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Let o be a set of relational symbols with positive arities, we can define a
category of o-structures Z(c):

- Objects are A = (A, {R"}re,) where R C A" for r-ary relation symbol R.

- Morphisms f: A — B are relation preserving set functions f: A — B
R4ay,...,ar) = R(flar), ..., f(ar))

Setting for graph theory, database theory, and descriptive complexity

For simplicity, we will take o to have one binary relation R.



Two games

Spoiler vs. Duplicator in the one-sided k-pebble Duplicator from A to B
- Spoiler moves around k-many pebbles on vertices of A picking out
window.

- Duplicator responds with placing corresponding pebbles on B.

- Duplicator continues to not lose if the relation induced by pair of
windows is a partial homomorphism from A — B.



Two games

Verifier vs. Alice+Bob in a non-local game

- A+B want to convince a Verifier that there is morphism A — B
- Verifier sends a pair of vertices (a,a’) € A.

- Alice+Bob send vertices (b, b’) € B.

- A+B win if relation R(a,a’) = R(b, b").

A+B winning is equivalent to a classical homomorphism A — B. To obtain a
notion of quantum homomorphism:

- A+B perform measurements (via POVMs {As}, {Bar v/ }) ON an
entangled state in ¢ € Ha @ Hs.

- A+B win perfectly if p(b,b’|a,a’) = " (Aab ® Bar pr)1p =1
- Quantum perfect strategies yield a definition of quantum
homomorphism.

- There are cases, e.g. Mermin's magic square, where A+B win with this
guantum advantage, but lose classically.



Two constructions

The Pebbling Comonad in Finite Model Theory by Abramsky, Dawar, and
Wang [2]
- Comonad family (P, d,€) on Z(o) w/ inclusions P, < P, for " <k

- Py(A) — B correspond to Duplicator winning strategies in the
one-sided k-pebble game.

- Formalised tacit connections between k-consistency test, full/counting
k-variable logic, treewidth < k, k-Weisfeiler-Leman test

The Quantum Monad on Relational Structures by Abramsky, Barbosa, de
Silva, and Zapata [1]

- Graded monad (Qq, ™9, m) on %(c).

- A — Qqy(B) correspond to quantum perfect winning strategies in a
non-local game.

- Connections to contextuality and quantum advantage in algorithms for
CSPs.



Pebbling and EF comonads

Pr(A) is set of k-pebble plays:
S= [(p17 07)5 sy (pﬂv Gn)]

Counitea: Py(A) — A sends s to an.

Comultiplication d.4: Pp(A) — Pr(Pr(A)) sends s to [(p1,51), - - -, (Pn, Sn)]
where s; = [(p1, 1), - -, (pi, Si)].

(s,t) € RE) if s C tor t C s, an "active pebble” condition, and
(e(s),e(t)) € RA.

E(A) is set of k-length plays:
s=[a,...,an] n<Rk

Counit, comultiplication defined similarly as for Py.

In definition of R4 we drop the active pebble condition.



Quantum monad

Modification of probability distribution monad with probability distributions
replaced with projector-valued measurements.

A ‘distribution monad’ over the partial commutative semiring of Proj(d).

Qq(A) is a set of mappings p: A — Proj(d) which we can satisfy a
normalization condition:
> p(a)=1

aeA

and have finite support.
Pairwise orthogonal: For all a,a’ € supp(p), p(a)p(a’) = p(a’)p(a) = 0.

An element p: A — Proj(d) € Qq(.A) can be written as formal sum:

> " p(a).a

acA



ntum monad (cont.)

