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Forging new atoms
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>
» Old atoms: x =y, R(xy,...,X,)

» New atoms: =(xi, ..., X, y), =(x) (V. 2007)

» From individual assignments to sets of assignments.
>

Truth values are families of sets of assignments, not sets
of assignments.

» “From IF to BI" (Abramsky-V. 2009).

» Intuitionistic implication ¢ — : “every subfamily of type
¢ is of type ¢".

> ==, xey) = (FHxa)A A =Hx) = Hy)
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Propositional operators on families of sets

([ AL(A,B) = AUB
Aq(AB) = ANB
[ Ac(A) = P(X)\A

([ AV(A,B) = {AUB|Ac A BcB)
ANAB) = {ANB| A€ A BeB}
[ AL(A) = {X\A|Ac A}

AL(AB) = {C|¥DC C(De A= DeB)}
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Quantifier operators on families of sets

As(A) = {f[A]| A€ A} where

f(ao, ey am_]_) = (ao, ey @im1,di4 1, - -y am_]_)
Ayi(A) = {B]| B[X/i] € A}, where B[X/i] =
{(ao, ...y dj—1,4;, a,-+1, ey am,]_) ‘

(a0s---;ai-1, ai41,---,am-1) € B,a; € X}

(Abramsky-V. (2009) gives a category-theoretic justification of
these definitions.)
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Truth values

Fix a model M.

o™ = P({de M™ | M = ¢(3)}), for 6(%) a literal
lonvl™ = ao(el™, )™

lovel™ = aulel™, )™

13xo|™ = AM(|lo|™)

Ivxio™ = Al (™),
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The atomic level: new atoms

» Dependence atom: ||=(X, y)||" is the family of sets T

of assignments such that s(x) = s'(X) implies
s(y) =s'(y) forall s,s" € T.

> Inclusion atom: ||x C y/||" is the family of sets T of
assignments such that for every s € T thereiss’ € T
such that s(x) = s'(y).

> Independence atom: ||X L y||" is the family of sets T
of assignments such that for every s, s’ € T there is
s” € T such that s”(x) = s(x) and s”"(y) = s'(y).
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New logics

| New atom | New logic (V,A,V,3) |

=(x, y)

Dependence logic

xCy

Inclusion logic

x1ly

Independence logic
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Independence logic R

Inclusion logic g

A

D

ependence logic ki



Toward a dimension analysis of these and related logics

» Ais convex if VC(AC C C B= C e A) for all
A Be A

» Ais dominated (by | JA)if | JA € A.

» G C A dominates A if there exist dominated convex
families A¢g, G € G, such that UGeg Ac = A and
UAg = G, for each G € G.

» The dimension of A:

D(A) = min{|G| | G dominates the family A},
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Dimensions of some families

Theorem
Suppose { = |X| > 2 and n=|Y| > 2. Then:

DH{f CXxY|fisamapping}) = n'

D({RC X x X | dom(R) Crg(R)}) = 2¢!—¢

DUAX B|AC X, BC Y)) _
2f—¢—-1)2"—n—1)+{+n
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Dimensions of some atoms

Suppose |M| = n.

¢ | D(lg]")

X=y 1

XF#y 1

R(x) 1

~R(X) 1

=) n
=X, ) n"" len(X) = m
X C y|2™ —n™|len(x) =len(y) = m
XLy [ ~2"" | len(X) = m,len(y) = k
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Growth classes

» [, is the set of f: N — N such that there exists a
polynomial p of degree k such that f(n) < 2°(").

> [F, is the set of functions f: N — N such that there exists
a polynomial p of degree k such that f(n) < nP(").

> ECFo CE G G- CE G Ty
» Note that [Eg is the class of bounded functions and Fy the
class of functions of polynomial growth.
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The dimension of a formula

Dim,(n) = sup {D(||¢||M) | M is a model, |[M| = n}

1. Dimg(n) =1, hence Dimy, is in Eg, for every first order

o.
2. Dim_z,)(n) = n" hence Dim_(z,) is in 'y, where
len(X) = k.

3. Dimgcy(n) = 2" — n*, hence Dimgcy is in [y, where
len(X) = len(y) = k.

4. Dimg,g(n) = (2" — n™ —1)(2" — n* — 1) + n™ + n¥,
hence Dimg, ; is in E,;«, where len(X) = k and
len(y) = m.

13/27



Theorem

Let O be a growth class (i.e. some E; or F;). Furthermore, let

¢ = ¢(X) and » = (X) be formulas of some logic L with
team semantics.

(a) If ¢ is a literal, then Dim, € O.

(b) If Dimg, Dim,, € O, then Dim,,,, € O.

(c) If Dimy, Dim,, € ©, then Dimy,,, € O.

(d) If Dim, € O, then Dims,., € @ and Dimy,. 4 € O.
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How is the theorem proved?

