
Dimension theory for families of sets

Jouko Väänänen

Joint work with Lauri Hella and Kerkko Luosto (paper in arXiv)

Workshop on “Samson Abramsky on Logic and Structure in
Computer Science and Beyond” in London, September 2023

1 / 27



Forging new atoms

I
( ∀~x ∃y
∀~u ∃v

)
φ ≡ ∀~x ∀~u ∃y∃v(=(~x , y)∧ =(~u, v) ∧ φ)

I Old atoms: x = y , R(x1, . . . , xn)

I New atoms: =(x1, . . . , xn, y), =(x) (V. 2007)

I From individual assignments to sets of assignments.

I Truth values are families of sets of assignments, not sets
of assignments.

I “From IF to BI” (Abramsky-V. 2009).

I Intuitionistic implication φ→ ψ: “every subfamily of type
φ is of type ψ”.

I |= =(x1, . . . , xn, y) ≡ (=(x1) ∧ . . .∧ =(xn)) → =(y)
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Propositional operators on families of sets


∆∪(A,B) = A ∪ B
∆∩(A,B) = A ∩ B
∆c(A) = P(X ) \ A
∆∨(A,B) = {A ∪ B | A ∈ A,B ∈ B}
∆∧(A,B) = {A ∩ B | A ∈ A,B ∈ B}
∆¬(A) = {X \ A | A ∈ A}

∆→(A,B) = {C | ∀D ⊆ C (D ∈ A ⇒ D ∈ B)}
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Quantifier operators on families of sets

∆∃i(A) = {f [A] | A ∈ A} where

f (a0, . . . , am−1) = (a0, . . . , ai−1, ai+1, . . . , am−1)

∆∀i(A) = {B | B[X/i ] ∈ A}, where B[X/i ] =

{(a0, . . . , ai−1, ai , ai+1, . . . , am−1) |
(a0, . . . , ai−1, ai+1, . . . , am−1) ∈ B , ai ∈ X}

(Abramsky-V. (2009) gives a category-theoretic justification of
these definitions.)
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Truth values

Fix a model M .

‖φ‖M = P({~a ∈ Mm | M |= φ(~a)}), for φ(~x) a literal

‖φ ∧ ψ‖M = ∆∪(‖φ‖M , ‖ψ‖M)

‖φ ∨ ψ‖M = ∆∨(‖φ‖M , ‖ψ‖M)

‖∃xiφ‖M = ∆Mm

∃i (‖φ‖M)

‖∀xiφ‖M = ∆Mm

∀i (‖φ‖M),
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The atomic level: new atoms

I Dependence atom: ‖=(~x , y)‖M is the family of sets T
of assignments such that s(~x) = s ′(~x) implies
s(y) = s ′(y) for all s, s ′ ∈ T .

I Inclusion atom: ‖~x ⊆ ~y‖M is the family of sets T of
assignments such that for every s ∈ T there is s ′ ∈ T
such that s(~x) = s ′(~y).

I Independence atom: ‖~x ⊥ ~y‖M is the family of sets T
of assignments such that for every s, s ′ ∈ T there is
s ′′ ∈ T such that s ′′(~x) = s(~x) and s ′′(~y) = s ′(~y).
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New logics

New atom New logic (∨,∧,∀,∃)

=(x , y) Dependence logic
x ⊆ y Inclusion logic
x ⊥ y Independence logic
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Toward a dimension analysis of these and related logics

I A is convex if ∀C (A ⊆ C ⊆ B ⇒ C ∈ A) for all
A,B ∈ A.

I A is dominated (by
⋃
A) if

⋃
A ∈ A.

I G ⊆ A dominates A if there exist dominated convex
families AG , G ∈ G, such that

⋃
G∈G AG = A and⋃

AG = G , for each G ∈ G.

I The dimension of A:

D(A) = min{|G| | G dominates the family A},
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Dimensions of some families

Theorem
Suppose ` = |X | ≥ 2 and n = |Y | ≥ 2. Then:

D({f ⊆ X × Y | f is a mapping }) = n`

D({R ⊆ X × X | dom(R) ⊆ rg(R)}) = 2` − `
D({A× B | A ⊆ X , B ⊆ Y }) =

(2` − `− 1)(2n − n − 1) + ` + n

10 / 27



Dimensions of some atoms

Suppose |M | = n.

