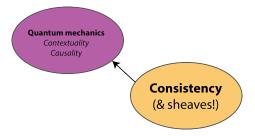
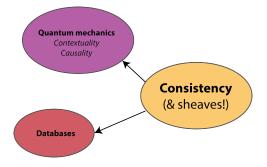
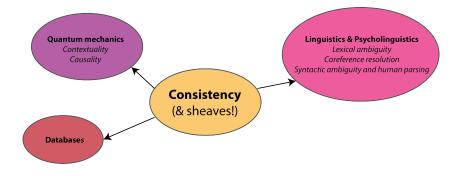
Causality and Signalling in Garden-Path Sentences

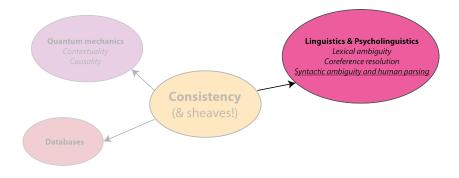
Samson Abramsky on Logic and Structure in Computer Science and Beyond

> Daphne Wang & Mehrnoosh Sadrzadeh 20th September 2023









Definition

A *garden-path* sentence is a sentence which is grammatically correct and unambiguous, but which forces the reader to initially adopt a wrong syntactic parse.

Definition

A *garden-path* sentence is a sentence which is grammatically correct and unambiguous, but which forces the reader to initially adopt a wrong syntactic parse.

Examples

The employees understood the contract would change

Definition

A *garden-path* sentence is a sentence which is grammatically correct and unambiguous, but which forces the reader to initially adopt a wrong syntactic parse.

Examples

The employees understood the contract would change

Definition

A *garden-path* sentence is a sentence which is grammatically correct and unambiguous, but which forces the reader to initially adopt a wrong syntactic parse.

Examples

The employees understood the contract would change

Definition

A *garden-path* sentence is a sentence which is grammatically correct and unambiguous, but which forces the reader to initially adopt a wrong syntactic parse.

Examples

The employees understood the contract would change

Definition

A *garden-path* sentence is a sentence which is grammatically correct and unambiguous, but which forces the reader to initially adopt a wrong syntactic parse.

Examples

NP/S The employees understood the contract would change

Definition

A *garden-path* sentence is a sentence which is grammatically correct and unambiguous, but which forces the reader to initially adopt a wrong syntactic parse.

Examples

NP/S

The employees <u>understood</u> the contract would change

Definition

A *garden-path* sentence is a sentence which is grammatically correct and unambiguous, but which forces the reader to initially adopt a wrong syntactic parse.

Examples

NP/S The employees <u>understood</u> the contract would change

Definition

A *garden-path* sentence is a sentence which is grammatically correct and unambiguous, but which forces the reader to initially adopt a wrong syntactic parse.

Examples

- NP/S The employees understood the contract would change
- NP/Z Because the employees negotiated the contract would change

Definition

A *garden-path* sentence is a sentence which is grammatically correct and unambiguous, but which forces the reader to initially adopt a wrong syntactic parse.

Examples

- NP/S The employees understood the contract would change
- NP/Z Because the employees <u>negotiated</u> the contract would change

Definition

A *garden-path* sentence is a sentence which is grammatically correct and unambiguous, but which forces the reader to initially adopt a wrong syntactic parse.

Examples

- NP/S The employees understood the contract would change
- NP/Z Because the employees <u>negotiated</u> the contract would change

