Dimension theory for families of sets

Jouko Väänänen

Joint work with Lauri Hella and Kerkko Luosto (paper in arXiv)

Workshop on "Samson Abramsky on Logic and Structure in Computer Science and Beyond" in London, September 2023

Forging new atoms

$$\left(\begin{array}{cc} \forall \vec{x} & \exists y \\ \forall \vec{u} & \exists v \end{array}\right) \phi \equiv \forall \vec{x} \forall \vec{u} \exists y \exists v (=(\vec{x}, y) \land =(\vec{u}, v) \land \phi)$$

• Old atoms: x = y, $R(x_1, \ldots, x_n)$

- New atoms: $=(x_1, ..., x_n, y), =(x)$ (V. 2007)
- From individual assignments to sets of assignments.
- Truth values are families of sets of assignments, not sets of assignments.
- "From IF to BI" (Abramsky-V. 2009).
- ▶ Intuitionistic implication $\phi \rightarrow \psi$: "every subfamily of type ϕ is of type ψ ".

$$\blacktriangleright \models = (x_1, \ldots, x_n, y) \equiv (= (x_1) \land \ldots \land = (x_n)) \rightarrow = (y)$$

Propositional operators on families of sets

$$\left\{egin{array}{ll} \Delta_\cup(\mathcal{A},\mathcal{B})&=&\mathcal{A}\cup\mathcal{B}\ \Delta_\cap(\mathcal{A},\mathcal{B})&=&\mathcal{A}\cap\mathcal{B}\ \Delta_c(\mathcal{A})&=&\mathcal{P}(X)\setminus\mathcal{A} \end{array}
ight.$$

$$\left\{egin{array}{ll} \Delta_{ee}(\mathcal{A},\mathcal{B})&=&\{A\cup B\mid A\in\mathcal{A},B\in\mathcal{B}\}\ \Delta_{\wedge}(\mathcal{A},\mathcal{B})&=&\{A\cap B\mid A\in\mathcal{A},B\in\mathcal{B}\}\ \Delta_{\neg}(\mathcal{A})&=&\{X\setminus A\mid A\in\mathcal{A}\}\end{array}
ight.$$

 $\Delta_{\rightarrow}(\mathcal{A},\mathcal{B}) = \{ C \mid \forall D \subseteq C(D \in \mathcal{A} \Rightarrow D \in \mathcal{B}) \}$

Quantifier operators on families of sets

$$\begin{array}{lll} \Delta_{\exists i}(\mathcal{A}) &=& \{f[\mathcal{A}] \mid \mathcal{A} \in \mathcal{A}\} \text{ where} \\ && f(a_0, \dots, a_{m-1}) = (a_0, \dots, a_{i-1}, a_{i+1}, \dots, a_{m-1}) \\ \Delta_{\forall i}(\mathcal{A}) &=& \{B \mid B[X/i] \in \mathcal{A}\}, \text{ where } B[X/i] = \\ && \{(a_0, \dots, a_{i-1}, a_i, a_{i+1}, \dots, a_{m-1}) \mid \\ && (a_0, \dots, a_{i-1}, a_{i+1}, \dots, a_{m-1}) \in B, a_i \in X\} \end{array}$$

(Abramsky-V. (2009) gives a category-theoretic justification of these definitions.)

Truth values

Fix a model M.

$$\begin{split} \|\phi\|^{M} &= \mathcal{P}(\{\vec{a} \in M^{m} \mid M \models \phi(\vec{a})\}), \text{ for } \phi(\vec{x}) \text{ a literal} \\ \|\phi \wedge \psi\|^{M} &= \Delta_{\cup}(\|\phi\|^{M}, \|\psi\|^{M}) \\ \|\phi \vee \psi\|^{M} &= \Delta_{\vee}(\|\phi\|^{M}, \|\psi\|^{M}) \\ \|\exists x_{i}\phi\|^{M} &= \Delta_{\exists i}^{M^{m}}(\|\phi\|^{M}) \\ \|\forall x_{i}\phi\|^{M} &= \Delta_{\forall i}^{M^{m}}(\|\phi\|^{M}), \end{split}$$

The atomic level: new atoms

- **Dependence atom**: $\|=(\vec{x}, y)\|^M$ is the family of sets T of assignments such that $s(\vec{x}) = s'(\vec{x})$ implies s(y) = s'(y) for all $s, s' \in T$.
- Inclusion atom: ||x ⊆ y ||^M is the family of sets T of assignments such that for every s ∈ T there is s' ∈ T such that s(x) = s'(y).
- ▶ Independence atom: $\|\vec{x} \perp \vec{y}\|^M$ is the family of sets T of assignments such that for every $s, s' \in T$ there is $s'' \in T$ such that $s''(\vec{x}) = s(\vec{x})$ and $s''(\vec{y}) = s'(\vec{y})$.