φ D(‖φ‖M)

x = y 1

x 6= y 1

R(~x) 1

¬R(~x) 1

=(y) n

=(~x , y) nn
m

len(~x) = m

~x ⊆ ~y 2nm − nm len(~x) = len(~y) = m

~x ⊥ ~y ≈ 2nm+nk len(~x) = m, len(~y) = k

11 / 27



Growth classes

I Ek is the set of f : N→ N such that there exists a
polynomial p of degree k such that f (n) ≤ 2p(n).

I Fk is the set of functions f : N→ N such that there exists
a polynomial p of degree k such that f (n) ≤ np(n).

I E0 ( F0 ( E1 ( F1 ( · · · ( Ek ( Fk .

I Note that E0 is the class of bounded functions and F0 the
class of functions of polynomial growth.
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The dimension of a formula

Dimφ(n) = sup
{

D(‖φ‖M) | M is a model, |M | = n
}

1. Dimφ,~x(n) = 1, hence Dimφ is in E0, for every first order
φ.

2. Dim=(~x ,y)(n) = nn
k
, hence Dim=(~x ,y) is in Fk , where

len(~x) = k .

3. Dim~x⊆~y (n) = 2nk − nk , hence Dim~x⊆~y is in Ek , where
len(~x) = len(~y) = k .

4. Dim~x⊥~y (n) = (2nm − nm − 1)(2nk − nk − 1) + nm + nk ,
hence Dim~x⊥~y is in Em+k , where len(~x) = k and
len(~y) = m.
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Theorem
Let O be a growth class (i.e. some Ei or Fi). Furthermore, let
φ = φ(~x) and ψ = ψ(~x) be formulas of some logic L with
team semantics.

(a) If φ is a literal, then Dimφ ∈ O.

(b) If Dimφ,Dimψ ∈ O, then Dimφ∧ψ ∈ O.

(c) If Dimφ,Dimψ ∈ O, then Dimφ∨ψ ∈ O.

(d) If Dimφ ∈ O, then Dim∃xiφ ∈ O and Dim∀xiφ ∈ O.
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How is the theorem proved?

Definition
Let X and Y be nonempty sets. A function
∆: P(P(X ))n → P(P(Y )) is a Kripke-operator, if there is a
relation R ⊆ P(Y )× P(X )n such that

B ∈ ∆(A0, . . . ,An−1) ⇐⇒
∃A0 ∈ A0 . . . ∃An−1 ∈ An−1 : (B ,A0, . . . ,An−1) ∈ R.
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I ∆∩ is a Kripke-operator.1

I ∆∨ and ∆¬ on X are Kripke-operators.2

I ∆∃i and ∆∀i are Kripke-operators.

I ∆∪ is not a Kripke-operator.

I ∆c is not a Kripke-operator

I ∆→ is not a Kripke-operator

1If A,B ⊆ P(X ) and C ∈ P(X ), then C ∈ A ∩ B if and only if there exist
A ∈ A and B ∈ B such that (C ,A,B) ∈ R∩, where R∩ is the relation
{(D,D,D) | D ∈ P(X )}.

2A ∨ B = ∆R∨(A,B) and ∆X
¬(A) = ∆R¬(A) where

R∨ = {(A ∪ B,A,B) | A,B ∈ P(X )} and R¬ = {(X \ A,A) | A ∈ P(X )}.
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Definition
We say that ∆ weakly preserves dominated convexity if
∆(A0, . . . ,An−1) is dominated and convex (or
∆(A0, . . . ,An−1) = ∅) whenever Ai is dominated and convex
for each i < n.

Theorem
Let ∆R : P(P(X ))n → P(P(Y )) be a Kripke-operator, and
let A = ∆(A0, . . . ,An−1). If ∆ weakly preserves dominated
convexity then

D(∆R(A0, . . . ,An−1)) ≤ D(A0) · . . . · D(An−1)

.
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Below we will use the notation

R[A] := {(A0, . . . ,An−1) | (A,A0, . . . ,An−1) ∈ R}.