R%(A) be the set of tuples (ps, p2) satisfying:

- [pr(ar), p2(a2)] =0 forall ar,a; € A
- if (m, a2) € RA, then pa(ar)p2(az) = 0
Unitna : A — Q1A sends a to the ‘dirac delta distribution’ on q, i.e.

n(a) = h.a

Multiplication u%% : QyQy A — QuarA

W P)a) = Y P(p)®p(a)

pEQ (A)

Written as a formal sum:

5P =" 3" P(p)®pla).a

a€A peQy (A)



Both these constructions provide a clean presentation composing strategies
in the games they ‘internalise’

Given morphisms f: Pw (A) — B and g: Pp(B) — C for k" < k, we obtain

P (A) = Py(A) 22 Po(Pi(A)) =2 Po(B) & ¢

Given morphisms h: A — Qq(B) and k: B — Qq/(C), we obtain

d,d’
AL qy(B) 29 qu(ay (€)) 2 Quy (C)

Morphisms of type Pr(.A) — Qq(B) encode Duplicator strategies with partial
quantum homomorphisms as the winning condition.

How to compose morphisms of type P,(A) — Qq(B)?



Mixed distributive laws

From natural transformations x¢: P, 0 Qg — Qg o P,, we could obtain:

. d,d’
Py A — PrA i) PP, A M P,QyB ZBy QP.B Qd—(g)> Q,QquC 2 o Qua'C

from f: Pw (A) = Qq(B) and g: Px(B) — Qqu (C) for K < k.

This composition in %Z(o) yields a composition in biKl(P, Qq) if x satisfies
the equations:

K o Prn = nPy 7 Pkud"d, = ud’d/Pk o erud o "‘fded/

Qe o W = eQq Qu(d) o k! = kP, o Pk 0 6Qqy

Does there exists a distributive law k%: Pr 0 Qg — Qg o P?



Simplifying our question

Ignoring pebbles are there distributive laws of type:
EQq — Q4E?

Ignoring relations are the distributive laws for (co)monads on Set of type
LFQqg — QqL*?

Viewing the quantum monad ‘at the level of probabilities or possiblities’,

laws of type:
LD - DL?

LYpt 5 prLt?

This last simplification turned out to be wrong, but led us to answer
interesting, but unrelated questions.

There are distributive laws EQgy — Q4E and E;Qq4 — Q4Ey!



No-go theorem

Proposition
There is a unique law k: LYP*T — LTPT where
KX, X)) = {x, .o xa] [ Vi€ {1,...,n}, X € X}
satisfying the unit axiom.
But... this unique x does not satisfy the comultiplication axiom:

P(6x) o rx([{a, b}, {c}]) = {lld], [a, ]}, [[b] [b, c]]}
kiex o L (ix) © 8p ([{a, b}, {c}]) = {llal, [a, ], [[b], [b, cl}. [[al, [b, I, [(b], [a, I}

Theorem

There is no distributive law of the prefix list comonad over the non-empty
powerset monad.



General no-go theorem

We can generalise this theorem to a wider class of (co)monads:

Theorem
If the following hold:

- W is directed container which has at least one non-root position.
- M is a distribution monad D for some semiring . satisfying

- 7 is zero-sum-free, i.e. forall a,b € 7 ifa+ b =0,thena=0and b = 0.
- Forsomen>1,1¢ +19 +---+ 15 (ntimes) is a unit.

Then there is no distributive law x: WM — MW.



Examples/Non-examples

Examples of directed containers W where our no-go theorem
k: WDy — D W applies:

- Prefix list comonad L™, Suffix tree comonad, Underlined list comonad

- Cowriter comonad ()" for monoid M
Non-Examples of W:

- Coreader comonads S x (-)
- Pointed powerset comonad P.(X) = {(Y,x) | x € Y C X}



Examples/Non-examples

Examples of semirings .# where our no-go theorem x: WD.s» — Do W
applies for Ds:

- (B,V,A, T, L) is the finite non-empty powerset monad

- (R>o0,+,*,0,1) is the discrete probability distribution monad D.

- Viterbi semiring ([0, 1], max, *, 0, 1).

Non-examples of .7

- Anyring eg R
© (N, +,%,0,1)
- For a fixed set T, (P(T),u,N, @, T)

How do we extend our no-go theorem x: L¥P — PL™ on Set to
rk: ByP — PEy, on Z(c)?