New logics

New atom	New logic $(\lor, \land, \forall, \exists)$	
=(x,y)	Dependence logic	
$x \subseteq y$	Inclusion logic	
$x \perp y$	Independence logic	

Toward a dimension analysis of these and related logics

- \mathcal{A} is *convex* if $\forall C (A \subseteq C \subseteq B \Rightarrow C \in \mathcal{A})$ for all $A, B \in \mathcal{A}$.
- \mathcal{A} is *dominated* (by $\bigcup \mathcal{A}$) if $\bigcup \mathcal{A} \in \mathcal{A}$.
- $\mathcal{G} \subseteq \mathcal{A}$ dominates \mathcal{A} if there exist dominated convex families \mathcal{A}_G , $G \in \mathcal{G}$, such that $\bigcup_{G \in \mathcal{G}} \mathcal{A}_G = \mathcal{A}$ and $\bigcup \mathcal{A}_G = G$, for each $G \in \mathcal{G}$.
- The **dimension** of A:

 $\mathsf{D}(\mathcal{A}) = \min\{|\mathcal{G}| \mid \mathcal{G} \text{ dominates the family } \mathcal{A}\},$

Dimensions of some families

Theorem Suppose $\ell = |X| \ge 2$ and $n = |Y| \ge 2$. Then:

 $D(\{f \subseteq X \times Y \mid f \text{ is a mapping }\}) = n^{\ell}$ $D(\{R \subseteq X \times X \mid dom(R) \subseteq rg(R)\}) = 2^{\ell} - \ell$ $D(\{A \times B \mid A \subseteq X, B \subseteq Y\}) = (2^{\ell} - \ell - 1)(2^{n} - n - 1) + \ell + n$

Dimensions of some atoms

Suppose |M| = n.

ϕ	$D(\ \phi\ ^M)$	
x = y	1	
$x \neq y$	1	
$R(\vec{x})$	1	
$\neg R(\vec{x})$	1	
=(y)	n	
$=(\vec{x}, y)$	n ^{n^m}	$\operatorname{len}(\vec{x}) = m$
$\vec{x} \subseteq \vec{y}$	$2^{n^m} - n^m$	$\operatorname{len}(\vec{x}) = \operatorname{len}(\vec{y}) = m$
$\vec{x} \perp \vec{y}$	$\approx 2^{n^m+n^k}$	$\operatorname{len}(\vec{x}) = m, \operatorname{len}(\vec{y}) = k$

Growth classes

- ▶ \mathbb{E}_k is the set of $f: \mathbb{N} \to \mathbb{N}$ such that there exists a polynomial p of degree k such that $f(n) \leq 2^{p(n)}$.
- ▶ \mathbb{F}_k is the set of functions $f : \mathbb{N} \to \mathbb{N}$ such that there exists a polynomial p of degree k such that $f(n) \leq n^{p(n)}$.
- $\blacktriangleright \mathbb{E}_0 \subsetneq \mathbb{F}_0 \subsetneq \mathbb{E}_1 \subsetneq \mathbb{F}_1 \subsetneq \cdots \subsetneq \mathbb{E}_k \subsetneq \mathbb{F}_k.$
- Note that 𝔅₀ is the class of bounded functions and 𝔅₀ the class of functions of polynomial growth.

The dimension of a formula

$$\mathsf{Dim}_{\phi}(n) = \mathsf{sup}\left\{\mathsf{D}(\|\phi\|^{M}) \mid M \text{ is a model}, |M| = n\right\}$$

- 1. $\text{Dim}_{\phi,\vec{x}}(n) = 1$, hence Dim_{ϕ} is in \mathbb{E}_0 , for every first order ϕ .
- 2. $\text{Dim}_{=(\vec{x},y)}(n) = n^{n^k}$, hence $\text{Dim}_{=(\vec{x},y)}$ is in \mathbb{F}_k , where $\text{len}(\vec{x}) = k$.
- 3. $\operatorname{Dim}_{\vec{x}\subseteq\vec{y}}(n) = 2^{n^k} n^k$, hence $\operatorname{Dim}_{\vec{x}\subseteq\vec{y}}$ is in \mathbb{E}_k , where $\operatorname{len}(\vec{x}) = \operatorname{len}(\vec{y}) = k$.
- 4. $\text{Dim}_{\vec{x}\perp\vec{y}}(n) = (2^{n^m} n^m 1)(2^{n^k} n^k 1) + n^m + n^k$, hence $\text{Dim}_{\vec{x}\perp\vec{y}}$ is in \mathbb{E}_{m+k} , where $\text{len}(\vec{x}) = k$ and $\text{len}(\vec{y}) = m$.