The psycholinguistics theories

The psycholinguistics theories

The employees $_$

The psycholinguistics theories

The employees understood

The psycholinguistics theories

The employees understood the _

The psycholinguistics theories

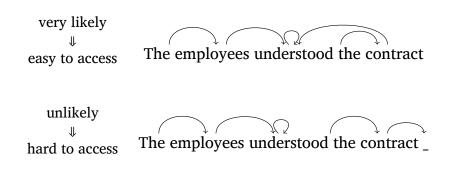
The employees understood the contract

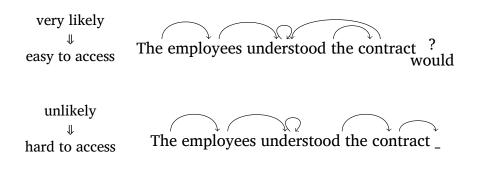
The employees understood the contract_

very likely ↓ easy to access

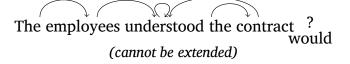
The employees understood the contract

The employees understood the contract _



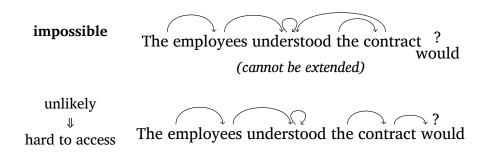


impossible

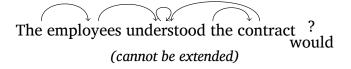


unlikely ↓ hard to access

The employees understood the contract _



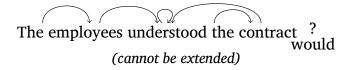
impossible



unlikely \downarrow hard to access The employees understood the contract would _

(can be extended)

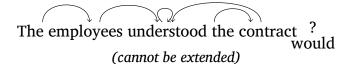
impossible



has to be adopted The employees understood the contract would _

(can be extended)

impossible



has to be
adopted
\$The employees understood the contract would _
(can be extended)Reanalysis

Computational models of human behaviour

Words that are predictable (in context) are read more easily

Words that are predictable (in context) are read more easily

Example:

- 1. The boat passed easily under the ...
- 2. Rita slowly walked down the shaky ...

Words that are predictable (in context) are read more easily

Example:

- 1. The boat passed easily under the **bridge**
- 2. Rita slowly walked down the shaky bridge

Words that are predictable (in context) are read more easily

Example:

 The boat passed easily under the bridge
Rita slowly walked down the shaky bridge ("bridge" in 1. read faster than "bridge" in 2.)

Definition

The surprisal of a word w_n in the context $w_1 \dots w_{n-1}$ is given by:

$$S(w_n) = -\log_2 (P[w_n \mid w_1 \dots w_{n-1}])$$

Definition

The surprisal of a word w_n in the context $w_1 \dots w_{n-1}$ is given by:

$$S(w_n) = -\log_2 (P[w_n | w_1 ... w_{n-1}])$$

Example: in 1. the surprisal of **bridge** is: $-\log_2(P[\text{bridge} | \text{The boat passed easily under the}])$

Definition

The surprisal of a word w_n in the context $w_1 \dots w_{n-1}$ is given by:

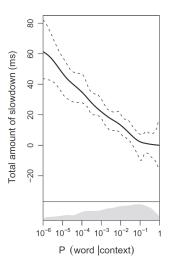
$$S(w_n) = -\log_2 (P[w_n | w_1 ... w_{n-1}])$$

Example: in 1. the surprisal of **bridge** is:

- $\overline{-\log_2(P}$ [bridge | The boat passed easily under the])
 - Works well in naturalistic sources (e.g. newspapers, novels, etc.)

Computational models of human behaviour

Computational models based on surprisal



Definition

The surprisal of a word w_n in the context $w_1 \dots w_{n-1}$ is given by:

$$S(w_n) = -\log_2 (P[w_n | w_1 ... w_{n-1}])$$

Example: in 1. the surprisal of **bridge** is:

- $\overline{-\log_2(P[\text{bridge} | \text{The boat passed easily under the}])}$
 - Works well in naturalistic sources (e.g. newspapers, novels, etc.)
 - ▶ Fails for rarer constructions

Definition

The surprisal of a word w_n in the context $w_1 \dots w_{n-1}$ is given by:

$$S(w_n) = -\log_2 (P[w_n | w_1 ... w_{n-1}])$$

Example: in 1. the surprisal of **bridge** is:

- $\overline{-\log_2(P}$ [bridge | The boat passed easily under the])
 - Works well in naturalistic sources (e.g. newspapers, novels, etc.)
 - ► Fails for rarer constructions e.g. garden-path sentences

Failures of surprisal

Failures of surprisal

Under-estimates the slowdown

Failures of surprisal

Under-estimates the slowdown

	Prediction (ms)	Observed(ms)
NP/S	24	87
NP/Z	30	400

Failures of surprisal

Under-estimates the slowdown

	Prediction (ms)	Observed(ms)
NP/S	24	87
NP/Z	30	400

Cannot see the difference between NP/S and NP/Z

Failures of surprisal

Under-estimates the slowdown

	Prediction (ms)	Observed(ms)
NP/S	24	87
NP/Z	30	400

 Cannot see the difference between NP/S and NP/Z (sometimes even predicts opposite trends)

