University College London

Samson Abramsky on Logic and Structure in Computer Science and Beyond

Rafał Stefański

Founded by EPSRC project "Resources in Computation"

Monads

MA Data structure

$MMA \longrightarrow MA$ Flattening operation

 $A \longrightarrow MA$

Singleton operation

Monads

MA Data structure

 $A \longrightarrow MA$

Singleton operation

Monads

MA Data structure

Together with coherence axioms

$MMA \longrightarrow MA$ Flattening operation

 $A \longrightarrow MA$

Singleton operation

MA Data structure

$MMA \longleftarrow MA$ Expanding operation

A - MA

Extracting operation

Together with coherence axioms

Monads = Languages Monads + Comonads = Transducers

Monads = Languages^{*} Monads + Comonads = Transducers

Monads = Languages Monads = Transducers

Monads = Languages Monads = Languages Monads = Transducers This talk.

 $MA \rightarrow MMA$ $MA \rightarrow A$

 $MA = A^+$

 $MA \rightarrow MMA$ $MA \rightarrow A$

 $MA = A^+$

$[[1, 2, 3], [4, 5], [6, 7]] \mapsto [1, 2, 3, 4, 5, 7]$

$7 \mapsto [7]$

 $MA \rightarrow MMA$ $MA \rightarrow A$

 $MA = A^+$

$[[1, 2, 3], [4, 5], [6, 7]] \mapsto [1, 2, 3, 4, 5, 7]$

$7 \mapsto [7]$

 $MA \rightarrow MMA$ $MA \rightarrow A$

 $MA = A^+$

$[[1, 2, 3], [4, 5], [6, 7]] \mapsto [1, 2, 3, 4, 5, 7]$

$7 \mapsto [7]$

$[1,2,3,4] \mapsto [[1],[1,2],[1,2,3],[1,2,3,4]]$

 $MA = A^+$

$[[1, 2, 3], [4, 5], [6, 7]] \mapsto [1, 2, 3, 4, 5, 7]$

$7 \mapsto [7]$

$[1,2,3,4] \mapsto [[1],[1,2],[1,2,3],[1,2,3,4]]$

 $MA = A^+$

$[[1, 2, 3], [4, 5], [6, 7]] \mapsto [1, 2, 3, 4, 5, 7]$

$7 \mapsto [7]$

$[1,2,3,4] \mapsto [[1],[1,2],[1,2,3],[1,2,3,4]]$

 $[1,2,3,4] \mapsto 4$

Given a regular language:

We define the following transduction:

$L: M\Sigma \rightarrow \{ Yes, No \}$

$M\Sigma \longrightarrow MM\Sigma \longrightarrow MM\Sigma \longrightarrow M\{Yes, No\}$

Given a regular language:

We define the following transduction:

[a, b, a, a]

$L: M\Sigma \rightarrow \{ Yes, No \}$

$M\Sigma \longrightarrow MM\Sigma \longrightarrow MM\Sigma \longrightarrow M\{Yes, No\}$

Given a regular language:

We define the following transduction:

$L: M\Sigma \rightarrow \{\text{Yes}, \text{No}\}$

Given a regular language:

We define the following transduction:

$L: M\Sigma \rightarrow \{\text{Yes}, \text{No}\}$

Given a regular language:

We define the following transduction:

$L: M\Sigma \to \Gamma$

$M\Sigma \longrightarrow MM\Sigma \longrightarrow ML$

Given a regular language:

We define the following transduction:

$L: M\Sigma \to \Gamma$

This gives us a class of M-transductions.

Μ

Expressive Power

Μ

Non-empty lists with prefixes

Expressive Power

Mealy machines

Μ

Non-empty lists with prefixes

Non-empty lists with suffixes

Expressive Power

Mealy machines

Right-to-left Mealy machines

Μ

Non-empty lists with prefixes

Non-empty lists with suffixes

Lists with an underlined element

Expressive Power
Mealy machines
Right-to-left Mealy machines
Rational letter-to-letter functions

Μ

Non-empty lists with prefixes

Non-empty lists with suffixes

Lists with an underlined element

Other examples of M:

	Expressive Power
	Mealy machines
	Right-to-left Mealy machines
d	Rational letter-to-letter functions

Μ

Non-empty lists with prefixes

Non-empty lists with suffixes

Lists with an underlined element

Other examples of M:

Words over countable orders with a maximal/minimal/underlined element.

	Expressive Power
	Mealy machines
	Right-to-left Mealy machines
d	Rational letter-to-letter functions

Μ

Non-empty lists with prefixes

Non-empty lists with suffixes

Lists with an underlined element

Other examples of M:

Words over countable orders with a maximal/minimal/underlined element. Terms with an underlined variable.

	Expressive Power
	Mealy machines
	Right-to-left Mealy machines
d	Rational letter-to-letter functions

Μ

Non-empty lists with prefixes

Non-empty lists with suffixes

Lists with an underlined element

Other examples of M:

Words over countable orders with a maximal/minimal/underlined element. Terms with an underlined variable.

	Expressive Power
	Mealy machines
	Right-to-left Mealy machines
d	Rational letter-to-letter functions

M-transductions are closed under compositions.

This needs some axioms about the monad-comonad interactions.

M-transductions are closed under compositions.

This needs some axioms about the monad-comonad interactions.