Definition

Let X and Y be nonempty sets. A function

A: P(P(X))" — P(P(Y)) is a Kripke-operator, if there is a
relation R C P(Y) x P(X)" such that

B e A(Ao,...,An_l) s
JAy e Ay...JA,_1 € A1 : (B,AQ, .. yAn—l) €R.
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An is a Kripke-operator.?

A, and A_ on X are Kripke-operators.?
As; and Ay; are Kripke-operators.

A is not a Kripke-operator.

A, is not a Kripke-operator

vVvVvyyVvyyvVyy

A_, is not a Kripke-operator

Hf A, B C P(X) and C € P(X), then C € AN B if and only if there exist
A € A and B € B such that (C, A, B) € Rn, where R is the relation
{(D,D,D) | D e P(X)}.
2AV B = Ar, (A B) and AX(A) = Ar_(A) where
Rv ={(AUB,A B) | A BeP(X)}and R = {(X \ A, A)y| AecP(X)}
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Definition

We say that A weakly preserves dominated convexity if
A(Ay, ..., A,1) is dominated and convex (or

A(Ay, ..., A,_1) = 0) whenever A; is dominated and convex
for each i < n.

Theorem

Let Ar: P(P(X))" — P(P(Y)) be a Kripke-operator, and
let A= A(A,...,An_1). If A weakly preserves dominated
convexity then

D(Ar(Ao, ..., An-1)) < D(Ao) - ... D(An1)
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Below we will use the notation

RIAL = {(Ao,- .. An1) | (A Ao, ... Ar1) € R).

Definition (Liick 2020)
A Kripke-operator Ar: P(P(X))" — P(P(Y)) is local if, for
any A € P(Y), R[A] is determined by the relations R[{a}],
ac A, as follows:
(Ao,...,An—1) € R[A] <= for each a € A there is
(A5, ..., A2_1) € R[{a}] such that A; = |J,cx A7 for
i<n.

Theorem
If Ar: P(P(X))" — P(P(Y)) is a local Kripke-operator,
then it weakly preserves dominated convexity.

Theorem
The operators AM™, AM™, AM™ and AY™ are local.

Hence they preserve dimension!
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Definition
The logic LIE, is the closure of literals and all atoms whose
dimension function is in the growth class [E, under the

connectives A, V and any Lindstrom quantifiers. Similarly LLIF
for IFy.

Lemma
(a) L]Ek Q LFk Q L]Ek+1 Q LFk+1.
Note:

(a) The dimension of every formula in LE is in the growth
class E,.

(b) The dimension of every formula in LF is in the growth
class IFy.
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The arity-concept

Definition
» The atom =(X,y) is k-ary, if len(X) = k,
» The atom X C y'is k-ary if len(X) = len(y) = k,
» The atom t, L t3 is max(k, /)-ary, if
len(t;) = k, and len(&3) = /.
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Theorem

1. k-ary inclusion and independence logics are included in
LE,.

2. The k-ary dependence logic is included in LLIF.
3. The (k,I)-ary independence logic is included in LIF a1

Theorem

1. The k + 1-ary inclusion, anonymity, exclusion and
independence atoms are not definable in ILIE,.

2. The k + 1-ary dependence atom is not definable in ILIF.

3. The (k, I)-ary independence atom is not definable in LIF;
if i < max(k,/).
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Hence:

Dependence logic, inclusion logic, and pure independence logic
each has a proper definability hierarchy for formulas based on
the arity of the non-first order atoms.

But the above result is, of course, much stronger.
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An application to intuitionistic implication

=x1, . X y) = (FHx)A.A=Hx) — =Hy)

exponential linear linear

Ergo: — is exponential®

3and not definable from dependence, inclusion, or independence atoms even
if Lindstrom quantifiers are added.
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An application to intuitionistic disjunction

lo v 9l = llgl™ ullv)™

x =y V x # y has dimension 2

Ergo: V cannot be defined in first order logic.
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MEx 00 Y <~

V;,AQ)Y,Z - X((./\/l ):y gb and M ):Z ¢) —
W, ZCX(YCY,ZCZ M=y ¢, M 2 1),
and Y'NZ' #0)).

x Ly <= =(x)©=(y)

Ergo: ® is exponential and not definable from dependence and
inclusion atoms, even if Lindstrom quantifiers are added.
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Many open problems:

1. Is the k-ary dependence atom definable in the extension
of first order logic by k-ary independence, exclusion,
inclusion, anonymity, constancy atoms, and some
Lindstrom quantifiers?

2. s the k-ary anonymity atom definable in terms of the
k-ary inclusion atom?

3. Is the (k, I, m)-ary independence atom definable in terms
of the max(k, /) + m-ary dependence atom,
max(k, /) + m-ary, max(k, /) + m-ary exclusion atoms,
and the max(k, /) + m-ary inclusion atom?

Note: Sentences have dimension 1, so dimension theory
cannot be used to obtain hierarchy results for sentences.
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Congratulations Samson
for the incredible book,

and many happy returns!
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