Transfer across categories

Theorem

Given U: € — 2, (co)monads W, M on %, (co)monads W, M on 2,

- R: WM — MW, k: WM — MW nat. transformations
- General (co)Kleisli laws 6y : WU — UW, 0 : UM — MU satisfying:

UWi Y5 v

o o

wmu —Ys Mwu
Then

- if k is a dist. law and 0y, 6, have monic components, then & is a dist law.

- If R is a dist. law and 0y, 0, have epic components, then k is a dist law.

Generalises a result of Manes+Mulry [5] using the formal theory of
Power+Watanbe [6]. Elegant string diagram proof!



Transfer with retraction

Theorem
If there exists a #: WM — MW distributive law for comonads on €,
- L4 UacoreflectionlL: 2 — ¢ and U: € — 9
- Componenet-wise split epimorphisms 6,,: WU — UW, 6, : UM — MU

Then there exists a nat. transformation x: WM — MW of (co)monads W, M on
. which satisfies the Yang-Baxter equation, and thus a distributive law.

Applying the contrapositive of this theorem and our no-go theorem, we
obtain there is no distributive law of type E,? — PE, and E,D — DE, for
any liftings P, D: %(c) — %(o)

In particular, this holds for the tree-duality monad (a lifting of P) and a
monad capturing fractional isomorphism (a lifting of D).



Aside: Transfer for other uses

Monad-monad version of this transfer with retraction theorem. Use this
version to obtain a no-go theorem for a monad over Top.

The Vietoris monad V: Top — Top sends a topological space (X, 7) to the
‘hit-or-miss’ topology on the set of closed subspaces C C X of X.

There is a coreflection L 4 U with U: Top — Set forgetful, and L: Set — Top
mapping a set X to it's discrete topology.
There is a component-wise split epimorphism 0, o 6" where
* Om: PU — UV maps a subset Y C X to is closure:
(Yy=n{C|YCC(,Cisclosed in X}
- 0,": UV — PU maps a closed subset C C, X to its underlying set.

By a theorem of Klin+Salamanca [4] there is no distributive law of
PP — PP, sowe obtain there is no distributive law VV — VV.



A working distributive law

Define mﬂ: ExQqs — QuE, with components defined as:

/{A[SOM--~7(PH]: Z @W(GW)"'W”(GH)'[GW---70”]
Why does comultiplication not break as in the case P*?

Because of the structure of PVMs the extra ‘covariant’ terms are canceled
out:

Qu(da) © ra([Pa+ Qb, Ic]) = P[[a], [a, c]] + Q[[b], [b, c]]
ki © Er(4) 0 da 0 ([Pa + Qb, Ic]) = P*[[[al, [a, ] + Q”[[b], [b, c]]
+ PQ[[a], [b, c]] + QP[[b], [a, c]]
= P’[[a], [a, ]] + Q*[(b], [b, c]]

= Pld], [a, c]] + Q[[b], [b, c]]

Follows from pairwise orthogonality PQ = QP = 0 and projector
idempotence P = P, Q> = Q.



Conclusion

No-Go theorems and the existence of a law x: E,Qqy — QgE\, suggest there
are no possiblistic/probabilistic Duplicator winning strategies in the EF
game, but there are quantum ones. Concrete construction?

Uniform 2-categorical proof of the Transfer Theorems? Application to other
probability monads, e.g. Giry monad?
K ExQq — Qg is a coKleisli law, so by work Jakl+Marsden+S [3], we obtain:
A =315, B = Qu(A) =3+50, Qu(B)
A =40, B = Qi(A) =40, Qu(B)
What about FO,? Check (S1) and (S2) axioms in this paper.

Quantum R-consistency test for approximating quantum homomorphism?
Quantum k-Weisfeiler Leman test for approximating quantum isomorphism?

Connections with the local-global consistency in database theory?
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