Theorem

Let \mathbb{O} be a growth class (i.e. some \mathbb{E}_i or \mathbb{F}_i). Furthermore, let $\phi = \phi(\vec{x})$ and $\psi = \psi(\vec{x})$ be formulas of some logic \mathcal{L} with team semantics.

(a) If φ is a literal, then Dim_φ ∈ D.
(b) If Dim_φ, Dim_ψ ∈ D, then Dim_{φ∧ψ} ∈ D.
(c) If Dim_φ, Dim_ψ ∈ D, then Dim_{φ∨ψ} ∈ D.
(d) If Dim_φ ∈ D, then Dim_{∃xiφ} ∈ D and Dim_{∀xiφ} ∈ D.

How is the theorem proved?

Definition

Let X and Y be nonempty sets. A function $\Delta \colon \mathcal{P}(\mathcal{P}(X))^n \to \mathcal{P}(\mathcal{P}(Y))$ is a Kripke-operator, if there is a relation $\mathcal{R} \subseteq \mathcal{P}(Y) \times \mathcal{P}(X)^n$ such that

$$B \in \Delta(\mathcal{A}_0, \dots, \mathcal{A}_{n-1}) \iff \\ \exists A_0 \in \mathcal{A}_0 \dots \exists A_{n-1} \in \mathcal{A}_{n-1} : (B, A_0, \dots, A_{n-1}) \in \mathcal{R}.$$

- Δ_{\cap} is a Kripke-operator.¹
- Δ_{\vee} and Δ_{\neg} on X are Kripke-operators.²
- $\Delta_{\exists i}$ and $\Delta_{\forall i}$ are Kripke-operators.
- Δ_{\cup} is **not** a Kripke-operator.
- Δ_c is **not** a Kripke-operator
- Δ_{\rightarrow} is **not** a Kripke-operator

¹If $\mathcal{A}, \mathcal{B} \subseteq \mathcal{P}(X)$ and $\mathcal{C} \in \mathcal{P}(X)$, then $\mathcal{C} \in \mathcal{A} \cap \mathcal{B}$ if and only if there exist $A \in \mathcal{A}$ and $B \in \mathcal{B}$ such that $(\mathcal{C}, A, B) \in \mathcal{R}_{\cap}$, where \mathcal{R}_{\cap} is the relation $\{(D, D, D) \mid D \in \mathcal{P}(X)\}.$ ² $\mathcal{A} \lor \mathcal{B} = \Delta_{\mathcal{R}_{\vee}}(\mathcal{A}, \mathcal{B})$ and $\Delta_{\neg}^{X}(\mathcal{A}) = \Delta_{\mathcal{R}_{\neg}}(\mathcal{A})$ where $\mathcal{R}_{\vee} = \{(A \cup B, A, B) \mid A, B \in \mathcal{P}(X)\}$ and $\mathcal{R}_{\neg} = \{(X \setminus \mathcal{A}, A) \mid A \in \mathcal{P}(X)\}.$ ^{16/27}

Definition

We say that Δ weakly preserves dominated convexity if $\Delta(\mathcal{A}_0, \ldots, \mathcal{A}_{n-1})$ is dominated and convex (or $\Delta(\mathcal{A}_0, \ldots, \mathcal{A}_{n-1}) = \emptyset$) whenever \mathcal{A}_i is dominated and convex for each i < n.

Theorem

.

Let $\Delta_{\mathcal{R}} \colon \mathcal{P}(\mathcal{P}(X))^n \to \mathcal{P}(\mathcal{P}(Y))$ be a Kripke-operator, and let $\mathcal{A} = \Delta(\mathcal{A}_0, \ldots, \mathcal{A}_{n-1})$. If Δ weakly preserves dominated convexity then

 $\mathsf{D}(\Delta_{\mathcal{R}}(\mathcal{A}_0,\ldots,\mathcal{A}_{n-1})) \leq \mathsf{D}(\mathcal{A}_0)\cdot\ldots\cdot\mathsf{D}(\mathcal{A}_{n-1})$

Below we will use the notation

$$\mathcal{R}[A] := \{ (A_0, \ldots, A_{n-1}) \mid (A, A_0, \ldots, A_{n-1}) \in \mathcal{R} \}.$$

Definition (Lück 2020)

A Kripke-operator $\Delta_{\mathcal{R}} \colon \mathcal{P}(\mathcal{P}(X))^n \to \mathcal{P}(\mathcal{P}(Y))$ is *local* if, for any $A \in \mathcal{P}(Y)$, $\mathcal{R}[A]$ is determined by the relations $\mathcal{R}[\{a\}]$, $a \in A$, as follows:

$$(A_0, \ldots, A_{n-1}) \in \mathcal{R}[A] \iff$$
 for each $a \in A$ there is $(A_0^a, \ldots, A_{n-1}^a) \in \mathcal{R}[\{a\}]$ such that $A_i = \bigcup_{a \in A} A_i^a$ for $i < n$.

