
Central Submonads and Notions of
Computation

Titouan Carette, Louis Lemonnier, Vladimir Zamdzhiev

18 September 2023



What should be the role of semantics?

Recently, Samson posed interesting questions regarding the vision of
mathematical semantics.
Question
”That is, should mathematical semantics still be conceived as following
in the track of preexisting languages, trying to explain their novel
features, and to provide firm foundations for them? Or should it be
seen as operating in a more autonomous fashion, developing new
semantic paradigms, which may then give rise to new languages?”

Samson Abramsky: Whither semantics? Theoretical Computer Science (2020)

1



Languages ↔ Semantics

• Often: language first, then mathematical semantics follows.
• However, we can extract languages, abstractions and design from

mathematical models:
• Coherence spaces

⇒ Linear Logic
⇒ substructural types in programming (e.g. Idris 2, Haskell).

• Monads (category theory)
⇒ Moggi’s monadic metalanguage
⇒ monads in programming (e.g. Idris, Haskell).

• This talk: some recent results on monads following in this spirit.
• Ask a question about (categorical) monads.
• Extract design and language features from the answer.
• How useful is it?

J.Y. Girard. Linear Logic. Theoretical Computer Science (1987).
E. Moggi. Notions of computation and monads. Inf. and computation (1991).

2



Languages ↔ Semantics

• Often: language first, then mathematical semantics follows.
• However, we can extract languages, abstractions and design from

mathematical models:
• Coherence spaces

⇒ Linear Logic
⇒ substructural types in programming (e.g. Idris 2, Haskell).

• Monads (category theory)
⇒ Moggi’s monadic metalanguage
⇒ monads in programming (e.g. Idris, Haskell).

• This talk: some recent results on monads following in this spirit.
• Ask a question about (categorical) monads.
• Extract design and language features from the answer.
• How useful is it?

J.Y. Girard. Linear Logic. Theoretical Computer Science (1987).
E. Moggi. Notions of computation and monads. Inf. and computation (1991).

2



Question

Question
What is the centre of a monad?

3



Some intuition

1 do do
2 x <− op1 y <− op2
3 y <− op2 x <− op1
4 f x y f x y

Two examples of monadic sequencing in Haskell.

• Monads (programming) used for handling computational effects.
• Monads have an algebraic flavour (category theory).
• Centre (algebraically): elements that commute with all others.
• Intuition: If op1 or op2 is central, the two code fragments should

be equivalent.

Question
What is centrality for monads?

4



Background: Premonoidal categories

Premonoidal categories as model of effects. Tensor ⊗ is not a bifunctor.

f

g
̸=

f

g

• A premonoidal category P has a centre Z(P);
• ⊗ is a bifunctor in Z(P);
• Z(P) is a monoidal category.

Link with Monads
The Kleisli category of a strong monad is a premonoidal category.

J. Power & E. Robinson. Premonoidal Categories and Notions of Computation.
Math. Struct. Comput. Sci. (1997)

5



Strong monads

Correspondence:

• Effects ↔ monads;
• pairing ↔ monoidal structure ⊗.

Strong monad: combines the two with a strength τ .

τX,Y : X⊗ T Y→ T (X⊗ Y).

Operationally:

⟨x,M⟩
do y← M; return ⟨x, y⟩

6



Examples on Set

Writer monad

• Monoid M with centre Z(M).
• Monad – (M×−) : Set→ Set.
• Centre – (Z(M)×−) : Set→ Set.

Powerset monad

• Commutative.
• Centre – itself.

Link with Lawvere theories

• Lawvere theory T with centre Z(T).
• Monad – induced by T.
• Centre – induced by Z(T).

7



Central cone

Commutative monad T : Central cone of T at fixed X:
a pair (Z, ι : Z→ T X) such that

T X⊗ T Y T (X⊗ T Y)

T 2(X⊗ Y)

T (X⊗ Y)

T X⊗ T Y

T (T X⊗ Y) T 2(X⊗ Y)

τ ′

T τ

µ
τ

T τ ′ µ

Y then X

X then Y

Z⊗ T Y T X⊗ T Y T (X⊗ T Y)

T 2(X⊗ Y)

T (X⊗ Y)

T X⊗ T Y

T (T X⊗ Y) T 2(X⊗ Y)

ι⊗ T Y τ ′

T τ

µ

ι⊗ T Y

τ

T τ ′ µ

Y then X

X then Y

commutes for all objects X and Y. commutes for every object Y.