Failures of surprisal

Under-estimates the slowdown

	Prediction (ms)	Observed(ms)
NP/S	24	87
NP/Z	30	400

 Cannot see the difference between NP/S and NP/Z (sometimes even predicts opposite trends)

Possible reasons

Failures of surprisal

Under-estimates the slowdown

	Prediction (ms)	Observed(ms)
NP/S	24	87
NP/Z	30	400

 Cannot see the difference between NP/S and NP/Z (sometimes even predicts opposite trends)

Possible reasons

 Grammatical structure is implicit

Failures of surprisal

Under-estimates the slowdown

	Prediction (ms)	Observed(ms)
NP/S	24	87
NP/Z	30	400

 Cannot see the difference between NP/S and NP/Z (sometimes even predicts opposite trends)

Possible reasons

 Grammatical structure is implicit (Do large language models know about grammar?)

Failures of surprisal

Under-estimates the slowdown

	Prediction (ms)	Observed(ms)
NP/S	24	87
NP/Z	30	400

 Cannot see the difference between NP/S and NP/Z (sometimes even predicts opposite trends)

Possible reasons

- Grammatical structure is implicit (Do large language models know about grammar?)
- Consistent with parallelism, but that is also implicit

Failures of surprisal

Under-estimates the slowdown

	Prediction (ms)	Observed(ms)
NP/S	24	87
NP/Z	30	400

 Cannot see the difference between NP/S and NP/Z (sometimes even predicts opposite trends)

Possible reasons

- Grammatical structure is implicit (Do large language models know about grammar?)
- Consistent with parallelism, but that is also implicit
- Cannot deal with reanalysis

$$\mathscr{C}_1$$
 The $\xrightarrow{\leq}$ The employees

Definition of the model

 \mathscr{C}_2 The employees $\stackrel{\leq}{\longrightarrow}$ The employees understood

Definition of the model

 \mathscr{C}_3 The employees understood $\stackrel{\leq}{\rightarrow}$ The employees understood the

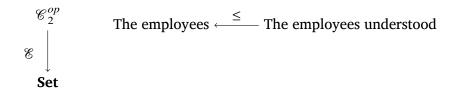
Definition of the model

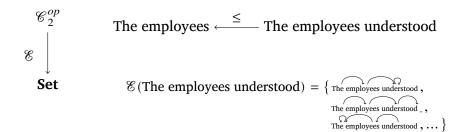
 \mathscr{C}_2 The employees $\stackrel{\leq}{\longrightarrow}$ The employees understood

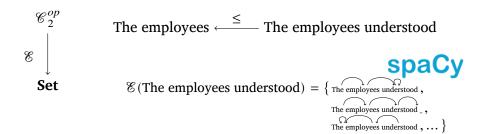
Definition of the model

 \mathcal{C}_2^{op}

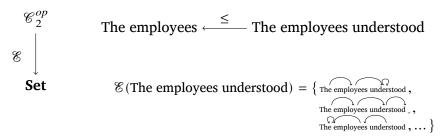
The employees $\stackrel{\leq}{\longrightarrow}$ The employees understood



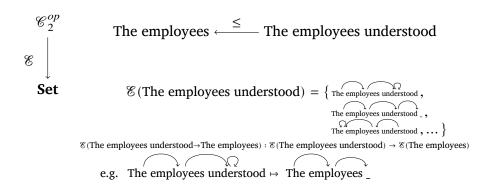


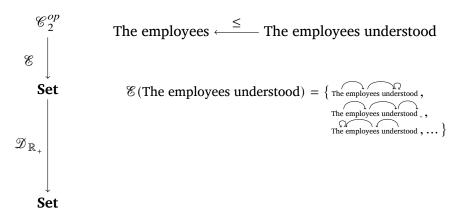


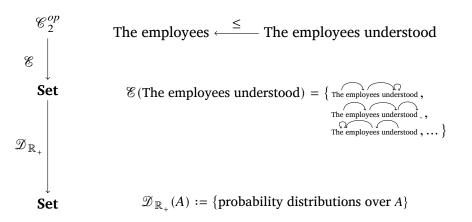
Definition of the model



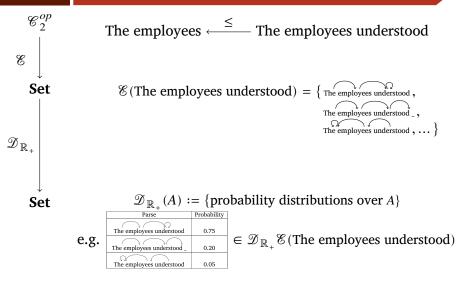
 $\mathscr{C}(\text{The employees understood} \rightarrow \text{The employees}) : \mathscr{C}(\text{The employees understood}) \rightarrow \mathscr{C}(\text{The employees})$



