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easily
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1. The boat passed easily under the …
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Computational models based on surprisal

Definition
The surprisal of a word 𝑤𝑛 in the context 𝑤1 … 𝑤𝑛−1 is given by:

𝑆(𝑤𝑛) = − log2 (𝑃 [𝑤𝑛 ∣ 𝑤1 … 𝑤𝑛−1])

Example: in 1. the surprisal of bridge is:
− log2 (𝑃 [bridge ∣ The boat passed easily under the])

▶ Works well in naturalistic sources (e.g. newspapers,
novels, etc.)

▶ Fails for rarer constructions

e.g. garden-path sentences
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Computational models of human behaviour

Issues with surprisal

Failures of surprisal

▶ Under-estimates the
slowdown

Prediction (ms) Observed(ms)
NP/S 24 87
NP/Z 30 400

▶ Cannot see the difference
between NP/S and NP/Z

(sometimes even predicts
opposite trends)

Possible reasons
▶ Grammatical structure is

implicit

(Do large language
models know about
grammar?)

▶ Consistent with
parallelism, but that is
also implicit

▶ Cannot deal with
reanalysis
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The presheaf model

Definition of the model

𝒞1

Set

Set

ℰ

𝒟ℝ+

The The employees≤

ℰ(The employees understood) = { The employees understood ,
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The employees understood , … }

ℰ(The employees understood→The employees) ∶ ℰ(The employees understood) → ℰ(The employees)

e.g. The employees understood ↦ The employees _

𝒟ℝ+(𝐴) ∶= {probability distributions over 𝐴}
𝒟ℝ+(𝐴 𝑓−→ 𝐵) ∶∶ 𝑑 ↦ 𝑑|𝐵 s.t. 𝑑|𝐵(𝑏) = ∑𝑓 (𝑎)=𝑏 𝑑(𝑎)
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The presheaf model

The signalling fraction

Consistency (General case)
𝐴

𝐴 ∩ 𝐵

𝐵

𝑑𝐴 ∈ 𝒟ℝ+ℰ(𝐴) 𝑑𝐵 ∈ 𝒟ℝ+ℰ(𝐵)

𝑑 = {𝑑𝐴, 𝑑𝐵} consistent ⟺ 𝑑𝐴∣𝐴∩𝐵 = 𝑑𝐵∣𝐴∩𝐵

(sheaf condition)
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The presheaf model

The signalling fraction

The Signalling Fraction (SF) (General case)

Definition
Given 𝑑 = {𝑑1, 𝑑2}, we define SF to the minimal 𝜆 ∈ [0, 1] s.t.
∃𝑑𝑁𝑆 consistent and 𝑑′ (not necessarily consistent) s.t.:

𝑑 = (1 − 𝜆) ⋅ 𝑑𝑁𝑆 + 𝜆 ⋅ 𝑑′
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The presheaf model

The signalling fraction

The Signalling Fraction (SF) (Example)

The employees The employees The employees understood

𝑑1 ∈ 𝒟ℝ+ℰ(The employees) 𝑑2 ∈ 𝒟ℝ+ℰ(The employees understood)

SF is the minimal 𝜆 s.t.:
𝑑 = (1 − 𝜆) ⋅ 𝑑𝑁𝑆 + 𝜆 ⋅ 𝑑′

where: 𝑑𝑁𝑆,The employees understood∣The employees = 𝑑𝑁𝑆,The employees
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The presheaf model

The signalling fraction

Interpretation of SF

Low SF (mostly consistent)

⟹ Low need for reanalysis

High SF (highly inconsistent) ⟹ High need for reanalysis

⟹ Should have a correlation between reading difficulty
(reading times) and SF
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The presheaf model

Comparison with surprisal

Surprisal SF

Forward-
looking/Predictive Yes Yes
Uses grammatical
structure ? Yes
Parallel model ? Yes
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The presheaf model

Empirical Results - Correlation

▶ Pearson’s 𝜌: 0.78
▶ 𝑝-value: 0.0004
▶ 𝑅𝑇 ≃ 75SF + 383 𝑚𝑠
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The presheaf model

Empirical Results - Predictions

Figure: Garden-path effect predictions from SF
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The presheaf model

Empirical Results - Levels of difficulty

BERT model
distilbert bert-base bert-large

spaCy model
en_core_web_sm 0.03 0.01 0.09
en_core_web_lg 0.02 0.04 0.24
en_core_web_trf 0.39 0.0001 0.01

Figure: 𝑝-values associated with the 𝑡-test evaluating whether the
garden-path effect predictions obtained from SF for NP/S and NP/Z
are sampled from the same distribution.
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Conlusion

Summary of the results

▶ Created a presheaf model of the human parsing process,
which is close to the theories of psycholinguistics

▶ We used a measure of “sheafness” SF to quantify the
difficulty of parsing words in a sentence

▶ We obtained good correlations between SF and reading
times

▶ We managed to obtain statistically differences between
predictions from garden-path sentences which have
different levels of difficulty

▶ We compared our results with the state-of-the-art methods
from computational linguistics, and obtained more
accurate predictions
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Conlusion

Future work

▶ Add more structure to the presheaf (e.g. include semantic
information)

▶ Combine approaches using SF and surprisal
▶ Produce models of the reanalysis process
▶ Use this model to investigate other linguistic phenomena

(e.g. memory effects)
▶ Contextuality with 𝑘 < ∞-lookback?
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Conlusion

Thank you!

To appear in Philosophical Transactions of Royal Society A as
“Causality and Signalling in Garden-Path Sentences”
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