Definition (Lück 2020)

A Kripke-operator ∆R : P(P(X ))n → P(P(Y )) is local if, for
any A ∈ P(Y ), R[A] is determined by the relations R[{a}],
a ∈ A, as follows:

(A0, . . . ,An−1) ∈ R[A] ⇐⇒ for each a ∈ A there is
(Aa

0, . . . ,A
a
n−1) ∈ R[{a}] such that Ai =

⋃
a∈A A

a
i for

i < n.

Theorem
If ∆R : P(P(X ))n → P(P(Y )) is a local Kripke-operator,
then it weakly preserves dominated convexity.

Theorem
The operators ∆Mm

∩ , ∆Mm

∨ , ∆Mm

∃i and ∆Mm

∀i are local.

Hence they preserve dimension!
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Definition
The logic LEk is the closure of literals and all atoms whose
dimension function is in the growth class Ek under the
connectives ∧, ∨ and any Lindström quantifiers. Similarly LFk

for Fk .

Lemma

(a) LEk ⊆ LFk ⊆ LEk+1 ⊆ LFk+1.

Note:

(a) The dimension of every formula in LEk is in the growth
class Ek .

(b) The dimension of every formula in LFk is in the growth
class Fk .

19 / 27



The arity-concept

Definition

I The atom =(~x , y) is k-ary, if len(~x) = k ,

I The atom ~x ⊆ ~y is k-ary if len(~x) = len(~y) = k ,

I The atom ~t2 ⊥ ~t3 is max(k , l)-ary, if
len(~t2) = k , and len(~t3) = l .
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Theorem

1. k-ary inclusion and independence logics are included in
LEk .

2. The k-ary dependence logic is included in LFk .

3. The (k , l)-ary independence logic is included in LFmax(k,l).

Theorem

1. The k + 1-ary inclusion, anonymity, exclusion and
independence atoms are not definable in LEk .

2. The k + 1-ary dependence atom is not definable in LFk .

3. The (k , l)-ary independence atom is not definable in LFi

if i < max(k , l).
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Hence:

Dependence logic, inclusion logic, and pure independence logic
each has a proper definability hierarchy for formulas based on
the arity of the non-first order atoms.

But the above result is, of course, much stronger.
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An application to intuitionistic implication

=(x1, . . . , xn, y) ≡ (=(x1) ∧ . . .∧ =(xn)) → =(y)

exponential linear linear

Ergo: → is exponential3

3and not definable from dependence, inclusion, or independence atoms even
if Lindström quantifiers are added.
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An application to intuitionistic disjunction

‖φ ∨ ψ‖M = ‖φ‖M ∪ ‖ψ‖M

x = y ∨ x 6= y has dimension 2

Ergo: ∨ cannot be defined in first order logic.
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M |=X φ� ψ ⇐⇒

∀6=∅Y ,Z ⊆ X ((M |=Y φ and M |=Z ψ)→

∃Y ′,Z ′ ⊆ X (Y ⊆ Y ′,Z ⊆ Z ′,M |=Y ′ φ,M |=Z ′ ψ,

and Y ′ ∩ Z ′ 6= ∅)).

x ⊥ y ⇐⇒ =(x)�=(y)

Ergo: � is exponential and not definable from dependence and
inclusion atoms, even if Lindström quantifiers are added.
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Many open problems:

1. Is the k-ary dependence atom definable in the extension
of first order logic by k-ary independence, exclusion,
inclusion, anonymity, constancy atoms, and some
Lindström quantifiers?

2. Is the k-ary anonymity atom definable in terms of the
k-ary inclusion atom?

3. Is the (k , l ,m)-ary independence atom definable in terms
of the max(k , l) + m-ary dependence atom,
max(k , l) + m-ary, max(k , l) + m-ary exclusion atoms,
and the max(k , l) + m-ary inclusion atom?

Note: Sentences have dimension 1, so dimension theory
cannot be used to obtain hierarchy results for sentences.
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Congratulations Samson

for the incredible book,

and many happy returns!
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