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- Garden-path sentences

Definition

A garden-path sentence is a sentence which is grammatically
correct and unambiguous, but which forces the reader to
initially adopt a wrong syntactic parse.

Examples
NP/S The employees understood the contract would
change

NP/Z  Because the employees negotiated the contract
would change
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% (can be extended)
Reanalysis



‘ Computational models of human behaviour




Computational models of human behaviour

- Predictions in human behaviours

> Words that are predictable (in context) are read more
easily




Computational models of human behaviour

- Predictions in human behaviours

> Words that are predictable (in context) are read more
easily

Example:
1. The boat passed easily under the ...

2. Rita slowly walked down the shaky ...




Computational models of human behaviour

- Predictions in human behaviours

> Words that are predictable (in context) are read more
easily

Example:
1. The boat passed easily under the bridge

2. Rita slowly walked down the shaky bridge




Computational models of human behaviour

- Predictions in human behaviours

> Words that are predictable (in context) are read more
easily

Example:

1. The boat passed easily under the bridge

2. Rita slowly walked down the shaky bridge
(“bridge” in 1. read faster than “bridge” in 2.)



Computational models of human behaviour

- Computational models based on surprisal

The surprisal of a word w,, in the context w; ...w,_; is given by:

S(Wn) = —1082 (P [wn | Wi "'Wn—l])




Computational models of human behaviour

- Computational models based on surprisal

Definition

The surprisal of a word w,, in the context w; ...w,_; is given by:

S(Wn) = —1082 (P [wn | Wi "'Wn—l])

Example: in 1. the surprisal of bridge is:
—log, (P [bridge | The boat passed easily under the])




Computational models of human behaviour

- Computational models based on surprisal

Definition

The surprisal of a word w,, in the context w; ...w,_; is given by:
S(Wn) = —1082 (P [wn | w1 "'Wn—l])

Example: in 1. the surprisal of bridge is:
—log, (P [bridge | The boat passed easily under the])

> Works well in naturalistic sources (e.g. newspapers,
novels, etc.)



Computational models of human behaviour

- Computational models based on surprisal

o i
©

(=}
©

40

20

Total amount of slowdown (ms)

=20
1

T T T T T
107 10 107 10 102 107" 1

P (word |context)



Computational models of human behaviour

- Computational models based on surprisal

The surprisal of a word w,, in the context w; ...w,_; is given by:

S(Wn) = —1082 (P [wn | Wi "'Wn—l])

Example: in 1. the surprisal of bridge is:
—log, (P [bridge | The boat passed easily under the])

> Works well in naturalistic sources (e.g. newspapers,
novels, etc.)

p Fails for rarer constructions



Computational models of human behaviour

- Computational models based on surprisal

Definition

The surprisal of a word w,, in the context w; ...w,_; is given by:

S(Wn) = —1082 (P [wn | Wi "'Wn—l])

Example: in 1. the surprisal of bridge is:
—log, (P [bridge | The boat passed easily under the])

> Works well in naturalistic sources (e.g. newspapers,
novels, etc.)

p Fails for rarer constructions
e.g. garden-path sentences
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- Issues with surprisal

Failures of surprisal

» Under-estimates the

slowdown
Prediction (ms) | Observed(ms)
NP/S 24 87
NP/Z 30 400

p Cannot see the difference
between NP/S and NP/Z
(sometimes even predicts
opposite trends)

Possible reasons

» Grammatical structure is
implicit
(Do large language
models know about
grammar?)

» Consistent with
parallelism, but that is
also implicit

» Cannot deal with
reanalysis
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&
Set & (The employees understood) = {m@;@&wm,

The employees understood _ ,

The employees understood 5 « .. }

% (The employees understood—The employees) : € (The employees understood) — &(The employees)

e.g. The employees understood » The employees _
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&P <
2 The employees ——— The employees understood
&

Set & (The employees understood) = {m@;@&wm,
The employees understood _ ,
The employees understood 5 « .. }

) R,
Set DR, (A) := {probability distributions over A}

!
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The presheaf model

- The signalling fraction

Consistency (General case)

A——AnB«—8B

dA c 9R+g(A) dB S 9R+%(B)

d = {d4,dp} consistent <  dal,.p = dBlann
(sheaf condition)
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- The signalling fraction

The Signalling Fraction (SF) (General case)

Definition

Given d = {d,,d,}, we define SF to the minimal 1 € [0, 1] s.t.
3dy ¢ consistent and d’ (not necessarily consistent) s.t.:

d=(1-2) dys+A-d
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- The signalling fraction

The Signalling Fraction (SF) (Example)

The employees ———— The employees «— The employees understood

d; € Dy, €(The employees) d, € Dr & (The employees understood)

SF is the minimal 2 s.t.:
d=1-2)-dyg+1-d

where: dN S, The employees understood‘ = dNS,The employees

The employees
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The presheaf model

- The signalling fraction

Interpretation of SF

Low SF (mostly consistent) = Low need for reanalysis

High SF (highly inconsistent) =  High need for reanalysis

= Should have a correlation between reading difficulty
(reading times) and SF
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- Comparison with surprisal

Surprisal SF
Forward-
looking/Predictive Yes Yes
Uses grammatical ) Yes
structure
Parallel model ? Yes
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- Empirical Results - Correlation
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P Pearson’s p: 0.78
> p-value: 0.0004
> RT = 75SF + 383 ms
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- Empirical Results - Predictions
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Figure: Garden-path effect predictions from SF
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- Empirical Results - Levels of difficulty

BERT model
distilbert | bert-base | bert-large
en_core_web_sm 0.03 0.01 0.09
spaCy model en_core_web_1lg 0.02 0.04 0.24
en_core_web_trf 0.39 0.0001 0.01

Figure: p-values associated with the 7-test evaluating whether the
garden-path effect predictions obtained from SF for NP/S and NP/Z
are sampled from the same distribution.
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- Summary of the results

> Created a presheaf model of the human parsing process,
which is close to the theories of psycholinguistics

> We used a measure of “sheafness” SF to quantify the
difficulty of parsing words in a sentence

> We obtained good correlations between SF and reading
times

> We managed to obtain statistically differences between
predictions from garden-path sentences which have
different levels of difficulty

> We compared our results with the state-of-the-art methods
from computational linguistics, and obtained more
accurate predictions
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i T

> Add more structure to the presheaf (e.g. include semantic
information)

> Combine approaches using SF and surprisal
> Produce models of the reanalysis process

> Use this model to investigate other linguistic phenomena
(e.g. memory effects)

> Contextuality with k < co-lookback?
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Thank you!

To appear in Philosophical Transactions of Royal Society A as
“Causality and Signalling in Garden-Path Sentences”
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