Verified in Coq

Axioms

One additional operation

put : $MA \times A \rightarrow MA$

One additional operation

put : $MA \times A \rightarrow MA$

Replace the focused element of a comonad

One additional operation

$([1,2,3,4], 5) \mapsto [1,2,3,5]$

put : $MA \times A \rightarrow MA$

Replace the focused element of a comonad

$put \times id$

$put \times id$

Associativity of put

Where work is defined as follows:

 $\langle id, coUnit \rangle$ $id \times coMult$ strength M put M mult $MMA \longrightarrow MMA \times MA \longrightarrow MMA \times MMA \longrightarrow M(MMA \times MA) \longrightarrow MMMA \longrightarrow MMA$

[[1,2,3], [4,5,6], [7,8,9]]

[[1,2,3], [4,5,6], [7,8,9]] comult

comult

[[1,2,3], [4,5,6], [7,8,9]] [[[1,2,3]], [[1,2,3], [4,5,6]], [[1,2,3], [4,5,6], [7,8,9]]]]

comult $M \langle id, coUnit \rangle$

[[1,2,3], [4,5,6], [7,8,9]] [[[1,2,3]], [[1,2,3], [4,5,6]], [[1,2,3], [4,5,6], [7,8,9]]]]

comult $M \langle id, coUnit \rangle$

[[1,2,3], [4,5,6], [7,8,9]][[[1,2,3]], [[1,2,3], [4,5,6]], [[1,2,3], [4,5,6], [7,8,9]]]] [([1,2,3]], [1,2,3]), ([[1,2,3], [4,5,6]], [4,5,6]), ([[1,2,3], [4,5,6], [7,8,9]], [7,8,9])]

comult $M \langle id, coUnit \rangle$ $M(\text{id} \times \text{coMult})$

[[1,2,3], [4,5,6], [7,8,9]][[[1,2,3]], [[1,2,3], [4,5,6]], [[1,2,3], [4,5,6], [7,8,9]]]] [([1,2,3]], [1,2,3]), ([[1,2,3], [4,5,6]], [4,5,6]), ([[1,2,3], [4,5,6], [7,8,9]], [7,8,9])]

comult $M \langle id, coUnit \rangle$ $M(\text{id} \times \text{coMult})$

[1,2,3], [4,5,6], [7,8,9]] [[[1,2,3]], [[1,2,3], [4,5,6]], [[1,2,3], [4,5,6], [7,8,9]]] [([1,2,3]], [1,2,3]), ([[1,2,3], [4,5,6]], [4,5,6]), ([[1,2,3], [4,5,6], [7,8,9]], [7,8,9])]

[..., ([[1,2,3], [4,5,6]], [[4], [4,5], [4,5,6]]), ...]

[([1,2,3]], [[1], [1,2], [1,2,3]]), ([[1,2,3], [4,5,6]], [[4], [4,5], [4,5,6]]), ([[1,2,3], [4,5,6], [7,8,9]], [[7], [7,8], [7,8,9]])]

[..., ([[1,2,3], [4,5,6]], [[4], [4,5], [4,5,6]]), ...] Mstrength


```
[\ldots, ([[1,2,3], [4,5,6]], [[4], [4,5], [4,5,6]]), \ldots]
                                                     M strength
[\ldots, [([1,2,3], [4,5,6]], [4]), ([[1,2,3], [4,5,6]], [4,5]), ([[1,2,3], [4,5,6]], [4,5,6]], [4,5,6])], \ldots]
```

```
[\ldots, ([[1,2,3], [4,5,6]], [[4], [4,5], [4,5,6]]), \ldots]
                                                    Mstrength
[\ldots, [([1,2,3], [4,5,6]], [4]), ([[1,2,3], [4,5,6]], [4,5]), ([[1,2,3], [4,5,6]], [4,5,6]], [4,5,6])], \ldots]
                                                     MM put
```

```
[\ldots, ([[1,2,3], [4,5,6]], [[4], [4,5], [4,5,6]]), \ldots]
                                                   M strength
[\ldots, [([1,2,3], [4,5,6]], [4]), ([[1,2,3], [4,5,6]], [4,5]), ([[1,2,3], [4,5,6]], [4,5,6]], [4,5,6])], \ldots]
                                                    MM put
                [..., [[[1,2,3], [4]], [[1,2,3], [4,5]], [[1,2,3], [4,5,6]]], ...]
```

```
[\ldots, ([[1,2,3], [4,5,6]], [[4], [4,5], [4,5,6]]), \ldots]
                                                    M strength
[\ldots, [([1,2,3], [4,5,6]], [4]), ([[1,2,3], [4,5,6]], [4,5]), ([[1,2,3], [4,5,6]], [4,5,6]], [4,5,6])], \ldots]
                                                    MM put
                [..., [[[1,2,3], [4]], [[1,2,3], [4,5]], [[1,2,3], [4,5,6]]], ...]
                                                    MM mult
```

```
[\ldots, ([[1,2,3], [4,5,6]], [[4], [4,5], [4,5,6]]), \ldots]
                                                                                                                                                                                                                                                                                                                                                                       M strength
[\dots, [([1,2,3],[4,5,6]],[4]), ([[1,2,3],[4,5,6]],[4,5]), ([[1,2,3],[4,5,6]],[4,5,6]], [4,5,6]], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,3], [1,2,
                                                                                                                                                                                                                                                                                                                                                                          MM put
                                                                                                                    [..., [[[1,2,3], [4]], [[1,2,3], [4,5]], [[1,2,3], [4,5,6]]], ...]
                                                                                                                                                                                                                                                                                                                                                                          MM mult
                                                                                                                                                                         [\ldots, [[1,2,3,4], [1,2,3,4,5], [1,2,3,4,5,6]], \ldots]
```

Alternative formulation

Alternative formulation

Problems with axiomatization of strength:

Problems with axiomatization of strength:

Problems with axiomatization of strength:

Thank you!