If the universal central cone at X exists, write ZX def
= Z.

8



Central cone

Commutative monad T : Central cone of T at fixed X:
a pair (Z, ι : Z→ T X) such that

T X⊗ T Y T (X⊗ T Y)

T 2(X⊗ Y)

T (X⊗ Y)

T X⊗ T Y

T (T X⊗ Y) T 2(X⊗ Y)

τ ′

T τ

µ
τ

T τ ′ µ

Y then X

X then Y

Z⊗ T Y T X⊗ T Y T (X⊗ T Y)

T 2(X⊗ Y)

T (X⊗ Y)

T X⊗ T Y

T (T X⊗ Y) T 2(X⊗ Y)

ι⊗ T Y τ ′

T τ

µ

ι⊗ T Y

τ

T τ ′ µ

Y then X

X then Y

commutes for all objects X and Y. commutes for every object Y.

If the universal central cone at X exists, write ZX def
= Z.

8



Main Result: Centralisability

Theorem
Equivalent conditions for a strong monad T to be centralisable:

1. Existence of all universal central cones.
2. Existence of a commutative submonad Z, s.t. CZ ∼= Z(CT ).
3. Left adjoint C→ CT corestricts to a left adjoint C→ Z(CT ).

Corollaries

(1) All strong monads on Set,DCPO,Top,Vect, . . . are centralisable.

(2) A commutative monad is its own centre.

(3) If C closed and total, every strong monad on it admits a centre.

All strong monads centralisable?

No, but only artificial counterexamples!

9



Main Result: Centralisability

Theorem
Equivalent conditions for a strong monad T to be centralisable:

1. Existence of all universal central cones.
2. Existence of a commutative submonad Z, s.t. CZ ∼= Z(CT ).
3. Left adjoint C→ CT corestricts to a left adjoint C→ Z(CT ).

Corollaries

(1) All strong monads on Set,DCPO,Top,Vect, . . . are centralisable.

(2) A commutative monad is its own centre.

(3) If C closed and total, every strong monad on it admits a centre.

All strong monads centralisable?

No, but only artificial counterexamples!

9



Main Result: Centralisability

Theorem
Equivalent conditions for a strong monad T to be centralisable:

1. Existence of all universal central cones.
2. Existence of a commutative submonad Z, s.t. CZ ∼= Z(CT ).
3. Left adjoint C→ CT corestricts to a left adjoint C→ Z(CT ).

Corollaries

(1) All strong monads on Set,DCPO,Top,Vect, . . . are centralisable.

(2) A commutative monad is its own centre.

(3) If C closed and total, every strong monad on it admits a centre.

All strong monads centralisable?

No, but only artificial counterexamples!

9



Main Result: Centralisability

Theorem
Equivalent conditions for a strong monad T to be centralisable:

1. Existence of all universal central cones.
2. Existence of a commutative submonad Z, s.t. CZ ∼= Z(CT ).
3. Left adjoint C→ CT corestricts to a left adjoint C→ Z(CT ).

Corollaries

(1) All strong monads on Set,DCPO,Top,Vect, . . . are centralisable.

(2) A commutative monad is its own centre.

(3) If C closed and total, every strong monad on it admits a centre.

All strong monads centralisable?

No, but only artificial counterexamples!

9



Main Result: Centralisability

Theorem
Equivalent conditions for a strong monad T to be centralisable:

1. Existence of all universal central cones.
2. Existence of a commutative submonad Z, s.t. CZ ∼= Z(CT ).
3. Left adjoint C→ CT corestricts to a left adjoint C→ Z(CT ).

Corollaries

(1) All strong monads on Set,DCPO,Top,Vect, . . . are centralisable.

(2) A commutative monad is its own centre.

(3) If C closed and total, every strong monad on it admits a centre.

All strong monads centralisable?

No, but only artificial counterexamples!

9



Main Result: Centralisability

Theorem
Equivalent conditions for a strong monad T to be centralisable:

1. Existence of all universal central cones.
2. Existence of a commutative submonad Z, s.t. CZ ∼= Z(CT ).
3. Left adjoint C→ CT corestricts to a left adjoint C→ Z(CT ).