Theorem

If $\Delta_{\mathcal{R}} \colon \mathcal{P}(\mathcal{P}(X))^n \to \mathcal{P}(\mathcal{P}(Y))$ is a local Kripke-operator, then it weakly preserves dominated convexity.

Theorem

The operators $\Delta_{\cap}^{M^m}$, $\Delta_{\vee}^{M^m}$, $\Delta_{\exists i}^{M^m}$ and $\Delta_{\forall i}^{M^m}$ are local.

Hence they preserve dimension!

Definition

The logic \mathbb{LE}_k is the closure of literals and all atoms whose dimension function is in the growth class \mathbb{E}_k under the connectives \land , \lor and any Lindström quantifiers. Similarly \mathbb{LF}_k for \mathbb{F}_k .

Lemma

```
(a) \mathbb{LE}_k \subseteq \mathbb{LF}_k \subseteq \mathbb{LE}_{k+1} \subseteq \mathbb{LF}_{k+1}.
```

Note:

- (a) The dimension of every formula in \mathbb{LE}_k is in the growth class \mathbb{E}_k .
- (b) The dimension of every formula in \mathbb{LF}_k is in the growth class \mathbb{F}_k .

The arity-concept

Definition

- The atom $=(\vec{x}, y)$ is k-ary, if $len(\vec{x}) = k$,
- The atom $\vec{x} \subseteq \vec{y}$ is k-ary if $\operatorname{len}(\vec{x}) = \operatorname{len}(\vec{y}) = k$,
- The atom $\vec{t}_2 \perp \vec{t}_3$ is max(k, l)-ary, if len $(\vec{t}_2) = k$, and len $(\vec{t}_3) = l$.

Theorem

- k-ary inclusion and independence logics are included in LE_k.
- 2. The k-ary dependence logic is included in \mathbb{LF}_k .
- 3. The (k, l)-ary independence logic is included in $\mathbb{LF}_{\max(k,l)}$.

Theorem

- 1. The k + 1-ary inclusion, anonymity, exclusion and independence atoms are not definable in \mathbb{LE}_k .
- 2. The k + 1-ary dependence atom is not definable in \mathbb{LF}_k .
- The (k, l)-ary independence atom is not definable in LF_i if i < max(k, l).

Hence:

Dependence logic, inclusion logic, and pure independence logic each has a proper definability hierarchy for formulas based on the arity of the non-first order atoms.

But the above result is, of course, much stronger.

An application to intuitionistic implication

$$=(x_1,\ldots,x_n,y) \equiv (=(x_1) \land \ldots \land =(x_n)) \rightarrow =(y)$$

exponential

linear

linear

Ergo: \rightarrow is exponential³

An application to intuitionistic disjunction

$$\left\|\phi \leq \psi\right\|^{\mathcal{M}} = \left\|\phi\right\|^{\mathcal{M}} \cup \left\|\psi\right\|^{\mathcal{M}}$$

$$x = y \vee x \neq y$$
 has dimension 2

Ergo: $\underline{\vee}$ cannot be defined in first order logic.

$$\mathcal{M}\models_{\boldsymbol{X}}\phi\odot\psi\iff$$

$$\forall_{\neq \emptyset} Y, Z \subseteq X((\mathcal{M} \models_Y \phi \text{ and } \mathcal{M} \models_Z \psi) \rightarrow \\ \exists Y', Z' \subseteq X(Y \subseteq Y', Z \subseteq Z', \mathcal{M} \models_{Y'} \phi, \mathcal{M} \models_{Z'} \psi, \\ \text{ and } Y' \cap Z' \neq \emptyset)).$$

$$x \perp y \iff =(x) \odot =(y)$$

Ergo: \odot is exponential and not definable from dependence and inclusion atoms, even if Lindström quantifiers are added.

Many open problems:

- Is the k-ary dependence atom definable in the extension of first order logic by k-ary independence, exclusion, inclusion, anonymity, constancy atoms, and some Lindström quantifiers?
- 2. Is the *k*-ary anonymity atom definable in terms of the *k*-ary inclusion atom?
- Is the (k, l, m)-ary independence atom definable in terms of the max(k, l) + m-ary dependence atom, max(k, l) + m-ary, max(k, l) + m-ary exclusion atoms, and the max(k, l) + m-ary inclusion atom?

Note: Sentences have dimension 1, so dimension theory cannot be used to obtain hierarchy results for sentences.

Congratulations Samson

for the incredible book,

and many happy returns!