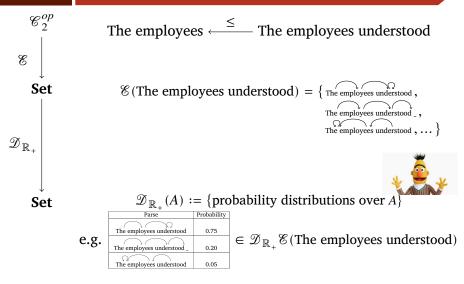


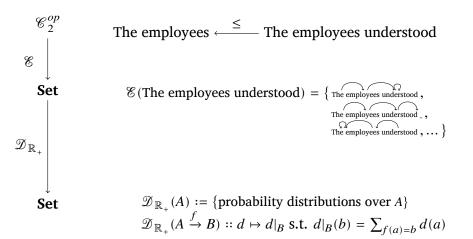


Definition of the model



10/18





The signalling fraction

Consistency (General case)

A

В

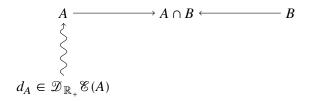
The signalling fraction

Consistency (General case)

$$A \xrightarrow{} A \cap B \xleftarrow{} B$$

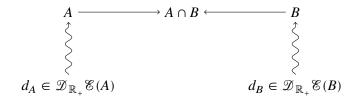
The signalling fraction

Consistency (General case)



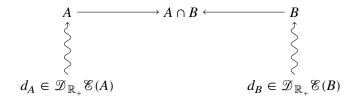
The signalling fraction

Consistency (General case)



The signalling fraction

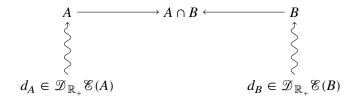
Consistency (General case)



 $d = \{d_A, d_B\}$ consistent $\iff d_A|_{A \cap B} = d_B|_{A \cap B}$

The signalling fraction

Consistency (General case)



 $d = \{d_A, d_B\}$ consistent $\iff d_A|_{A \cap B} = d_B|_{A \cap B}$ (sheaf condition)

The Signalling Fraction (SF) (General case)

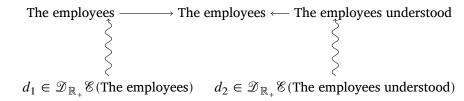
The Signalling Fraction (SF) (General case)

Definition

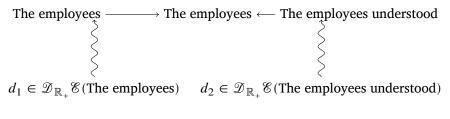
Given $d = \{d_1, d_2\}$, we define SF to the minimal $\lambda \in [0, 1]$ s.t. $\exists d_{NS}$ consistent and d' (not necessarily consistent) s.t.:

$$d = (1 - \lambda) \cdot d_{NS} + \lambda \cdot d'$$

The Signalling Fraction (SF) (Example)



The Signalling Fraction (SF) (Example)



SF is the minimal λ s.t.:

$$d = (1 - \lambda) \cdot d_{NS} + \lambda \cdot d'$$

where: $d_{NS,\text{The employees understood}}\Big|_{\text{The employees}} = d_{NS,\text{The employees}}$

The signalling fraction

Interpretation of SF

Low SF (mostly consistent)

The signalling fraction

Interpretation of SF

Low SF (mostly consistent) \implies Low need for reanalysis

The signalling fraction

Interpretation of SF

Low SF (mostly consistent) \implies Low need for reanalysis

High SF (highly inconsistent)

Interpretation of SF

Low SF (mostly consistent) \implies Low need for reanalysis

High SF (highly inconsistent) \implies High need for reanalysis

Interpretation of SF

Low SF (mostly consistent) \implies Low need for reanalysis

High SF (highly inconsistent) \implies High need for reanalysis

 $\Rightarrow\,$ Should have a correlation between reading difficulty (reading times) and SF