Corollaries

(1) All strong monads on Set,DCPO,Top,Vect, . . . are centralisable.

(2) A commutative monad is its own centre.

(3) If C closed and total, every strong monad on it admits a centre.

All strong monads centralisable? No, but only artificial counterexamples!

9



Even more categories with centralisable monads

All strong monads on the following categories are centralisable:

• EM-category of a commutative monad on Set. This includes:
• Conv of convex sets (algebras of the distribution monad),
• Set∗ - pointed sets and point preserving functions (lift monad),
• CMon - commutative monoids (commutative monoid monad),
• Sup - complete semilattices (algebras of the powerset monad).

• Presheaf category SetCop
over a small category C. This includes:

• Graph - directed multi-graphs and graph homomorphisms,
• SetN

op - topos of trees,
• G − Set - G-sets (sets with an action of G) and equivariant maps.

• Any Grothendieck topos.
• And probably many more.

10



Another (non-trivial) centre

Example
Every semiring (S,+, 0, ·, 1) induces a monad TS : Set→ Set
[Jakl et al., 2022]. This monad maps a set X to the set of finite formal
sums of the form

∑
sixi, where si are elements of S and xi are elements

of X. The centre Z of TS is induced by the commutative semiring Z(S),
i.e., by the centre of S in the usual sense.

11



A (trivial?) domain-theoretic example

Example
The valuation monad V : DCPO→ DCPO is strong, but its
commutativity is an open problem. The centre of V is precisely the
“central valuations monad”. A central cone at X is determined by:

ZX def
=

{
ξ ∈ V(X) | ∀Y ∈ Ob(DCPO).∀U ∈ σ(X× Y).

∀ν ∈ V(Y).
∫

X

∫
Y
χU(x, y)dνdξ =

∫
Y

∫
X
χU(x, y)dξdν

}

together with the subset inclusion into VX.

C. Jones & G. D. Plotkin. A probabilistic powerdomain of evaluations. LICS 1989.
X. Jia, M. W. Mislove & V. Zamdzhiev. The Central Valuations Monad (Early

Ideas). CALCO 2021

12



Central Submonad

Theorem
Given a submonad S with ι : S ↪−→ T , equivalent conditions:

1. (SX, ιX) is a central cone for all X;
2. there exists a canonical embedding CS ↪−→ Z(CT ).

When the centre Z exists, also equivalent to:

3. S is (canonically) a submonad of Z.

Definition: S – central submonad if it satisfies 1, 2 or 3.

Remark: the centre is the universal central submonad.

13



Computational Interpretation

Language Model
Simply-typed λ-calculus (STλC) Cartesian Closed Category (CCC)
Moggi’s metalanguage CCC with strong monad T
??? CCC with central submonad S ↪−→ T

CSC (Central Submonad Calculus):

Simply-typed λ-calculus;
+ new types: SX and T X;
+ terms for monadic computation (à la Moggi);
+ equational rules, such as:

Γ ⊢ doT x← ιM; doT y← N; P
= doT y← N; doT x← ιM; P : T C

14



Computational Interpretation

Language Model
Simply-typed λ-calculus (STλC) Cartesian Closed Category (CCC)
Moggi’s metalanguage CCC with strong monad T
CSC CCC with central submonad S ↪−→ T

CSC (Central Submonad Calculus):

Simply-typed λ-calculus;
+ new types: SX and T X;
+ terms for monadic computation (à la Moggi);
+ equational rules, such as:

Γ ⊢ doT x← ιM; doT y← N; P
= doT y← N; doT x← ιM; P : T C

14



Completeness and Internal Language

STλCs CCCs

Completeness

Internal Language

≃

CSCs CSC-models

Completeness

Internal Language

≃

Folklore:

Theorem:

15



Conclusion

What we have done:

• notion of centre for strong monads;
• equivalent conditions for a strong monad to have a centre;
• equivalent conditions for a submonad to be central;
• computational interpretation: completeness and internal language.

Further questions:

• more interesting examples?
• how to use in practice (e.g. program logic)?

More details:

• Paper at LICS’23 and https://arxiv.org/abs/2207.09190,
• the PhD thesis of Louis, available before September 2024.

16

https://arxiv.org/abs/2207.09190


Jakl, T., Marsden, D., and Shah, N. (2022).
Generalizations of bilinear maps – technical report.

16


