-duality monad (a lifting of  $\mathcal{P}$ ) and a monad capturing fractional isomorphism (a lifting of  $\mathcal{D}$ ).

Monad-monad version of this transfer with retraction theorem. Use this version to obtain a no-go theorem for a monad over **Top**.

The Vietoris monad V: **Top**  $\rightarrow$  **Top** sends a topological space (X,  $\tau$ ) to the 'hit-or-miss' topology on the set of closed subspaces  $C \subseteq X$  of X.

There is a coreflection  $L \dashv U$  with  $U: \mathbf{Top} \rightarrow \mathbf{Set}$  forgetful, and  $L: \mathbf{Set} \rightarrow \mathbf{Top}$  mapping a set X to it's discrete topology.

There is a component-wise split epimorphism  $\theta_m \circ \theta_m^{-1}$  where

•  $\theta_m : \mathcal{P}U \to U\mathbf{V}$  maps a subset  $Y \subseteq X$  to is closure:

 $\langle Y \rangle = \cap \{ C \mid Y \subseteq C, C \text{ is closed in } X \}$ 

•  $\theta_m^{-1}$ :  $U\mathbf{V} \to \mathcal{P}U$  maps a closed subset  $C \subseteq_{\tau} X$  to its underlying set.

By a theorem of Klin+Salamanca [4] there is no distributive law of  $\mathcal{PP} \rightarrow \mathcal{PP}$ , so we obtain there is no distributive law VV  $\rightarrow$  VV.

# A working distributive law

Define  $\kappa_{X}^{d} \colon \mathbb{E}_{k} \mathbf{Q}_{d} \to \mathbf{Q}_{d} \mathbb{E}_{k}$  with components defined as:

$$\kappa_{\mathcal{A}}[\varphi_1,\ldots,\varphi_n] = \sum_{[a_1,\ldots,a_n] \in \mathbb{E}_k(\mathcal{A})} \varphi_1(a_1)\ldots\varphi_n(a_n).[a_1,\ldots,a_n]$$

Why does comultiplication not break as in the case  $\mathcal{P}^+$ ?

Because of the structure of PVMs the extra 'covariant' terms are canceled out:

$$Q_{d}(\delta_{A}) \circ \kappa_{A}([Pa + Qb, lc]) = P[[a], [a, c]] + Q[[b], [b, c]]$$
  

$$\kappa_{\mathbb{E}_{k}A} \circ \mathbb{E}_{k}(\kappa_{A}) \circ \delta_{Q_{d}(A)}([Pa + Qb, lc]) = P^{2}[[[a], [a, c]] + Q^{2}[[b], [b, c]]$$
  

$$+ PQ[[a], [b, c]] + QP[[b], [a, c]]$$
  

$$= P^{2}[[a], [a, c]] + Q^{2}[[b], [b, c]]$$
  

$$= P[[a], [a, c]] + Q[[b], [b, c]]$$

Follows from pairwise orthogonality PQ = QP = 0 and projector idempotence  $P^2 = P$ ,  $Q^2 = Q$ .

# Conclusion

No-Go theorems and the existence of a law  $\kappa : \mathbb{E}_k \mathbf{Q}_d \to \mathbf{Q}_d \mathbb{E}_k$  suggest there are no possiblistic/probabilistic Duplicator winning strategies in the EF game, but there are quantum ones. Concrete construction?

Uniform 2-categorical proof of the Transfer Theorems? Application to other probability monads, e.g. Giry monad?

 $\kappa \colon \mathbb{E}_k \mathbf{Q}_d \to \mathbf{Q}_d \mathbb{E}_k$  is a coKleisli law, so by work Jakl+Marsden+S [3], we obtain:

$$\mathcal{A} \equiv_{\exists^{+}\mathsf{FO}_{k}} \mathcal{B} \Rightarrow \mathsf{Q}_{d}(\mathcal{A}) \equiv_{\exists^{+}\mathsf{FO}_{k}} \mathsf{Q}_{d}(\mathcal{B})$$

 $\mathcal{A} \equiv_{\#\mathsf{FO}_k} \mathcal{B} \Rightarrow \mathsf{Q}_d(\mathcal{A}) \equiv_{\#\mathsf{FO}_k} \mathsf{Q}_d(\mathcal{B})$ 

What about  $FO_k$ ? Check (S1) and (S2) axioms in this paper.

Quantum *k*-consistency test for approximating quantum homomorphism? Quantum *k*-Weisfeiler Leman test for approximating quantum isomorphism?

Connections with the local-global consistency in database theory?

Samson Abramsky, Rui Soares Barbosa, Nadish de Silva, and Octavio Zapata.

# The Quantum Monad on Relational Structures.

In Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin, editors, 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017), volume 83 of Leibniz International Proceedings in Informatics (LIPIcs), pages 35:1–35:19, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

 Samson Abramsky, Anuj Dawar, and Pengming Wang.
 The pebbling comonad in finite model theory.
 In Logic in Computer Science (LICS), 2017 32nd Annual ACM/IEEE Symposium on, pages 1–12. IEEE, 2017.



Tomáš Jakl, Dan Marsden, and Nihil Shah. A categorical account of composition methods in logic, 2023.

Bartek Klin and Julian Salamanca.

# Iterated covariant powerset is not a monad.

*Electronic Notes in Theoretical Computer Science*, 341:261–276, 2018. Proceedings of the Thirty-Fourth Conference on the Mathematical Foundations of Programming Semantics (MFPS XXXIV).



Ernie Manes and Philip Mulry.

Monad compositions i: general constructions and recursive distributive laws.

Theory and Applications of Categories, 18(7):172–208, 2007.

John Power and Hiroshi Watanabe. Combining a monad and a comonad.

Theoretical Computer Science, 280(1-2):137–162, May 2002.