 Surprisal	SF

	Surprisal	SF
Forward-		
looking/Predictive		

	Surprisal	SF
Forward- looking/Predictive	Yes	Yes

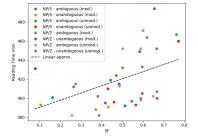
	Surprisal	SF
Forward- looking/Predictive	Yes	Yes
Uses grammatical		
structure		

	Surprisal	SF
Forward- looking/Predictive	Yes	Yes
Uses grammatical structure	?	Yes

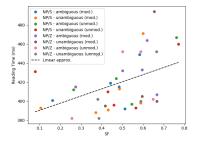
	Surprisal	SF
Forward-	Yes	Yes
looking/Predictive	105	105
Uses grammatical	?	Yes
structure	÷	105
Parallel model		

	Surprisal	SF
Forward-	Yes	Yes
looking/Predictive	105	105
Uses grammatical	?	Yes
structure	÷	105
Parallel model	?	Yes

Empirical Results - Correlation

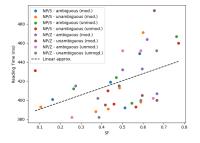


Empirical Results - Correlation



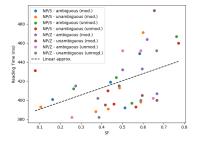
Pearson's ρ : 0.78

Empirical Results - Correlation



Pearson's ρ: 0.78
p-value: 0.0004

Empirical Results - Correlation



- Pearson's ρ : 0.78
- *p*-value: 0.0004
- $\blacktriangleright RT \simeq 75 \text{SF} + 383 \text{ ms}$

Empirical Results - Predictions

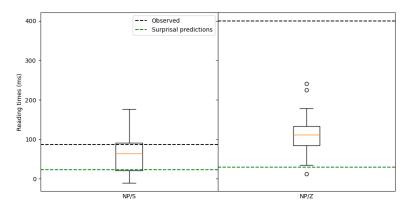


Figure: Garden-path effect predictions from SF

Empirical Results - Levels of difficulty

		BERT model		
		distilbert	bert-base	bert-large
spaCy model	en_core_web_sm	0.03	0.01	0.09
	en_core_web_lg	0.02	0.04	0.24
	en_core_web_trf	0.39	0.0001	0.01

Figure: *p*-values associated with the *t*-test evaluating whether the garden-path effect predictions obtained from SF for NP/S and NP/Z are sampled from the same distribution.

Summary of the results

Created a presheaf model of the human parsing process, which is close to the theories of psycholinguistics

- Created a presheaf model of the human parsing process, which is close to the theories of psycholinguistics
- We used a measure of "sheafness" SF to quantify the difficulty of parsing words in a sentence

- Created a presheaf model of the human parsing process, which is close to the theories of psycholinguistics
- We used a measure of "sheafness" SF to quantify the difficulty of parsing words in a sentence
- We obtained good correlations between SF and reading times

- Created a presheaf model of the human parsing process, which is close to the theories of psycholinguistics
- We used a measure of "sheafness" SF to quantify the difficulty of parsing words in a sentence
- We obtained good correlations between SF and reading times
- We managed to obtain statistically differences between predictions from garden-path sentences which have different levels of difficulty

- Created a presheaf model of the human parsing process, which is close to the theories of psycholinguistics
- We used a measure of "sheafness" SF to quantify the difficulty of parsing words in a sentence
- We obtained good correlations between SF and reading times
- We managed to obtain statistically differences between predictions from garden-path sentences which have different levels of difficulty
- We compared our results with the state-of-the-art methods from computational linguistics, and obtained more accurate predictions

Future work

 Add more structure to the presheaf (e.g. include semantic information)

- Add more structure to the presheaf (e.g. include semantic information)
- Combine approaches using SF and surprisal

- Add more structure to the presheaf (e.g. include semantic information)
- Combine approaches using SF and surprisal
- Produce models of the reanalysis process

- Add more structure to the presheaf (e.g. include semantic information)
- Combine approaches using SF and surprisal
- Produce models of the reanalysis process
- Use this model to investigate other linguistic phenomena (e.g. memory effects)

- Add more structure to the presheaf (e.g. include semantic information)
- Combine approaches using SF and surprisal
- Produce models of the reanalysis process
- Use this model to investigate other linguistic phenomena (e.g. memory effects)
- Contextuality with $k < \infty$ -lookback?

Thank you!

To appear in Philosophical Transactions of Royal Society A as "Causality and Signalling in Garden-Path Sentences"

